
HEURISTICS-BASED REPLICATION SCHEMAS FOR FAST INFORMATION
RETRIEVAL OVER THE INTERNET

Samee Ullah Khan Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX-76019, USA

{sakhan,iahmad}@cse.uta.edu

Abstract

Internet today, has transformed into a global information
hub. The increase in its usage and magnitude have
sparkled various research problems. Because of the
diverse user population, along with the frequency of
access requests, the need for data replication in order; to
decrease latency and communication cost, to optimize
bandwidth, to effectively utilize the storage space, and to
add reliability to the system has emerged to the surface
along with object caching. In this paper we address the
fine-grained replication of data among a set of Internet
sites and develop its cost model. We solve this problem
by proposing data placement algorithms. Four of our
proposed techniques are based on the A-star state space
searching algorithm. The optimal A-star based technique
is complemented by three sub-optimal heuristics, and two
natural (greedy based) selection algorithms: Local and
Global Min-Min. These algorithms are effective in
various environments providing vendors and users with
the choice of algorithms that guarantee fast or optimal or
both types of solutions.

1 INTRODUCTION

The Internet conceived as a mode of communication
among a group of universities in the late 60’s, has now
evolved into the ultimate source of information. Thus, a
particular server is experiencing increase in traffic on
daily basis, and suffers from bandwidth saturation
especially during the peak hours. Moreover, peak hours
vary due to the time differences between different users
and within one time zone due to the user behavior [1].
Replication is therefore a more viable solution than
caching, since it provides consistency and reduces system
overload considerably [4]. Replication was originally
designed and used for manual mirroring web sites. Later,
it took on the task of distributing the requests among a
static set of mirrors [10]. Currently we are confined with
manual selection of replicas, but with the rapid growth of
the Internet and the every increasing need for such
systems [1], dynamic replication would be a popular
solution. The existing techniques have been observed to
be expensive in terms of network communication and
quality of solution [10]. This is due to the fact that point-
to-point communication among nodes is assumed, when
multi-cast communication is available [2]. In all such
techniques authors have undertaken certain assumptions

since the generalized data replication problem is NP-
complete [9]. Thus every technique may be complete
and/or optimal over the assumed problem domain.

All the initial work on the data replication over the
internet assumed coarse-grained replication model, where
the entire contents of the sites were replicated. A
comprehensive survey on coarse-grained replication
strategies can be found in [10].

In this paper, we formulate and focus on the fine-
grained replication problem, i.e., we allow reallocation of
objects that are accessed and not the entire site. This
approach has many advantages, such as; it saves the
server memory capacity by only moving those object that
are actually required to be moved, the problem definition
is highly scalable and robust. The generalized fine grain
replication is known to be NP-complete not only for
general graphs, but also for partitioned graphs [8]. This
particular line of research, is gaining much popularity. In
[9], they analyzed both static such as a modified Greedy
based approach, Evolutionary method based on Genetic
algorithms, and Adaptive Genetic approach. Experimental
results revealed that Genetic approach outperformed on
every occasion than all the other approaches. The work
was further extended with comparisons to Linear
Programming, and Linear Integer Programming approach.
Nevertheless, fine-grained replication shows more
flexibility and scalability then course-grained replication.
A brief introduction to the existing work can be found in
[10]. A much earlier survey on replication and its
applications to the Internet can be found in [11].

This paper addresses the problem of web content
replication as a fine-grain (object based) replication [10]
with the aim to find solutions (optimal and sub-optimal)
in a fast turn-around time. We use the A-star state space
searching technique to identify optimal solution(s). This
approach is complemented by three sub-optimal A-star
based heuristics, which sacrifice some solution quality but
incur fast execution time and do not suffer from memory
overflow problems associated with A-star type algorithms
[7]. We also propose two natural selection algorithms:
Local and Global Min-Min. We evaluate and compare the
proposed algorithms by analyzing the system utilization.
The main purpose of this study is to provide
vendors/users with the choice of algorithms that guarantee
fast or optimal or both types of solutions. The optimal
solutions would be more suitable for static replication,
while fast solutions are important for dynamic systems
that require frequent updates.

The remainder of this paper is organized as follows.
Section 2 describes the data replication problem and the
system model. Section 3 describes the placement policies.
The experimental results and concluding remarks are
provided in Sections 4 and 5 respectively.

Table 1: Notations and their meanings.
Symbols Meaning

M Total number of sites in the network.
N Total number of objects to be replicated.
Ok k-th object.
ok Size of object k.
Si i-th site.
si Size of site i.
rk

i Number of reads for object k from site i.
Rk

i Aggregate read cost of rk
i.

wk
i Number of writes for object k from site i.

Wk
i Aggregate write cost of wk

i.
NNk

i Nearest neighbor of site i holding object k.
c(i,j) Communication cost between sites i and j.
Pk Primary site of the k-th object.
Rk Replication schema of object k.
Coverall Total overall data transfer cost.
SGRG Self Generate Random Graphs
GT-ITM PR Georgia Tech Internetwork Topology Models

Pure Random
GT-ITM W GT-ITM Waxman
SGFCGUD Self Generated Fully Connected Graphs with

Uniform Distribution
SGFCGRD SGFCG with Random Distribution
SGRGLND SGFCG with Lognormal Distribution

2 THE PROBLEM DESCRIPTION

Consider a distributed system comprising M sites, with
each site having its own processing power, memory
(primary storage) and media (secondary storage). Let Si
and si be the name and the total storage capacity (in
simple data units e.g. blocks), respectively, of site i where
1 ≤ i ≤ M. The M sites of the system are connected by a
communication network. A link between two sites Si and
Sj (if it exists) has a positive integer c(i,j) associated with
it, giving the communication cost for transferring a data
unit between sites Si and Sj. If the two sites are not
directly connected by a communication link then the
above cost is given by the sum of the costs of all the links
in a chosen path from site Si to the site Sj. Without the loss
of generality we assume that c(i,j)= c(j,i). This is a very
common assumption (e.g. see [9]) Let there be N objects,
each identifiable by a unique name Ok and size in simple
data unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total

number of reads and writes, respectively, initiated from Si
for Ok during a certain time period. Our replication policy
assumes the existence of one primary copy for each object
in the network. Let Pk, be the site which holds the primary
copy of Ok, i.e., the only copy in the network that cannot
be de-allocated, hence referred to as primary site of the k-
th object. Each primary site Pk, contains information
about the whole replication scheme Rk of Ok. This can be

done by maintaining a list of the sites where the k-th
object is replicated at, called from now on the replicators
of Ok. Moreover, every site Si stores a two-field record for
each object. The first field is its primary site Pk and the
second the nearest neighborhood site NNk

i of site Si which
holds a replica of object k. In other words, NNk

i is the site
for which the reads from Si for Ok, if served there, would
incur the minimum possible communication cost. It is
possible that NNk

i = Si, if Si is a replicator or the primary
site of Ok. Another possibility is that NNk

i = Pk, if the
primary site is the closest one holding a replica of Ok.
When a site Si reads an object, it does so by addressing
the request to the corresponding NNk

i. For the updates we
assume that every site can update every object. Updates of
an object Ok are performed by sending the updated
version to its primary site Pk, which afterwards broadcasts
it to every site in its replication scheme Rk.
For the Data Replication Problem (DRP) under
consideration, we are interested in minimizing the total
Replication Cost (RC) (or the total network transfer cost)
due to object movement, since the communication cost of
control messages has minor impact to the overall
performance of the system. There are two components
affecting RC. First, is the RC created from the read
requests. Let Rk

i denote the total RC, due to Sis’ reading
requests for object Ok, addressed to the nearest site NNk

i.
This cost is given by the following equation:

),(i
kk

i
k

i
k NNicorR = , (1)

where)},(min|{ jicRjjSiteNN k
i
k ∧∈= . The second

component of RC is the cost arising due to the writes. Let
Wk

i be the total RC, due to Sis’ writing requests for object
Ok, addressed to the primary site Pk. This cost is given by
the following equation:

)),(),((
),(

∑+=
≠∈∀ ijRj

i
kkk

i
k

i
k

k

jNNcPicowW . (2)

Here, we made the indirect assumption that in order to
perform a write we need to ship the whole updated
version of the object. This of course is not always the
case, as we can move only the updated parts of it
(modeling such policies can also be done using our
framework). The cumulative RC, denoted as Coverall, due
to reads and writes is given by:

∑ ∑ += = =
M
i

N
k

i
k

i
koverall WRC 1 1)((3)

Let Xik=1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named
X, with boolean elements. Equation 3 is now refined to:

∑ ∑ 













∑++

=−
=

= =
=

M

i

N

k
kk

M
x

x
kikkk

i
k

jkk
i

kik

PicowXPicow

XjicorX
X

1 1
1),()()],(

}1|),(min{)[1(
(4)

Sites which are not the replicators of object Ok create RC
equal to the communication cost of their reads from the
nearest replicator, plus that of sending their writes to the
primary site of Ok . Sites belonging to the replication
scheme of Ok, are associated with the cost of
sending/receiving all the updated versions of it. Using the

above formulation, the Data Replication Problem (DRP)
can be defined as:
Find the assignment of 0, 1 values in the X matrix that
minimizes Coverall, subject to the storage capacity
constraint: ∑ ≤≤∀≤=

N
k ikik MisoX1)1(, and subject to the

primary copies policy:)1(1 NkX kPk
≤≤∀= .

In the generalized case, DRP is essentially a constraint
optimization problem, reducible to the Knapsack problem,
and without the storage constraint, to the minimum k-
median problem [9].

3 REPLICA PLACEMENT TECHNIQUES

3.1 A-star

The A-star based searching technique for the Data
Replication Problem (DRPA-star) starts from an
assignment P, and explores all the potential options of
assigning an object to a site. With proper pruning
techniques used against the constraint(s) C, only the
assignments in the admissible head set are explored. If the
new solution is consistence with the constraint, it is added
to the Expansion Tree (ET), otherwise the solution is
pruned. In order to avoid memory overflow, we limit the
ET to 1000 active solution (state) space allocations. This
is very common technique used to overcome the memory
overflow problem associated with A-star type algorithms.
For details see [7]. Moreover, the candidate objects
assignments are ordered (in a linked list termed as the
OPEN list), such that the smallest projected cost of
allocation is expanded first. Thus, we can terminate our
expansion when the solution for the data replication
problem is obtained, or there are no more candidate
allocations left in the ET. In either case optimality is
always guaranteed. DRPA-star uses the following
heuristic: Let Ok and Si represent the set of objects and
sites in the system. Let U be the set of unassigned objects
and t be the global minimum of an object’s replication
cost. Thus, we define the minimum of such cost as a set:
T=min0≤j≤N-1(t(Ok, Si)), ∀Ok∈U. For a node n, let mmk(n)
define the maximum element of set T (the max-min
replication cost). mmk(n) then represents the best possible
replica allocation without the unrealistic assumption that
every object in U can be replicated to a site in M without
a conflict. Thus we give our heuristic for the replication
cost as follows: hcost(n)=max(0,[mmk(n)-g(n)]).

Lemma 1: DRPA-star grows and requires sub-
exponential time and space.
Proof: Let P be the expanded paths (partial or complete
solution) in the ET, then the space required by the DRPA-
star is P and the time required by DRPA-star is
dP(h+log(P)). Where d is the degree of the network, h is
the depth at which the solutions are identified, and the
log(P) factor identifies the growth of the search tree. Now
if error in the heuristic grows no faster than log of the
optimal cost of the solution. A-star has been proven to be

sub-exponential [7]. Since DRPA-star due to its pruning
is far more efficient than A-star, DRPA-star will also
grow sub-optimally. We give the relation of sub-
optimality as: OPTcost-Acost≤O(log(OPTcost)), where
OPTcost is the optimal cost of state space search
expansion, and Acost is the admissible cost. We can thus
say that: P≤Mhd≤dM2. For an average case analysis
DRPA-star uses space equivalent to Mhd, and thus the
running time would be Mhd2(h+log(Mhd)).

3.2 A-star based heuristics

We now present three heuristics (sub-optimal A-star)
algorithms, refereed to hereafter as SA1, SA2, SA3. The
name SA comes from Sub-optimal Assignments. The
main purpose is to design algorithms that converge to
solution faster and overcome the high memory
requirements associated with A-star type algorithms [7].
The basic idea behind these algorithms is that when the
search process reaches a certain depth in the search tree,
some search path(s) can be avoided (some tree nodes can
be discarded) without moving far from the optimal
solution. In SA1, when the algorithm (DRPA-star) selects
a node that belongs to level R or below, it generates only
the best successors (lowest expansion cost) of it. All the
other successors except the best one are discarded. In
SA2, when the depth level R is reached for the very first
time, all the successors except the minimum cost are
discarded among all the nodes marked for expansion. In
SA3, the discarding is done similar to SA2 except that
now the nodes are removed from the ET. For instance, if
n nodes are generated, then all of them are inserted in the
ET, and the n-1 high cost nodes are discarded. These
techniques will not suffer from memory overflow, since at
level R, for every node taken out of the ET for expansion,
only one node is inserted. Also the running time is
reduced by many folds since the algorithm
expands/explores less number of nodes when it reaches R.

3.3. Local Min-Min

Let Ok and Si represent the set of objects and sites in the
system. Let U be the set of unassigned objects to a site Si .
Let Umin define the minimum replication cost of the
objects to be assigned to a particular site. The assignment
is made in the ascending order of set U. If there is a tie
among two objects, then the tie is broken by the minimum
object size, hence the name Min-Min. Since we do the
assignment iteratively for every object and do not
consider the effects of the choice of an object to a site
with respect to other sites, we call it Local Min-Min
(LMM).

Lemma 2: LMM converges in O(MN(log N)) and
requires linear space.
Proof: The most expensive part of the algorithm is the
sorting. Since we iterate N objects over all the M sites
repeatedly, the entire step would take MN(log N). The

assignment part of the algorithm would at most take
O(MN). Thus the most expensive part of the algorithm
would have the bound of O(MN(log N)). It is not difficult
to see that it would take linear space for completion.
Intuitively, we only load the N objects and iteratively
assign then to a site. Therefore at each step we need at
most O(M+N) memory.

3.4 Global Min-Min

Let Ok and Si represent the set of objects and sites in the
system. Let U be the set of unassigned objects and k be
the global minimum of all the replication costs associated
with an object. The minimum of such cost as a set
T=min0≤j≤N-1(k(Ok,Si),∀Ok∈U. If during the assignment,
the minimum replication cost of an object is the same for
two different sites, the object is chosen on random. For a
node n let mink(n) define the minimum element of set T.
Thus mink(n) represents the best minimum replication
cost that would occur if object Ok is replicated to a site Si,
i.e., Global Min-Min (GMM).

Lemma 3: GMM requires O(M2N2(log N)) running time
and Ω(MN) space.
Proof: We can efficiently obtain the min(sort(T)) in
O(MN(log N)). This would be the time required to assign
the first object. Since there would be at most M×N unique
entries in the Replication Cost Matrix, we are therefore
required to exploit all the M×N candidates. Thus, the total
time required would be O(M2N2(log N)). GMM would
have to load the entire M×N matrix for sorting thus it
would take no less than Ω(MN) of memory.

4 EXPERIMENTAL EVALUATIONS

We performed experiments on a 440MHz Ultra 10
machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement
policies. The solution quality in all cases, is measured
according to the RC percentage that is saved under the
replication scheme found by the algorithms, compared to
the initial one, i.e., when only primary copies exist. In all
the experiments for the proposed A-star based sub-
optimal heuristics, the cutoff R was set at: R=d/2, where
d represents the depth of the tree (number of objects).
The network architecture is generated as follows. First,
the number of sites M and objects N are defined. To
establish diversity in our experimental setups, the network
connectively is changed considerably. In this paper, we
only present the results that were obtained using a
maximum of 500 sites (nodes). We used existing topology
generator toolkits and also self generated networks. In all
the topologies, the distance of the link between nodes is
equivalent to the communication cost. Table 2
summarizes the various techniques used to gather forty-
five various topologies for the 100 node networks. It is to
be noted that the parameters vary for network with

lesser/larger number of nodes. All the results reported,
represent the average performance over all the topologies.

To evaluate our proposed replication techniques on
realistic traffic patterns, we used the access logs collected
at the Soccer World Cup 1998 website [3]. Each
experimental setup was evaluated thirteen times, i.e., only
the Friday (24 hours) logs from May 1, 1998 to July 24,
1998. Thus, each experimental setup in fact represents an
average of the 585 (13×5) data set points. To process the
logs, we wrote a script that returned: only those objects
which were present in all the logs (2000 in our case), the
total number of requests from a particular client for an
object, the average and the variance of the object size.
From this log we choose the top five hundred clients
(maximum experimental setup), which were randomly
mapped to one of the nodes of the topologies. The
primary replicas’ original site was mimicked by choosing
random locations. The capacities of the sites C% are
generated randomly with range from Total Primary
Object Sizes/2 to 1.5×Total Primary Object Sizes. The
variance in the object size collected from the access logs
helps to instill enough diversity to benchmark object
updates. The updates are randomly pushed onto different
sites, and the total system update load is measured in
terms of the percentage update requests U% compared
that to the initial network with no updates.

Table 2: Parameters for topologies with 100 nodes.
Topology Mathematical Representation Parameter Variance

SGRG
(12 topologies)

Randomized layout with node
degree (d*) and Euclidian
distance (d) between nodes as
parameters.

d={5,10,15,20},
d*={10,15,20}.

GT-ITM PR
[5]
(5 topologies)

Randomized layout with edges
added between the randomly
located vertices with a
probability (p).

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [5]
(9 topologies)

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},
β={0.2,0.3,0.4}.

SGFCGUD
(5 topologies)

Fully connected graph with
uniform link distances (d).

d1=[1,10], d2=[1,20],
d3=[1,50], d4=[10,20],
d5=[20,50].

SGFCGRD
(5 topologies)

Fully connected graph with
random link distances (d).

d1=[1,10], d2=[1,20],
d3=[1,50], d4=[10,20],
d5=[20,50].

SGRGLND
(9 topologies)

Random layout with link
distance having a lognormal
distribution [6].

µ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

Table 3: Running time (sec.) of proposed techniques.
Problem Size SA1 SA2 SA3 LMM GMM

M= 500, N= 1350 560 389 526 429 432
M= 500, N= 1400 609 468 609 454 452
M= 500, N= 1450 662 583 662 471 502
M= 500, N= 1500 707 641 740 497 532
M= 500, N= 1550 804 698 807 503 583
M= 500, N= 2000 846 725 901 517 634

Table 3 shows the execution times of all except the
DRPA-star technique. The number of sites was kept
constant at 500, and the number of objects was varied
from 1350 to 2000. For DRPA-star we choose a smaller
setup as it could not handle the massive data processing.

DRPA-star terminated with a massive time of 156
minutes (9356 sec.) with 250 objects and 100 sites setup.
With the maximum configuration, i.e., 2000 objects and
500 sites; SA1, SA2 and SA3 performed well with
termination times of 846 sec., 725 sec., and 901 sec.
respectively. LMM and GMM on the other had
outperformed every other placement policy with a turn
around time of 517 sec. and 634 sec. respectively.

It is a fact that the more the replicas the more reliable
is the system. However, this does not guarantee that the
obtained solution is of a high quality, i.e., minimum RC.
Our first judgment on the proposed techniques would be
to see how much they can replicate. It is to be noted that
we do not relax our constraints of minimizing the total
replication cost or the storage. The creations of replicas
are dependent on two major factors, i.e., the number of
objects available and the number of sites in the network.
Thus, we perform two sets of experiments. The update
ratio is fixed for the entire test at 10%. For the first type
of experiment, we vary the number of sites in the
network, while the number of objects is kept constant at
2000. Figure 1 shows the amount of replicas created as
compared to the initial setup. SA3 with 14.54 and GMM
with 10.1 outperformed the rest of the heuristics. LMM,
SA1 and SA2 performed poorly with at most 6.23 times
replica creation compared to the initial network setup.
Next we kept the number of sites constant at 500 and
studied the effects of increasing number of objects in the
system. The number of objects was varied from 1200 to
2000. Here we can observe (Figure 2) a clear difference
between high and low performance algorithms. SA1 and
SA2 performed the worst with a drop of 40% in its replica
creation. Unexpectedly LMM retained its replicas. This
poor performance of SA type algorithms is credited to the
bound R. With the increase in the number of objects the
available choices also increase, but the bound remains the
same. It is to be noted that the bound is on the depth of
the search tree and not the degree, but the degree is
indirectly affected when the bound R is met, causing a
low performance. GMM performed extremely well with a
loss of only 5% in its replicas.

Replicas [N=2000,C=20%,U=10%]

0X

4X

8X

12X

16X

100 150 200 250 300 350 400 450 500

No. of Sites

R
ep

lic
as

 C
re

at
ed

GMM
LMM
SA1
SA2
SA3

Figure 1: Replicas created vs. no. of sites.

Our formulation of the data replication problem also
caters for disk storage constraints. It is understandable
that with the increase of available space, the algorithms
will try to accommodate as many objects as possible.
Since the objects’ size remain constant at all times, with

the increase in the capacity of the sites the choice of
allocations also increase. In Figure 3 every algorithm
gained a slight saving with the increase of capacity from
0% to 100%. The major gain was observed in the case of
LMM (19%).

Replicas [M=500,C=20%,U=10%]

5X

8X

11X

1200 1400 1600 1800 2000

No. of Objects

R
ep

lic
as

 C
re

at
ed

GMM
LMM
SA1
SA2
SA3

Figure 2: Replicas created vs. no. of objects.

Performance
[N=2000,M=500,U=10%,C=20%]

35%
41%
47%
53%
59%
65%
71%

0% 10% 20% 30% 40%

Capacity of Sites

R
C

 S
av

es

GMM
LMM
SA1
SA2
SA3

Figure 3: RC savings vs. site capacity.

The effects of reads on our computational model
were studied next. The purpose of such a study is to see
how flexible our proposed model is with the increasing
number of user read requests. In this setup, we increase
the read requests from 0% to 100% on all the objects, i.e.,
it will be an aggregate read increase on the system. We
keep N=2000, M=500, U=15%, and C=20%. Figure 4
shows the test runs. All most every algorithm showed a
consistent performance. Increase in savings (approx. 8%)
was observed in LMM, SA1, and SA2. SA3 and GMM on
the other hand did not gain much, but showed a stable
performance.

Similar to reads, we also studied the effects of
updates (writes). To give a brief idea on how we perform
the tests, we record the RC savings on a particular
configuration and then we send update requests to Pi on
random. Pi upon receiving the request will broadcast an
update request to the sites containing the replicas. Thus,
we can measure the difference in load on the system
before and after the update request(s). This concept is
analogous to measuring the communication cost in the
system. From server point of view this is important since
we want the RC savings to be at least maintained if not
gained. The higher the difference the higher would be the
communication cost which in turn means the system
would be less stable. Figure 5 shows the test results. We
can observe a clear difference in the solution quality
between SA3, GMM and the rest of the algorithms. GMM
is only off by approximately 10% of GMM. Interesting to
see is the poor performance of both LMM and SA2 which

with 40% increase in the updates show a mere 2% and 9%
RC savings.

Performance
[N=2000,M=500,U=15%,C=20%]

45%

50%

55%

60%

65%

70%

0% 25% 50% 75% 100%

Reads

R
C

 S
av

es

GMM
LMM
SA1
SA2
SA3

Figure 4: RC savings vs. reads.

Performance [N=2000,M=500,C=15%]

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 30% 40%

Updates

R
C

 S
av

es

GMM
LMM
SA1
SA2
SA3

Figure 5: RC savings vs. updates.

Table 4: Summary of the results.
Replicas RC Savings Score Rank Algorithm

Si
te

s

O
bj

ec
ts

Si
te

s

O
bj

ec
ts

C
ap

ac
ity

O
bj

ec
t

Si
ze

R
ea

ds

U
pd

at
es

DRPA-star 1 1 1 1 1 1 1 1 08 1
LMM 5 4 6 6 5 6 6 6 44 6
GMM 3 2 3 4 3 4 2 4 25 3
SA1 6 6 5 5 6 5 5 5 43 5
SA2 4 5 4 3 4 2 4 2 28 4
SA3 2 3 2 2 2 3 3 3 20 2

Table 5: Overview of results with suggested utilization.
Algorithm Running

time
Memory

usage
Solution
quality

Suggested utilization

DRPA-star High High Optimal Static-optimal quality
LMM Low Low Low Fast-low quality
GMM Low Low Medium Fast-high quality
SA1 Medium Medium High Dynamic-medium quality
SA2 Low Medium High Fast/Dynamic-high quality
SA3 Low Medium Very high Dynamic-very high quality

To summarize the results and effectively identify the
type of algorithm for each scenario, we will present an
overview of our findings. As mentioned in the
introductory passage, the main purpose of this paper is to
present the vendor(s) or users with various types of
placement algorithms, some sophisticated, some simple in
nature and complexity. The overall winner in all the
above algorithms in terms of solution, space and
termination time was SA3. SA3 finished fourth on
termination time, but its solution quality was not off by
more than 10% in any of the experimental setups that
were performed. Table 4 shows the numerical ranking of

the algorithms based on the solution quality. Our
recommendations are summarized in Table 5.

5 CONCLUDING REMARKS

In this paper we address the fine-grained replication of
data among a set of sites in a distributed system such as
the Internet and developed its cost model. We proposed
five replica placement techniques based on the A-star
algorithm. We also proposed two natural selection
algorithms the LMM and the GMM. All the above
proposed algorithms were compared and analyzed to
identify techniques that can achieve optimal or fast or
both types of solution. For a static system DRPA-star
would be the best choice. For dynamic systems which
require frequent updates, LMM could be used if time is
the only constraint. But if both time and solution are
important, then either of the sub-optimal A-star based
heuristics can be used. The above recommendations are
based on our comprehensive test analysis.

6 REFERECES

[1] T. Abdelzaher and N. Bhatti, “Web content
adaptation to improve sever workload behavior,”
Computer Networks, 21(11), pp. 1536-1577, 1999.

[2] Y. Amir, Replication using Group Communication
over a Partitioned Network, PhD dissertation,
Hebrew University, Jerusalem, Israel, 1995.

[3] M. Arlitt and T. Jin, “Workload characterization of
the 1998 World Cup Web Site,” tech. report, HP Lab,
Palo Alto, HPL-1999-35(R.1), 1999.

[4] R. Bunt, D. Eager, G. Oster, and C. Williamson,
“Achieving load balance and effective caching in
clustered web servers,” in 4th International Web
Caching Workshop, pp. 159-169, 1999.

[5] K. Calvert, M. Doar, E. Zegura, “Modeling Internet
topology,” IEEE Communications, vol. 35, no. 6, pp.
160-163, 1997.

[6] S. Floyd and V. Paxson, “Difficulties in simulating
the internet,” IEEE/ACM Transactions on
Networking, 9(4), pp. 253-285, 2001.

[7] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous computing systems,” IEEE
Concurrency, 6(3), pp. 42-51, 1998.

[8] J. Kangasharju, J. Roberts and K. Ross, “Object
replication strategies in content distribution
networks,” in Proc. of WCCD, pp. 455-466, 2001.

[9] T. Loukopoulos and I. Ahmad, “Static and adaptive
data replication algorithms for fast information
access in large distributed systems,” in Proc. of
ICDCS, pp. 385-392, 2000.

[10] T. Loukopoulos, D. Papadias, and I. Ahmad, “An
overview of data replication on the internet,” in Proc.
of ISPAN, pp. 31-36, 2002.

[11] M. Rabinovich, “Issues in web content replication,”
Data Engineering Bulletin, 21(4), pp. 21-29, 1998.

