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Abstract 

Internet today, has transformed into a global information 
hub. The increase in its usage and magnitude have 
sparkled various research problems. Because of the 
diverse user population, along with the frequency of 
access requests, the need for data replication in order; to 
decrease latency and communication cost, to optimize 
bandwidth, to effectively utilize the storage space, and to 
add reliability to the system has emerged to the surface 
along with object caching. In this paper we address the 
fine-grained replication of data among a set of Internet 
sites and develop its cost model. We solve this problem 
by proposing data placement algorithms. Four of our 
proposed techniques are based on the A-star state space 
searching algorithm. The optimal A-star based technique 
is complemented by three sub-optimal heuristics, and two 
natural (greedy based) selection algorithms: Local and 
Global Min-Min. These algorithms are effective in 
various environments providing vendors and users with 
the choice of algorithms that guarantee fast or optimal or 
both types of solutions. 

1 INTRODUCTION 

The Internet conceived as a mode of communication 
among a group of universities in the late 60’s, has now 
evolved into the ultimate source of information. Thus, a 
particular server is experiencing increase in traffic on 
daily basis, and suffers from bandwidth saturation 
especially during the peak hours. Moreover, peak hours 
vary due to the time differences between different users 
and within one time zone due to the user behavior [1]. 
Replication is therefore a more viable solution than 
caching, since it provides consistency and reduces system 
overload considerably [4]. Replication was originally 
designed and used for manual mirroring web sites. Later, 
it took on the task of distributing the requests among a 
static set of mirrors [10]. Currently we are confined with 
manual selection of replicas, but with the rapid growth of 
the Internet and the every increasing need for such 
systems [1], dynamic replication would be a popular 
solution. The existing techniques have been observed to 
be expensive in terms of network communication and 
quality of solution [10]. This is due to the fact that point-
to-point communication among nodes is assumed, when 
multi-cast communication is available [2]. In all such 
techniques authors have undertaken certain assumptions 

since the generalized data replication problem is NP-
complete [9]. Thus every technique may be complete 
and/or optimal over the assumed problem domain.  

All the initial work on the data replication over the 
internet assumed coarse-grained replication model, where 
the entire contents of the sites were replicated. A 
comprehensive survey on coarse-grained replication 
strategies can be found in [10]. 

In this paper, we formulate and focus on the fine-
grained replication problem, i.e., we allow reallocation of 
objects that are accessed and not the entire site. This 
approach has many advantages, such as; it saves the 
server memory capacity by only moving those object that 
are actually required to be moved, the problem definition 
is highly scalable and robust. The generalized fine grain 
replication is known to be NP-complete not only for 
general graphs, but also for partitioned graphs [8]. This 
particular line of research, is gaining much popularity. In 
[9], they analyzed both static such as a modified Greedy 
based approach, Evolutionary method based on Genetic 
algorithms, and Adaptive Genetic approach. Experimental 
results revealed that Genetic approach outperformed on 
every occasion than all the other approaches. The work 
was further extended with comparisons to Linear 
Programming, and Linear Integer Programming approach. 
Nevertheless, fine-grained replication shows more 
flexibility and scalability then  course-grained replication. 
A brief introduction to the existing work can be found in 
[10]. A much earlier survey on replication and its 
applications to the Internet can be found in [11].   

This paper addresses the problem of web content 
replication as a fine-grain (object based) replication [10] 
with the aim to find solutions (optimal and sub-optimal) 
in a fast turn-around time. We use the A-star state space 
searching technique to identify optimal solution(s). This 
approach is complemented by three sub-optimal A-star 
based heuristics, which sacrifice some solution quality but 
incur fast execution time and do not suffer from memory 
overflow problems associated with A-star type algorithms 
[7]. We also propose two natural selection algorithms: 
Local and Global Min-Min. We evaluate and compare the 
proposed algorithms by analyzing the system utilization. 
The main purpose of this study is to provide 
vendors/users with the choice of algorithms that guarantee 
fast or optimal or both types of solutions. The optimal 
solutions would be more suitable for static replication, 
while fast solutions are important for dynamic systems 
that require frequent updates.  



The remainder of this paper is organized as follows. 
Section 2 describes the data replication problem and the 
system model. Section 3 describes the placement policies. 
The experimental results and concluding remarks are 
provided in Sections 4 and 5 respectively. 

Table 1: Notations and their meanings. 
Symbols Meaning 

M Total number of sites in the network. 
N Total number of objects to be replicated. 
Ok k-th object. 
ok Size of object k. 
Si i-th site. 
si Size of site i. 
rk

i  Number of reads for object k from site i. 
Rk

i Aggregate read cost of rk
i. 

wk
i  Number of writes for object k from site i. 

Wk
i  Aggregate write cost of wk

i. 
NNk

i  Nearest neighbor of site i holding object k. 
c(i,j)  Communication cost between sites i and j. 
Pk  Primary site of the k-th object. 
Rk Replication schema of object k. 
Coverall  Total overall data transfer cost. 
SGRG Self Generate Random Graphs 
GT-ITM PR Georgia Tech Internetwork Topology Models 

Pure Random 
GT-ITM W GT-ITM Waxman 
SGFCGUD Self Generated Fully Connected Graphs with 

Uniform Distribution 
SGFCGRD  SGFCG with Random Distribution 
SGRGLND  SGFCG with Lognormal Distribution 

2 THE PROBLEM DESCRIPTION 

Consider a distributed system comprising M sites, with 
each site having its own processing power, memory 
(primary storage) and media (secondary storage). Let Si 
and si be the name and the total storage capacity (in 
simple data units e.g. blocks), respectively, of site i where 
1 ≤ i ≤ M. The M sites of the system are connected by a 
communication network. A link between two sites Si and 
Sj (if it exists) has a positive integer c(i,j) associated with 
it, giving the communication cost for transferring a data 
unit between sites Si and Sj. If the two sites are not 
directly connected by a communication link then the 
above cost is given by the sum of the costs of all the links 
in a chosen path from site Si to the site Sj. Without the loss 
of generality we assume that c(i,j)= c(j,i). This is a very 
common assumption (e.g. see [9])  Let there be N objects, 
each identifiable by a unique name Ok and size in simple 
data unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total 

number of reads and writes, respectively, initiated from Si 
for Ok during a certain time period. Our replication policy 
assumes the existence of one primary copy for each object 
in the network. Let Pk, be the site which holds the primary 
copy of Ok, i.e., the only copy in the network that cannot 
be de-allocated, hence referred to as primary site of the k-
th object. Each primary site Pk, contains information 
about the whole replication scheme Rk of Ok. This can be 

done by maintaining a list of the sites where the k-th 
object is replicated at, called from now on the replicators 
of Ok. Moreover, every site Si stores a two-field record for 
each object. The first field is its primary site Pk and the 
second the nearest neighborhood site NNk

i of site Si which 
holds a replica of object k. In other words, NNk

i is the site 
for which the reads from Si for Ok, if served there, would 
incur the minimum possible communication cost. It is 
possible that NNk

i = Si, if Si is a replicator or the primary 
site of Ok. Another possibility is that NNk

i = Pk, if the 
primary site is the closest one holding a replica of Ok. 
When a site Si reads an object, it does so by addressing 
the request to the corresponding NNk

i. For the updates we 
assume that every site can update every object. Updates of 
an object Ok are performed by sending the updated 
version to its primary site Pk, which afterwards broadcasts 
it to every site in its replication scheme Rk.  
For the Data Replication Problem (DRP) under 
consideration, we are interested in minimizing the total 
Replication Cost (RC) (or the total network transfer cost) 
due to object movement, since the communication cost of 
control messages has minor impact to the overall 
performance of the system. There are two components 
affecting RC. First, is the RC created from the read 
requests.  Let Rk

i denote the total RC, due to Sis’ reading 
requests for object Ok, addressed to the nearest site NNk

i. 
This cost is given by the following equation:  
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component of RC is the cost arising due to the writes. Let 
Wk

i be the total RC, due to Sis’ writing requests for object 
Ok, addressed to the primary site Pk. This cost is given by 
the following equation:  
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Here, we made the indirect assumption that in order to 
perform a write we need to ship the whole updated 
version of the object. This of course is not always the 
case, as we can move only the updated parts of it 
(modeling such policies can also be done using our 
framework). The cumulative RC, denoted as Coverall, due 
to reads and writes is given by:  
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Let Xik=1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named 
X, with boolean elements. Equation 3 is now refined to:  
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Sites which are not the replicators of object Ok create RC 
equal to the communication cost of their reads from the 
nearest replicator, plus that of sending their writes to the 
primary site of Ok . Sites belonging to the replication 
scheme of Ok, are associated with the cost of 
sending/receiving all the updated versions of it. Using the 



above formulation, the Data Replication Problem (DRP) 
can be defined as:  
Find the assignment of 0, 1 values in the X matrix that 
minimizes Coverall, subject to the storage capacity 
constraint: ∑ ≤≤∀≤=

N
k ikik MisoX1 )1( , and subject to the 

primary copies policy: )1(1 NkX kPk
≤≤∀= . 

In the generalized case, DRP is essentially a constraint 
optimization problem, reducible to the Knapsack problem, 
and without the storage constraint, to the minimum k-
median problem [9]. 

3 REPLICA PLACEMENT TECHNIQUES 

3.1     A-star  

The A-star based searching technique for the Data 
Replication Problem (DRPA-star) starts from an 
assignment P, and explores all the potential options of 
assigning an object to a site. With proper pruning 
techniques used against the constraint(s) C, only the 
assignments in the admissible head set are explored. If the 
new solution is consistence with the constraint, it is added 
to the Expansion Tree (ET), otherwise the solution is 
pruned. In order to avoid memory overflow, we limit the 
ET to 1000 active solution (state) space allocations. This 
is very common technique used to overcome the memory 
overflow problem associated with A-star type algorithms. 
For details see [7]. Moreover, the candidate objects 
assignments are ordered (in a linked list termed as the 
OPEN list), such that the smallest projected cost of 
allocation is expanded first. Thus, we can terminate our 
expansion when the solution for the data replication 
problem is obtained, or there are no more candidate 
allocations left in the ET. In either case optimality is 
always guaranteed. DRPA-star uses the following 
heuristic: Let Ok and Si represent the set of objects and 
sites in the system. Let U be the set of unassigned objects 
and t be the global minimum of an object’s replication 
cost. Thus, we define the minimum of such cost as a set: 
T=min0≤j≤N-1(t(Ok, Si)), ∀Ok∈U. For a node n, let mmk(n) 
define the maximum element of set T (the max-min 
replication cost). mmk(n) then represents the best possible 
replica allocation without the unrealistic assumption that 
every object in U can be replicated to a site in M without 
a conflict. Thus we give our heuristic for the replication 
cost as follows: hcost(n)=max(0,[mmk(n)-g(n)]).  

Lemma 1: DRPA-star grows and requires sub-
exponential time and space. 
Proof: Let P be the expanded paths (partial or complete 
solution) in the ET, then the space required by the DRPA-
star is P and the time required by DRPA-star is 
dP(h+log(P)). Where d is the degree of the network, h is 
the depth at which the solutions are identified, and the 
log(P) factor identifies the growth of the search tree. Now 
if error in the heuristic grows no faster than log of the 
optimal cost of the solution. A-star has been proven to be 

sub-exponential [7]. Since DRPA-star due to its pruning 
is far more efficient than A-star, DRPA-star will also 
grow sub-optimally. We give the relation of sub-
optimality as: OPTcost-Acost≤O(log(OPTcost)), where 
OPTcost is the optimal cost of state space search 
expansion, and Acost is the admissible cost. We can thus 
say that: P≤Mhd≤dM2. For an average case analysis 
DRPA-star uses space equivalent to Mhd, and thus the 
running time would be Mhd2(h+log(Mhd)). 

3.2     A-star based heuristics 

We now present three heuristics (sub-optimal A-star) 
algorithms, refereed to hereafter as SA1, SA2, SA3. The 
name SA comes from Sub-optimal Assignments. The 
main purpose is to design algorithms that converge to 
solution faster and overcome the high memory 
requirements associated with A-star type algorithms [7]. 
The basic idea behind these algorithms is that when the 
search process reaches a certain depth in the search tree, 
some search path(s) can be avoided (some tree nodes can 
be discarded) without moving far from the optimal 
solution. In SA1, when the algorithm (DRPA-star) selects 
a node that belongs to level R or below, it generates only 
the best successors (lowest expansion cost) of it. All the 
other successors except the best one are discarded. In 
SA2, when the depth level R is reached for the very first 
time, all the successors except the minimum cost are 
discarded among all the nodes marked for expansion. In 
SA3, the discarding is done similar to SA2 except that 
now the nodes are removed from the ET. For instance, if 
n nodes are generated, then all of them are inserted in the 
ET, and the n-1 high cost nodes are discarded. These 
techniques will not suffer from memory overflow, since at 
level R, for every node taken out of the ET for expansion, 
only one node is inserted. Also the running time is 
reduced by many folds since the algorithm 
expands/explores less number of nodes when it reaches R. 

3.3. Local Min-Min 

Let Ok and Si represent the set of objects and sites in the 
system. Let U be the set of unassigned objects to a site Si . 
Let Umin define the minimum replication cost of the 
objects to be assigned to a particular site. The assignment 
is made in the ascending order of set U. If there is a tie 
among two objects, then the tie is broken by the minimum 
object size, hence the name Min-Min. Since we do the 
assignment iteratively for every object and do not 
consider the effects of the choice of an object to a site 
with respect to other sites, we call it Local Min-Min 
(LMM). 

Lemma 2: LMM converges in O(MN(log N)) and 
requires linear space. 
Proof: The most expensive part of the algorithm is the 
sorting. Since we iterate N objects over all the M sites 
repeatedly, the entire step would take MN(log N). The 



assignment part of the algorithm would at most take 
O(MN). Thus the most expensive part of the algorithm 
would have the bound of O(MN(log N)). It is not difficult 
to see that it would take linear space for completion. 
Intuitively, we only load the N objects and iteratively 
assign then to a site. Therefore at each step we need at 
most O(M+N) memory. 

3.4     Global Min-Min 

Let Ok and Si represent the set of objects and sites in the 
system. Let U be the set of unassigned objects and k be 
the global minimum of all the replication costs associated 
with an object. The minimum of such cost as a set 
T=min0≤j≤N-1(k(Ok,Si),∀Ok∈U. If during the assignment, 
the minimum replication cost of an object is the same for 
two different sites, the object is chosen on random. For a 
node n let mink(n) define the minimum element of set T. 
Thus mink(n) represents the best minimum replication 
cost that would occur if object Ok is replicated to a site Si, 
i.e., Global Min-Min (GMM). 

Lemma 3: GMM requires O(M2N2(log N)) running time 
and Ω(MN) space. 
Proof: We can efficiently obtain the min(sort(T)) in 
O(MN(log N)). This would be the time required to assign 
the first object. Since there would be at most M×N unique 
entries in the Replication Cost Matrix, we are therefore 
required to exploit all the M×N candidates. Thus, the total 
time required would be O(M2N2(log N)). GMM would 
have to load the entire M×N matrix for sorting thus it 
would take no less than Ω(MN) of memory. 

4 EXPERIMENTAL EVALUATIONS 

We performed experiments on a 440MHz Ultra 10 
machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 
policies. The solution quality in all cases, is measured 
according to the RC percentage that is saved under the 
replication scheme found by the algorithms, compared to 
the initial one, i.e., when only primary copies exist. In all 
the experiments for the proposed A-star based sub-
optimal heuristics, the cutoff R was set at: R=d/2, where 
d represents the depth of the tree (number of objects).  
The network architecture is generated as follows. First, 
the number of sites M and objects N are defined. To 
establish diversity in our experimental setups, the network 
connectively is changed considerably. In this paper, we 
only present the results that were obtained using a 
maximum of 500 sites (nodes). We used existing topology 
generator toolkits and also self generated networks. In all 
the topologies, the distance of the link between nodes is 
equivalent to the communication cost. Table 2 
summarizes the various techniques used to gather forty-
five various topologies for the 100 node networks. It is to 
be noted that the parameters vary for network with 

lesser/larger number of nodes. All the results reported, 
represent the average performance over all the topologies.  

To evaluate our proposed replication techniques on 
realistic traffic patterns, we used the access logs collected 
at the Soccer World Cup 1998 website [3]. Each 
experimental setup was evaluated thirteen times, i.e., only 
the Friday (24 hours) logs from May 1, 1998 to July 24, 
1998.  Thus, each experimental setup in fact represents an 
average of the 585 (13×5) data set points. To process the 
logs, we wrote a script that returned: only those objects 
which were present in all the logs (2000 in our case), the 
total number of requests from a particular client for an 
object, the average and the variance of the object size. 
From this log we choose the top five hundred clients 
(maximum experimental setup), which were randomly 
mapped to one of the nodes of the topologies. The 
primary replicas’ original site was mimicked by choosing 
random locations. The capacities of the sites C% are 
generated randomly with range from Total Primary 
Object Sizes/2 to 1.5×Total Primary Object Sizes. The 
variance in the object size collected from the access logs 
helps to instill enough diversity to benchmark object 
updates. The updates are randomly pushed onto different 
sites, and the total system update load is measured in 
terms of the percentage update requests U% compared 
that to the initial network with no updates.  

Table 2: Parameters for topologies with 100 nodes. 
Topology Mathematical Representation Parameter Variance 

SGRG 
(12 topologies)

Randomized layout with node 
degree (d*) and Euclidian 
distance (d) between nodes as 
parameters. 

d={5,10,15,20},  
d*={10,15,20}. 

GT-ITM PR 
[5] 
(5 topologies) 

Randomized layout with edges 
added between the randomly 
located vertices with a 
probability (p). 

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [5]
(9 topologies) 

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},  
β={0.2,0.3,0.4}. 

SGFCGUD  
(5 topologies) 

Fully connected graph with 
uniform link distances (d). 

d1=[1,10], d2=[1,20], 
d3=[1,50], d4=[10,20], 
d5=[20,50]. 

SGFCGRD  
(5 topologies) 

Fully connected graph with 
random link distances (d). 

d1=[1,10], d2=[1,20], 
d3=[1,50], d4=[10,20], 
d5=[20,50]. 

SGRGLND  
(9 topologies) 

Random layout with link 
distance having a lognormal 
distribution [6]. 

µ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

Table 3: Running time (sec.) of proposed techniques. 
Problem Size SA1 SA2 SA3 LMM GMM

M= 500, N= 1350 560 389 526 429 432 
M= 500, N= 1400 609 468 609 454 452 
M= 500, N= 1450 662 583 662 471 502 
M= 500, N= 1500 707 641 740 497 532 
M= 500, N= 1550 804 698 807 503 583 
M= 500, N= 2000 846 725 901 517 634 

Table 3 shows the execution times of all except the 
DRPA-star technique. The number of sites was kept 
constant at 500, and the number of objects was varied 
from 1350 to 2000. For DRPA-star we choose a smaller 
setup as it could not handle the massive data processing. 



DRPA-star terminated with a massive time of 156 
minutes (9356 sec.) with 250 objects and 100 sites setup. 
With the maximum configuration, i.e., 2000 objects and 
500 sites; SA1, SA2 and SA3 performed well with 
termination times of 846 sec., 725 sec., and 901 sec. 
respectively. LMM and GMM on the other had 
outperformed every other placement policy with a turn 
around time of 517 sec. and 634 sec. respectively. 

It is a fact that the more the replicas the more reliable 
is the system. However, this does not guarantee that the 
obtained solution is of a high quality, i.e., minimum RC. 
Our first judgment on the proposed techniques would be 
to see how much they can replicate. It is to be noted that 
we do not relax our constraints of minimizing the total 
replication cost or the storage. The creations of replicas 
are dependent on two major factors, i.e., the number of 
objects available and the number of sites in the network. 
Thus, we perform two sets of experiments. The update 
ratio is fixed for the entire test at 10%. For the first type 
of experiment, we vary the number of sites in the 
network, while the number of objects is kept constant at 
2000. Figure 1 shows the amount of replicas created as 
compared to the initial setup. SA3 with 14.54 and GMM 
with 10.1 outperformed the rest of the heuristics. LMM, 
SA1 and SA2 performed poorly with at most 6.23 times 
replica creation compared to the initial network setup. 
Next we kept the number of sites constant at 500 and 
studied the effects of increasing number of objects in the 
system. The number of objects was varied from 1200 to 
2000. Here we can observe (Figure 2) a clear difference 
between high and low performance algorithms. SA1 and 
SA2 performed the worst with a drop of 40% in its replica 
creation. Unexpectedly LMM retained its replicas. This 
poor performance of SA type algorithms is credited to the 
bound R. With the increase in the number of objects the 
available choices also increase, but the bound remains the 
same. It is to be noted that the bound is on the depth of 
the search tree and not the degree, but the degree is 
indirectly affected when the bound R is met, causing a 
low performance. GMM performed extremely well with a 
loss of only 5% in its replicas. 
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Figure 1: Replicas created vs. no. of sites. 

Our formulation of the data replication problem also 
caters for disk storage constraints. It is understandable 
that with the increase of available space, the algorithms 
will try to accommodate as many objects as possible. 
Since the objects’ size remain constant at all times, with 

the increase in the capacity of the sites the choice of 
allocations also increase. In Figure 3 every algorithm 
gained a slight saving with the increase of capacity from 
0% to 100%. The major gain was observed in the case of 
LMM (19%).  

Replicas [M=500,C=20%,U=10%] 
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Figure 2: Replicas created vs. no. of objects. 
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Figure 3: RC savings vs. site capacity. 

The effects of reads on our computational model 
were studied next. The purpose of such a study is to see 
how flexible our proposed model is with the increasing 
number of user read requests. In this setup, we increase 
the read requests from 0% to 100% on all the objects, i.e., 
it will be an aggregate read increase on the system. We 
keep N=2000, M=500, U=15%, and C=20%. Figure 4 
shows the test runs. All most every algorithm showed a 
consistent performance. Increase in savings (approx. 8%) 
was observed in LMM, SA1, and SA2. SA3 and GMM on 
the other hand did not gain much, but showed a stable 
performance. 

Similar to reads, we also studied the effects of 
updates (writes). To give a brief idea on how we perform 
the tests, we record the RC savings on a particular 
configuration and then we send update requests to Pi on 
random. Pi upon receiving the request will broadcast an 
update request to the sites containing the replicas. Thus, 
we can measure the difference in load on the system 
before and after the update request(s). This concept is 
analogous to measuring the communication cost in the 
system. From server point of view this is important since 
we want the RC savings to be at least maintained if not 
gained. The higher the difference the higher would be the 
communication cost which in turn means the system 
would be less stable. Figure 5 shows the test results. We 
can observe a clear difference in the solution quality 
between SA3, GMM and the rest of the algorithms. GMM 
is only off by approximately 10% of GMM. Interesting to 
see is the poor performance of both LMM and SA2 which 



with 40% increase in the updates show a mere 2% and 9% 
RC savings.  
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Figure 4: RC savings vs. reads. 
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Figure 5: RC savings vs. updates. 

Table 4: Summary of the results. 
Replicas RC Savings Score Rank Algorithm 
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DRPA-star 1 1 1 1 1 1 1 1 08 1 
LMM 5 4 6 6 5 6 6 6 44 6 
GMM 3 2 3 4 3 4 2 4 25 3 
SA1 6 6 5 5 6 5 5 5 43 5 
SA2 4 5 4 3 4 2 4 2 28 4 
SA3 2 3 2 2 2 3 3 3 20 2 

Table 5: Overview of results with suggested utilization. 
Algorithm Running 

time 
Memory 

usage 
Solution 
quality 

Suggested utilization 

DRPA-star High High Optimal Static-optimal quality 
LMM Low Low Low Fast-low quality 
GMM Low Low Medium Fast-high quality 
SA1 Medium Medium High Dynamic-medium quality 
SA2 Low Medium High Fast/Dynamic-high quality 
SA3 Low Medium Very high Dynamic-very high quality 

To summarize the results and effectively identify the 
type of algorithm for each scenario, we will present an 
overview of our findings. As mentioned in the 
introductory passage, the main purpose of this paper is to 
present the vendor(s) or users with various types of 
placement algorithms, some sophisticated, some simple in 
nature and complexity. The overall winner in all the 
above algorithms in terms of solution, space and 
termination time was SA3. SA3 finished fourth on 
termination time, but its solution quality was not off by 
more than 10% in any of the experimental setups that 
were performed. Table 4 shows the numerical ranking of 

the algorithms based on the solution quality. Our 
recommendations are summarized in Table 5. 

5 CONCLUDING REMARKS 

In this paper we address the fine-grained replication of 
data among a set of sites in a distributed system such as 
the Internet and developed its cost model. We proposed 
five replica placement techniques based on the A-star 
algorithm. We also proposed two natural selection 
algorithms the LMM and the GMM. All the above 
proposed algorithms were compared and analyzed to 
identify techniques that can achieve optimal or fast or 
both types of solution. For a static system DRPA-star 
would be the best choice. For dynamic systems which 
require frequent updates, LMM could be used if time is 
the only constraint. But if both time and solution are 
important, then either of the sub-optimal A-star based 
heuristics can be used. The above recommendations are 
based on our comprehensive test analysis.  
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