
Software Based MEPG-2 Encoding System with Scalable
and Multithreaded Architecture

 Ishfaq Ahmad, Dick-kwong Yeung, Weiguo Zheng, Shehzad Mehmood

Multimedia Technology Research Center
HKUST, Clear Water Bay, Hong Kong

Abstract1
MPEG-2 video encoders are now available in a variety of
forms using both hardware and software based
approaches. The software-based approach potentially
offers a better picture quality but is computationally quite
intensive. MPEG-2 video encoding can be fast processed
using parallelism. A number of approaches using parallel
machines or networks of workstations have been reported.
While these approaches promise good concepts they do
not offer commercial solutions due to factors such as cost,
size, etc. In this paper, we propose a new approach with
the aim to build a cost-effective and a completely
practical solution that is not only highly efficient but is
also scalable from single-processor to multiple-processor
PC. The highlights of the proposed work include an
algorithm for enhancing the efficiency of motion
estimation, speeding up the computation of motion
estimation and DCT with Intel’s SIMD (Single
Instruction, Multiple Data) style MMX and SSE
instruction sets within a single processor, and scheduling
and allocation of a multithreading scheme on a multiple
processor PC for managing I/O, synchronization, audio
and video encoding, and multiplexing. The proposed
multithreaded encoder exploits temporal parallelism in
MPEG video sequences with small overhead. The
encoder, providing a complete compression solution,
achieves faster than the real-time and half of real-time
encoding rates for CIF (352 x 288) and CCIR601 (720 x
576) video sequences, respectively, on multiple processor
PC.

1. Introduction
Digital video sources need massive data rates. For
example, uncompressed CCIR (ITU-R) 601 with
resolution of 720 x 576 (PAL) pixels (16-bit with YUV
4:2:2 color space) has data rate of 166Mbps. Reducing the
spatial and temporal redundancy of a video sequence is
the main objective of video compression. After
compression, MPEG-2 coding of the CCIR601 video
sequence may require only 4 to 15Mbps with acceptable
visual quality [1], [2], [3].

1 This work was supported by Research Grants Council of Hong
Hong under contract # CRC98/01.EG05, HKUST6228/99E, and
HKTIIT98/99.EG02.

However, software based video encoding requires very
high computational power, e.g. CCIR601 video encoding
takes several Gigaflops if brute-force motion estimation is
adopted. Consequently, software-based MPEG-2 video
encoders can only achieve a speed of only few frames per
second. One possibility to overcome this hurdle is to use
parallel processing. Parallel approaches include the use of
parallel supercomputers and networks of workstations.
MPEG-2 encoder with a software implementation is
desired to be scalable so that the encoding speed can
adjust depending upon the number of available
processors.

While some work [4], [5], [6], [7] has been reported
with real-time encoding rates on parallel processors, their
underlying assumption is the availability of raw video
source on a disk system. These experiments have been
carried out on parallel and distributed platforms, including
network of SUN, SGI, HP workstations, Intel iPSC/860
hypercube and Intel Paragon, connected with a parallel
file system (PFS) or network file system (NFS). In these
experiments, I/O has been reported to the main
bottleneck. The basic philosophy in these works is to
improve the overlap of video data distribution and the
encoding task in order to prevent the encoder performance
from being limited by the I/O performance.

In this paper, we exploit a different kind of
parallelism and design a complete system for MPEG-2
video encoder on a multiprocessor platform with
multithreaded operating system. We design efficient
scheduling of multiple threads for managing I/O,
compression of video, audio, and their multiplexing. In
addition, we propose algorithms for optimization of
motion estimation and parallelism within the single
processor by exploiting MMX and SSE Instruction.

This paper is organized as follows: In Section 3, we
describe the optimization of MPEG Software Simulation
Group’s (MSSG) MPEG-2 video encoder. In Section 2,
we discuss the architecture of the multithreaded video
encoding system and modules of the proposed system.
Section 3 describes the multithreading and scheduling.
Experimental results are presented in Section 4, and
Section 5 concludes this paper.

2. Optimization of the Encoding Algorithms
The MPEG Software Simulation Group (MSSG), during
the course of defining the standard, has developed MPEG
reference software. The encoder can be used for

generating constant bit rate MPEG-2 video and is the first
publicly available encoder based on the Test Model 5
(TM5) coding model. The architecture of the MPEG-2
encoder is depicted in Figure 1.

Our optimization consists of various techniques, such
as B-picture reconstruction skipping, hierarchical motion
estimation, fast DCT & IDCT, SIMD implementation,
etc.

2.1 Skipping B-picture Reconstruction
In MPEG-2 encoder, for the purpose of the encoding
quality evaluation, all encoded pictures are reconstructed
after quantization. In practical applications, the PSNR
calculation is unnecessary. So, we can avoid some
computation for picture reconstruction.

Each video sequence is composed of a series of
groups of pictures (GOP). Based on the referencing
dependencies, frames that will be referenced are encoded
first. In the decoding process, reference frames (I and P
frames) will be decoded first and then referenced by other
P or B frames before display. Due to the frame
dependencies within each GOP, GOP structure is intended
to provide random access into a sequence. Each GOP is
an independently decodable unit as long as it begins with
an I-frame. A GOP can be described as “open” or
“closed”. In an open GOP, the last B frames of each GOP
needs to reference to next GOP’s I-frame (Figure 2 is an
open GOP). In a closed GOP, the last frame of each GOP
is a P frame; frames inside each GOP do not reference to
next GOP (for instance, I, B, B, P, B, B, P, B, B, P, I, B, B,
P…).

B-pictures provide the maximum compression ratio
since they can exploit the bi-directional prediction from
the past and future pictures. But B-pictures do not server
as reference pictures, and, therefore, there is no need to
reconstruct B-pictures in the encoding loop.

2.2 Hierarchical Motion Estimation
Motion estimation (ME) is the most important part of the
MPEG-2 encoder, since it reduces temporal redundancy
from video sequences and significantly affects the output
quality of the encoded sequence. This is also the most
complex part of compression with an overwhelming
computational complexity compared with other parts of
the encoding process.

Using searching window size of ±16, motion
estimation (full search) can consume more than 90% of
processing resource. A myriad of algorithms are reported
to improve the speed and performance of motion
estimation, such as three-step search, new three-step
search, 2-D logarithmic search, conjugate directional
search and hierarchical search [8], etc.

First we design a fast hierarchical motion estimation
algorithm. For simplicity, the pyramidal pictures is
obtained by averaging:

++= ∑ ∑

= =
−

1

0

1

0
1)2,2(

4

1
),(

p q
ll qjpipjip (1)

41 << l .

Where),(jipl represents the gray level at the position

(i, j) of the l-th level and),(0 jip represents gray level of

original picture.

Using Equation 1, we can construct L+1 layer
pyramid. Layer 0 denotes the original picture to be
encoded. If L=2, we have 3 layers pyramid, and the size
of top layer is 1/16 of the original picture. And each layer
is quarter size of its lower layer. On the highest layer, we
perform full search to find the predictive motion vectors,
and refine the motion vector on the lower layers.

The hierarchical search algorithm is described as
follows:

Step 1. Construct the pyramid with L=2.

Step 2. The top layer is mapped into multiple 8x8 non-
overlapped blocks. Each block represents a 16x16 block
in middle layer. Full search is executed on the top layer
with search range (RL, RL), where RL = R/4, R is the
defined search range for original picture size.

Step 3. We separate the middle layer into 16x16 non-
overlapped blocks. Each block represents 4 16x16
macroblocks in the bottom layer. The predictive motion
vector from the top layer is refined in middle with search
range [-1, 1]. The new delta data are obtained for X and Y
coordinates.

Step 4. Refinements are repeated in bottom layer with
search range [-1, 1]. The final vector is obtained by
adding the delta data to predictive motion vector.

2.3 Optimization of DCT & IDCT
The DCT function reduces spatial redundancy in video
and image data. It provides the basis for compression on
the 8x8 pixels block by decomposing pixels value into a
weighted sum of spatial frequencies. IDCT is the inverse
of DCT but has the similar structure. The 8x8 two-
dimensional DCT and IDCT used in MPEG compression
are defined in the following equations.

Forward 8x8 2D DCT:

16

)12(
cos

16

)12(
cos),()()(),(

7

0

7

0

vyux
yxfvuvuC

x y

ππαα ++= ∑∑
= =

 (2)

Inverse 8x8 2D DCT (IDCT):

16

)12(
cos

16

)12(
cos),()()(),(

7

0

7

0

vyux
vuCvuyxf

u v

ππαα ++
= ∑ ∑

= =

 (3)

where 1)(=kα , if and only if 0≠k , otherwise,

22

1
)(=kα .

By these equations, the DCT of one 8x8 elements
block takes 4096 multiplications and 4032 additions.
Because of the large number of operations on
transforming single block, different algorithms have been
proposed for efficient calculation of the 2D DCT. Most
fast 1D DCT and IDCT algorithms are variants of Lee’s
Fast DCT algorithm, or are based on variants of
Winograd’s FFT [9].

We have adopted a fast 8x8 DCT and IDCT function
using the SIMD instructions (see next section below)
based on the AAN algorithm [9].

2.4 SIMD Implementations
SIMD instructions for Intel processor architectures IA-32
and IA-64, known as MultiMedia eXtension (MMX) and
Streaming SIMD Extensions (SSE), accelerate
applications that rely heavily on operations using floating-
point data (such as 3D graphics, real-time physics, and
spatial audio). The principle data is the packed, fixed
point integer or byte, where multiple data (byte, word,
dword) can be grouped into a single 64-bit quantity.
These 64-bit quantities are stored in a 64-bit SIMD
register and processed by a single instruction in a data
parallel fashion. Therefore, the computational
performance of the processor is enhanced [10], [11].
However, the speedup is restricted by the overhead data
alignment, data copying and data type convention.

We exploit SSE instruction for fast computation of
the block matching part in motion estimation. Block
matching is implemented by using psadbw instruction.
Two psadbw instructions calculate the SAD (sum of
Absolute Differences) between the pixels in one row of
the reference and current macroblock. These two SADs
are summed to produce a 16-bit (word) result. Normally,
it takes about 20 instructions for calculating absolute
differences of 16 pixels. But with SSE, only two psadbw
instructions are required.

Similar to motion estimation, we use MMX and SSE
for the calculation of DCT by processing four 16-bit data
elements in parallel.

3. Multithreaded the MPEG-2 Encoding System
A thread is a piece of code within an application that runs
concurrently with the application's other threads, sharing
an address space with them, along with access to the
application's variables, file handles, device contexts,
objects, and other resources. Threads are different from
processes, which typically do not share resources or an
address space and they communicate only through the
mechanisms provided by the operating system for inter-
process communication, such as pipes and queues.
Threads often use simpler and less resource-intensive
forms of communication like semaphores, mutexes, and
events.

Threads can improve the responsiveness, structure,
and efficiency of the program code. In addition, some
programs containing concurrent threads may run
significantly faster on parallel computers under
multiprocessor operating systems since each thread could
make full use of its own respective CPU.

In using multithreading to implement parallelism, the
overhead caused by thread creation and thread
synchronization can counteract the benefits of parallelism.
Creation of a thread is equivalent to 45000 single
precision floating-point divides, so it is a common
practice to create thread at program startup and keep on
using the created thread [12]. Because threads require
synchronization mechanisms to guard against race
conditions in shared data, the volume of processing data
block on each thread can be a major factor in determining
whether a process is suitable for multithread processing. It
is important to minimize the effect of synchronization
overhead by processing larger data blocks in each thread
[12], [13], [14]. In order to improve the encoding speed
and to minimize the overhead mentioned before, the
number of threads, the amount of data processed by each
thread, management of shared data I/O and the
concatenation of results mechanism should be determined
properly. In addition, threads should be properly
scheduled

In terms of data distribution, GOP level temporal
parallelism [4] is the coarsest data distribution in MPEG-2
encoding. In order to minimize the I/O overhead and
simplify the initial implementation, we choose closed
GOP (with pattern like IBBPBB…P) as the data block
unit (see Figure 2). Due to the nature of frame
dependencies, no penalty frames exist because the frames
inside each GOP do not make reference to the previous
GOP.

Due to the bandwidth limitations of disks and
networks, I/O bottlenecks are a common problem in
MPEG-2 encoding. Previous parallel encoding
approaches used an architecture connecting the encoding
nodes through the network and parallel file system. In our
approach, we use a RAID 0 disk driver connected with
the encoder machine for raw video data storage. The
access rate of this RAID 0 disk is about 260Mbps, which
is higher than the bandwidth requirement of CCIR601 raw
video data (166Mbps).

To overlap computation and I/O, we create a raw
video input thread for reading raw video data into
memory, operating concurrently with the encoding
process. Double buffering with round robin scheduling is
used for reducing the I/O wait time. As shown in Figure
3, a double buffer is pre-loaded with uncompressed video
data before each encoding process.

The concatenator combines the encoded GOPs into a
single MPEG-2 stream. As each of the encoded GOPs can

be considered as one independent MPEG-2 stream,
operations for the concatenator are read as unordered
encoded GOPs from different multithread encoders,
refilling information (such as vbv_delay) of each frame
inside the GOP and writing the single MPEG-2 stream in
the right order. At the same time, the concatenator acts as
a synchronizer for controlling the encoding of the next
batch of GOPs.

Our MPEG-2 encoding system also includes the
audio encoder and multiplexer for generating audio-visual
MPEG-2 stream. The audio encoder and multiplexer are
also initialized as threads. The master process creates
tasks for communication of different modules in the
system and schedules the startup of I/O thread,
multithreaded video encoder, audio encoder and
multiplexer

For the audio part, we have used the MPEG Audio
Subgroup Software Simulation Group’s MPEG-1 audio
encoder. The audio encoder compresses the raw audio
signal into a MPEG-1 audio layer-2 stream. The MPEG-2
System Multiplexer follows the ISO 13818-1 system
syntax [1]. We have developed a multiplexer, which
multiplexes the encoded audio and video data into a
single file. As described in pervious section, the
multiplexer also acts as a synchronizer, after each batch of
encoding task, N GOPs from N threads are assembled by
the multiplexer. Similar to the audio encoder, the
multiplexer incurs a very little computation on the overall
system.

Other than the master process and multithreaded
video encoder, three threads for execution of raw video
pre-loading, audio encoder and multiplexer are created for
the encoding system. Even the workloads of these three
extra threads are far lower than the video encoder, thread
switching and data sharing may cause huge overhead or
resource deadlock with inappropriate thread scheduling.

In order to occupy the CPU time efficiently,
multithreaded video encoders work exclusively. After
encoding each batch of GOPs, raw video pre-loading
thread, audio encoder and multiplexer grab all of the CPU
time and work concurrently. Figure 4 illustrates the
scheduling of thread execution. In the very beginning,
audio signal corresponding to first N GOPs is encoded
and first N GOPs are streamed to the buffer by the raw
video pre-loading thread. Then multithreaded video
encoders start encoding video frames. Next, encoded
video and audio are multiplexed. At the same time, the
next batch of GOPs is streamed to the buffer and the
corresponding audio signal is encoded, and so on.

The thread scheduling that we designed minimizes
waiting time of required data for operation and executes
different sequential task (multiplexing, audio encoding
and raw video data loading) in overlapping manner. This
scheme can also work on single-processor machine as
efficiently, because operations in the other threads can

occupy CPU time when disk I/O operations of audio
encoder or raw video pre-loading thread are in the wait
state.

4. Experimental Results
We performed tests on a machine with four Intel Pentium
III Xeon 550 MHz processors. In order to deal with the
high data rate for raw video pre-loading (166Mbps for
CCIR601), a RAID disk system is connected to the
machine. We used five video sequences: a live concert,
three action movies and a variety show. The original
resolution of all these sequences is CCIF601 (720 x 576)
at 25 fps (PAL TV mode). The same sequences were also
down-sampled to CIF (352 x 288) for separate encoding.
The tests were done using one to four video encoding
threads. The CCIR601 sequences are compressed to a
4Mbps constant bit-rate bit stream and closed GOP with a
size of 13 frames. Audio data is compressed to 160kbps
and audio-visual stream is multiplexed to 4.5Mbps. For
CIF, the bit stream is compressed to 1.7Mbps and
multiplexed to 2Mbps with the same audio bitrate.
Table 1 and 2 show the encoding speeds (frames per
second) of CCIR601 and CIF sequences with various
numbers of video encoding threads on the 4-processor
machine, respectively. For CCIR601 sequences, two and
three video encoding threads indicate a linearly increasing
speedup for the encoding rate, with an average of 1.9 and
2.9, respectively. However the speedup with four threads
incurs some drop. This is because the overhead caused by
thread switching in two or three video encoding threads is
lower than the one with four threads. In two or three video
encoding threads, the loads of the encoders tasks can be
distributed to three processors while one processor is
assigned for other threads (audio encoder, multiplexer and
raw video pre-loading thread) and OS task. For four video
encoding threads, the overhead increases due to thread
switching.
For CIF sequences, the average speedup with two, three
and four video encoding threads is nearly the same. That
is because the bandwidth of the disk array is 260Mbps,
which is equivalent to the size of about 39 CCIR601
frames. In other words, the highest access rate for both
CCIR601 and CIF video sequence is about 39fps.

5. Conclusions
In this paper, we proposed a parallel MPEG-2 encoding
system with scalable and multithreaded architecture. We
discussed strategies for parallelization and data
distribution. With the aid of SIMD instructions and
various other optimization techniques, different modules
inside the video encoder are optimized in order to achieve
faster encoding rate. The multithreading scheme is
scalable in that it generates and schedules the number of
threads according to the number of processors. With
proper scheduling, different modules of MPEG-2

encoding system such as audio encoder and multiplexer
(which require less computational time than the video
encoder) are grouped together. The parallelization
strategy yields encouraging improvements in speedup for
the encoding rate. The experimental results show that
encoding rate for the CIF format video is about 40fps,
which is faster than real-time. For CCIR601, about 14fps
encoding rate is achieved, which can further increase if
more processors are available.

References
[1] ISO/IEC, “Information Technology - Generic Coding of

Moving Pictures and Associated Audio: Systems,” Draft
International Standard 13818-1, November 1993.

[2] ISO/IEC, “Information Technology - Generic Coding of
Moving Pictures and Associated Audio: Video,” Draft
International Standard 13818-2, November 1993.

[3] ISO/IEC, “Information Technology - Generic Coding of
Moving Pictures and Associated Audio: Audio,” Draft
International Standard 13818-3, November 1993.

[4] S. M. Akramullah, I. Ahmad and M. L. Liou, “A Data-
Parallel Approach for Real-Time MPEG-2 Video
Encoding,” Journal of Parallel and Distributed
Computing, Vol.30, No.2, November 1995, pp. 129-146.

[5] T. Olivares, F.J. Quiles, P. Cuenca, L. Orozco-Barbosa, I.
Ahmad, “Study of Data Distribution Techniques for The
Implementation of an MPEG-2 Video Encoder,” Parallel
and Distributed Computing Systems '99, Proceedings of
the Eleventh IASTED International Conference, November
3-6, 1999, pp. 537-542. MIT, Cambridge, Massachusetts
(USA).

[6] S. M. Akramullah, I. Ahmad and M. L. Liou,
“Performance of a Software-Based MPEG-2 Video
Encoder on Parallel and Distributed Systems,” IEEE
Transactions on Circuits and Systems for Video
Technology, Vol.7, No.4, August 1997, pp. 687-695.

[7] K. L. Gong and L. A. Rowe, “Parallel MPEG-1 Video
Encoding,” Picture Coding Symposium, California,
September 1994.

[8] R.Li, B.Zeng, and M.L.Liou, “A New Three-Step Search
Algorithm for Fast Motion Estimation,” IEEE
Transactions on Circuits & Systems for Video Technology,
Vol.4, pp. 438-442, Aug. 1994.

[9] A Fast Precise Implementation of 8x8 Discrete Cosine
Transform Using the Streaming SIMD Extensions and
MMX Instructions, Intel Application Note AP-922, Order
No: 742474-001.

[10] Using Streaming SIMD Extensions in a Fast DCT
Algorithm for MPEG Encoding, Intel Application Note
AP-817, Order No: 243651-002.

[11] Using Streaming SIMD Extensions in a Motion Estimation
Algorithm for MPEG Encoding, Intel Application Note
AP-818, Order No: 243652-002.

[12] Coarse-Grain Multithreading, Intel Application Note AP-
802, Order No: 243636-002.

[13] Efficient Multithreading on Windows NT, Intel Developer
Note, WEB: http://developer.intel.com/.

[14] Multi-Threading: Taking Advantage of Intel Architecture
Multiprocessor Workstations, Intel Developer Note, WEB:
http://developer.intel.com/.

 Raw Source
Frame

+
+

-

+
DC T Q uantizer

IDC T

M otion
Estimation

M otion
C ompensation

Variable
Length C oder

Inverse
Q uantizer

Frame M emory

Fig.1: MPEG-2 video encoding architecture.

I0 B1 B2 P3 B4 B5 P6 B7 B8 P9 I10 B11 B12 P13

Forward Prediction

Backward Prediction

Fig.2: Group of pictures (GOP).

Raw Video Input Thread

C
re

at
in

g
 T

hr
ea

d

Encoding
Thread N

Encoding
Thread 1

S
yn

ch
ro

n
iz

at
io

n

Encoding
Thread N

Encoding
Thread 1

S
yn

ch
ro

n
iz

at
io

n

Encoding
Thread N

Encoding
Thread 1

S
yn

ch
ro

n
iz

at
io

n

Fig.3: Video input thread with double buffer.

E n c o d e N + 1 t h t o
2 N t h G O P s

E n c o d e 1 s t t o
N t h G O P s

A u d i o E n c o d e r
E n c o d e a u d i o s e g m e n t
c o r r e s p o n d i n g t o 1 s t t o N t h
G O P s
R a w V i d e o I n p u t
I n p u t 1 s t t o N t h G O P s r a w
v i d e o d a t a

E n c o d i n g
T h r e a d 1

M u l t i p l e x o r
M u l t i p l e x 1 s t t o N t h G O P s
v i d e o w i t h e n c o d e d a u d i o

A u d i o E n c o d e r
E n c o d e a u d i o s e g m e n t
c o r r e s p o n d i n g t o N + 1 t h t o
2 N t h G O P s

R a w V i d e o I n p u t
I n p u t N + 1 t h t o 2 N t h G O P s
r a w v i d e o d a t a

E n c o d i n g
T h r e a d 1

E n c o d i n g
T h r e a d N

E n c o d i n g
T h r e a d N

T i m e

Fig. 4: Scheduling of thread execution.

Table 1: CCIR601 (720x576) frame encoding rate on four-processor machine.

 Number of threads

Sequence
1 2 3 4

Live Concert 4.526 8.816 12.962 13.461

Action Movie 1 4.366 8.523 12.561 14.235

Action Movie 2 4.690 9.132 13.346 14.816

Action Movie 3 4.783 9.292 13.566 15.288

Variety Show 4.895 9.484 13.983 15.564

Table 2: CIF (352x288) frame encoding rate on four-processor machine.

Number of threads

Sequence
1 2 3 4

Live Concert 24.67 37.625 38 38

Action Movie 1 24.556 40.09 38.379 39.986

Action Movie 2 26.238 36.987 40.07 38.348

Action Movie 3 26.280 40.355 41.406 40.253

Variety Show 26.703 37.308 37.621 40.157

