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Optimal Task Assignment
in Heterogeneous
Distributed Computing
Systems

exploit effective parallelism on a distrib-
uted system, tasks must be properly allo-
cated to the processors. This problem,
task assignment, is well-known to be NP-
hard in most cases.1 A task-assignment
algorithm seeks an assignment that opti-
mizes a certain cost function—for exam-
ple, maximum throughput or minimum
turnaround time. However, most re-
ported algorithms yield suboptimal solu-
tions. In general, optimal solutions can
be found through an exhaustive search,
but because there are nm ways in which
m tasks can be assigned to n processors,
an exhaustive search is often not possi-
ble. Thus, optimal-solution algorithms
exist only for restricted cases or very
small problems. The other possibility is
to use an informed search to reduce the
state space. 

The A* algorithm, an informed-search
algorithm, guarantees an optimal solution,
but doesn’t work for large problems be-
cause of its high time and space complexity.

Thus, we require a further-reduced state
space, a faster search process, or both. 

Problem definition
Like other NP-hard problems, there are
three common ways to tackle task assign-
ment:

• Relaxation. You can relax some of the
requirements or restrict the problem.

• Enumerative optimization. If you can’t
compromise the solution’s optimality,
you can use enumerative methods, such
as dynamic programming and branch-
and-bound.

• Approximate optimization. You can use
heuristics to solve the problem while
aiming for a near-optimal or good
solution.

Our goal is to assign a given task graph
(see the “Related work” sidebar) to a net-
work of processors to minimize the time
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required for program completion. We
consider this problem, also known as the
allocation or mapping problem,2 using
relaxed assumptions—such as arbitrary
computation and task-graph communi-
cation requirements, and a network of
heterogeneous processors connected by
an arbitrary topology. We use the task
interacting graph model, in which the par-
allel program is represented by an undi-
rected graph: GT = (VT, ET), where VT is
the set of vertices, {t1, t2, ..., tm}, and ET is
a set of edges labeled by the communica-
tion requirements among tasks. We can
also represent the network of processors
as an undirected graph, where vertices
represent the processors, and the edges
represent the processors’ communication
links. We represent the interconnection
network of n processors, {p1, p2, ..., pn}, by
an n×n link matrix L, where an entry Lij is
1, if processors i and j are directly con-
nected, and 0 otherwise. We do not con-
sider the case where i and j are not directly
connected.

We can execute a task ti from the set VT
on any one of the system’s n processors.
Each task has an associated execution cost
on a given processor. A matrix X gives task-
execution costs, where Xip is the execution
cost of task i on processor p. Two tasks, ti
and tj, executing on two different proces-
sors, incur a communications cost when
they need to exchange data. Task mapping
will assign two communicating tasks to the
same processor or to two different, directly
connected processors. A matrix C repre-
sents communication among tasks, where
Cij is the communication cost between
tasks i and j, if they reside on two different
processors.

A processor’s load comprises all the
execution and communication costs as-
sociated with its assigned tasks. The time
needed by the heaviest-loaded processor
will determine the entire program’s
completion time. The task-assignment
problem must find a mapping of the set
of m tasks to n processors that will min-
imize program completion time. Task
mapping, or assignment to processors, is
given by a matrix A, where Aip is 1, if task
i is assigned to processor p, and 0 other-
wise. The following equation then gives
the load on p:

The first part of the equation is the total
execution cost of the tasks assigned to
p. The second part is the communica-
tion overhead on p. Aip and Ajq indicate
that task i and j are assigned to two dif-
ferent processors (p and q), and Lpq indi-
cates that p and q are directly connected.
To find the processor with the heaviest

load, you need to compute the load on
each of the n processors. The optimal
assignment out of all possible assign-
ments will allot the minimum load to
the heaviest-loaded processor. 

Task assignment
using the A* algorithm
A* is a best-first search algorithm,3 which
has been used extensively in artificial-
intelligence problem solving. Program-
mers can use the algorithm to search a
tree or a graph. For a tree search, it starts
from the root, called the start node (usu-
ally a null solution of the problem). Inter-
mediate tree nodes represent the partial
solutions, and leaf nodes represent the
complete solutions or goals. A cost func-
tion f computes each node’s associated
cost. The value of f for a node n, which is
the estimated cost of the cheapest solu-
tion through n, is computed as f(n) = g(n)
+ h(n), where g(n) is the search-path cost
from the start node to the current node n
and h(n) is a lower-bound estimate of the

path cost from n to the goal node (solu-
tion). To expand a node means to gener-
ate all of its successors or children and to
compute the f value for each of them.
The nodes are ordered for search accord-
ing to cost; that is, the algorithm first
selects the node with the minimum ex-
pansion cost. The algorithm maintains a
sorted list, called OPEN, of nodes (accord-
ing to their f values) and always selects a
node with the best expansion cost. Be-
cause the algorithm always selects the
best-cost node, it guarantees an optimal
solution.

For the task-assignment problem un-
der consideration, 

• the search space is a tree; 
• the initial node (the root) is a null-

assignment node—that is, no task is
assigned as yet; 

• intermediate nodes are partial-assign-
ment nodes—that is, only some tasks
are assigned; and 

• a solution (goal) node is a complete-
assignment node—that is, all the tasks
are assigned. 

To compute the cost function, g(n) is the
cost of partial assignment (A) at node n—
the load on the heaviest-loaded (p); this
can be done using the equation from the
previous section. For the computation of
h(n), two sets Tp (the set of tasks that are
assigned to the heaviest-loaded p) and U
(the set of tasks that are unassigned at this
stage of the search and have one or more
communication link with any task in set
Tp) are defined. Each task ti in U will be
assigned either to p or any other proces-
sor q that has a direct communication link
with p. So, you can associate two kinds of
costs with each ti’s assignment: either Xip
(the execution cost of ti on p) or the sum
of the communication costs of all the
tasks in set Tp that have a link with ti. This
implies that to consider ti’s assignment,
we must decide whether ti should go to p
or not (by taking these two cases’ mini-
mum cost). Let cost(ti) be the minimum
of these two costs, then we compute h(n)
as

.
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Applying the algorithm
Shen and Tsai4 first used the A* algo-
rithm for the task-assignment problem.
They ordered the tasks considered for
assignment simply by starting with task
1 at the tree’s first level, task 2 at the sec-
ond, and so on. Ramakrishnan and col-
leagues showed that the order in which
an algorithm considers tasks for alloca-
tion considerably impacts its perfor-
mance.5 Their study indicated significant
performance improvement by consider-
ing, at shallow tree levels, tasks that have
more weight in the optimal-cost compu-
tation. They proposed a number of heur-
istics to reorder the tasks, out of which
the minimax sequencing heuristic per-
formed the best. Minimax sequencing
works as follows: Consider a matrix H of
m rows and n columns where m is the
number of tasks and n is the number of
processors. The entry H (i, k) of the
matrix is given by H (i, k) = Xik + h (ν),
where h(v) is given by

,

where U is the set of unassigned tasks
that communicate with ti. The minimax
value, mm (ti) of task ti, is defined as mm
(ti) = min {H (i, k), 1 ≤ k ≤ n}. The mini-
max sequence is then defined as Π = τ1,
τ2, …, τm}, mm (τI) ≥ mm (τi + 1), ∀ i.

An example
Let’s illustrate the A* algorithm’s oper-
ation for the assignment problem. Given
a set of five tasks {t0, t1, t2, t3, t4} and a set
of three processors {p0, p1, p2} (see Fig-
ure 1), we give the resulting search trees
using the techniques proposed by Shen
and Tsai (see Figure 2) and Ramakrish-
nan and his colleagues (see Figure 3). We
will refer to these algorithms as A*O (A*
Original) and A*R (A* with Reordering). 

A search-tree node includes partial as-
signment of tasks to processors, and the
value of f (the cost of partial assignment).
The assignment of m tasks to n proces-
sors is indicated by an m-digit string, a0,
a1, ..., am – 1, where ai (0 ≤ i ≤ m – 1) rep-
resents the processor (0 to n – 1) to which
the algorithm has assigned the ith task.
A partial assignment means that some
tasks are unassigned; the value of ai equal

to X indicates that
ith task has not been
assigned yet. Each
level of the tree cor-
responds to a task;
thus, assignment of
this task to a proces-
sor replaces an X
value in the assignment string with some
processor number. Node expansion
means adding a new task assignment to
the partial assignment. Thus, the search
tree’s depth d equals the number of m
tasks, and any node of the tree can have
a maximum of n successors.

The root node includes the set of all
unassigned tasks XXXXX. Next, for ex-
ample, in Figure 2, we consider the allo-
cations of t0 to p0 (0XXXX), t0 to p1
(1XXXX), and t0 to p2 (2XXXX), by deter-
mining the assignment costs at the tree’s
first level. Assigning t0 to p0 (0XXXX)
results in the total cost f(n) that is equal to
30. The g(n), in this case, equals 15, which
is the cost of executing t0 on p0. The h(n)
is also equal to 15, which is the sum of the
minimum execution or communication
costs of t1 and t4 (tasks communicating
with t0). We similarly calculate the costs
of assigning t0 to p1 (26) and t0 to p2 (24).
The algorithm inserts these three nodes
into the list OPEN. Because 24 is the min-
imum cost, the algorithm selects the node
2XXXX for expansion.

The algorithm expands node 2XXXX
in the following manner. At the tree’s sec-
ond level, the algorithm will consider t1
for assignment, and 20XXX, 21XXX, and
22XXX are three possible assignments.
The value of f(n) for 20XXX is 28, and is
computed as follows: first, the processor
with the heaviest load is selected, which is
p0 in this case. g(n) is equal to 22, which is
the cost of executing t1 on p0 (14) plus the
cost of communication between t1 and t0
(8), because they are assigned to two dif-
ferent processors. h(n) is equal to 6, which
is the minimum execution or communi-
cation cost of t2 (the only unassigned task
communicating with t1). We similarly
compute the values of f(n) for 21XXX and
22XXX. At this point, nodes 0XXXX,
1XXXX, 20XXX, 21XXX, and 22XXX
are in the OPEN list. Because node 1XXXX
has the minimum node cost, the algorithm

expands it next, resulting in nodes 10XXX,
11XXX, and 12XXX. 

Attached to some of the nodes, the
numbers in circles show the sequence in
which nodes are selected for expansion.
Bold lines show the edges connecting
the nodes that lead to an optimal assign-
ment. The search continues until the
process selects the node with the com-
plete assignment (20112) for expansion.
At this point, because this node has a
complete assignment and the minimum
costs, it is the goal node. All assignment
strings are unique.

In Figure 2, the order in which the
algorithm considers tasks for assign-
ment is {t0, t1, t2, t3, t4} and, during the
search for an optimal solution, 42
nodes are generated and 14 are ex-
panded. As Figure 3 shows, the A*R
algorithm generates the minimax se-
quence {t0, t1, t2, t4, t3}; therefore, t4 is
considered before t3. You can similarly
trace this example as demonstrated
above, while considering the new task
order. In this case, 39 nodes are gen-
erated, and 13 nodes are expanded.
The optimal assignment is 20112, with
the same optimal solution cost (28). In
comparison, an exhaustive search will
generate nm = 243 nodes.

The proposed
algorithms
We’ll now describe our proposed algo-
rithms. The first is a sequential algorithm
that has considerably fewer memory re-
quirements than the A*O and A*R algo-
rithms. The second is a parallel algorithm
that, compared with its serial counterpart,
generates optimal solutions with good
speedup.

Sequential search
The Optimal Assignment with Sequen-
tial Search (OASS) algorithm (see Figure
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4) uses the A* search technique, but with
two distinct features. First, it generates a
random solution and prunes all the nodes
with costs higher than this solution dur-
ing the optimal-solution search. This is
because the optimal solution cost will
never be higher than this random-solu-
tion cost. Pruning unnecessary nodes not

only saves memory, but also saves the
time required to insert the nodes into
OPEN. Second, the algorithm sets the
value of f(n) equal to g(n) for all leaf
nodes, because for a leaf node n, h(n) is
equal to 0. This avoids the unnecessary
computation of h(n) at the leaf nodes.

Figure 5 is search tree that results

from using the OASS algorithm for our
example problem. First, we used a faster
and suboptimal version of A*6 to gener-
ate a random solution. The cost of the
random solution was 29. Therefore, we
discard all nodes with a cost greater than
29. As a result, OASS generates only 14
nodes, while A*O produces 42 nodes
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Figure 2. Search tree for the example problem using A*O (42 nodes generated, 14 nodes expanded).4
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and A*R produces 39 nodes for the same
optimal solution—20112. This algo-
rithm’s efficiency clearly depends on the
initial solution’s quality.

Parallel search
The parallel algorithm aims to speed up
the search as much as possible using par-
allel processing. This is done by dividing
the search tree among the processing ele-
ments (PEs) as evenly as possible and by
avoiding the expansions of nonessential
nodes—that is, nodes that the sequential
algorithm does not expand. A. Grama
and Vipin Kumar7 and Vipin Kumar, K.
Ramesh, and V.N. Rao8 provide useful
discussions of different issues in paral-
lelizing the depth-first and best-first
search algorithms. To distinguish the
processors on which the parallel task-
assignment algorithm is running from
the processors in the problem domain,
we will denote the former with the ab-
breviation PE—in our case, the Intel
Paragon processor). We call our paral-
lel algorithm Optimal Assignment with
Parallel Search (OAPS).

Initially, we statically divide the search
tree based on the number of PEs P in the
system and the maximum number of suc-
cessors S of a node in the search tree.
There are three ways to achieve an ini-
tial partitioning:

• P < S. Each PE expands only the ini-
tial node, which results in S new nodes.
Each PE gets one node, and the initial
division distributes additional nodes by
round-robin (RR).

• P = S. Each PE expands only the ini-
tial node, and each PE gets one node.

• P > S. Each PE keeps expanding nodes,
starting from the initial node (the null
assignment) until the list’s number of
nodes is greater than or equal to P. We
sort the list in an increasing order of
node-cost values. The first node in the
list goes to PE1, the second node to
PEp, the third node to PE2, the fourth
node to PEp – 1, and so on. Extra nodes
are distributed by RR. Although this
distribution does not guarantee that a
best-cost node at the initial levels of the
tree will lead to a good-cost node, the
algorithm still tries to initially distri-

bute the good nodes as evenly as pos-
sible among all the PEs. 

If the search finds a solution, the algo-
rithm terminates. There is no master PE
responsible for first generating and then
distributing the nodes to other PEs. Thus,
compared to the host-node model, this

static-node assignment’s overhead is neg-
ligible. To illustrate this, try assigning 10
tasks to four processors using two PEs
(PE1 and PE2). Here, S is 4 because a
search-tree node can have a maximum of
four successors; so each PE generates four
nodes numbered 1 to 4 (as in Figure 6,
where the boxed number is the node’s f

(1) Generate a random solution
(2) Let S_Opt be the cost of this solution
(3) Reorder the tasks
(4) Build the initial node s and insert it into the 

list OPEN
(5) Set f(s) = 0
(6) RReeppeeaatt
(7) Select the node n with smallest f value.
(8) iiff (n is not a Solution )
(9) Generate successors of n
(10) ffoorr each successor node n’ do
(11) iiff (n’ is not at the last level in the

search tree)
(12) f(n’) = g(n’) + h(n’)
(13) eellssee f(n’) = g(n’)
(14) iiff (f(n’) <= S_Opt)
(15) Insert n’ into OPEN
(16) eenndd  ffoorr
(17) eenndd  iiff
(18) iiff (n is a Solution)
(19) Report the Solution and stop
(20) UUnnttiill (n is a Solution) or (OPEN is empty)

Figure 4. The Optimal Assignment with Sequential Search algorithm (OASS).
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value). PE1 then gets assigned nodes 1 and
3, and PE2 gets nodes 2 and 4.

After the initial static division, each PE
will only search its own subtree. Some
PEs might work on a good part of the
search space, while others might expand
unnecessary nodes that the serial algo-
rithm does not expand. These actions will
result in a poor speedup. To avoid this,
the PEs need to communicate with each
other to share the best part of the search
space and to avoid unnecessary work.
This communication can be global (that
is, a PE broadcasts its nodes to all other
PEs) or local (a PE communicates only
with its neighbors). In our formulation,
we used a RR communication strategy in
the neighborhood.

Because the Paragon PEs are con-
nected as a mesh topology, a PE can

have a maximum
of four neighbors.
And because a PE
c o m m u n i c a t e s
primarily with its

neighbors, they incur a relatively small
communication overhead, making this
algorithm more scalable than the one
using a global-communication strategy.
Figure 7 describes the OAPS algorithm.

With an initial load division, every PE
has one or more nodes in its OPEN list.
All PEs then set up their neighborhood
to find their neighboring PEs. A PE
determines its neighborhood by using its
own processor-mesh position and its x
and y dimensions. A PE expands nodes
starting with initial nodes. A PE period-
ically (when OPEN increases by a thresh-
old u) selects a neighbor in a RR fashion
and sends its best node to that neighbor.
This achieves the sharing of the best part
of the neighborhood’s search space.
Aside from this load balancing, a PE also
broadcasts its solution (when it finds one)

to all PEs. This helps avoid unnecessary
work for a PE that is working on the bad
part of the search space. Once a node
receives a better cost solution than its
current best node, it stops expanding the
unnecessary nodes. The PE that finds
the first solution broadcasts its cost to all
other PEs. Then, a PE broadcasts a solu-
tion only if its cost is better than a solu-
tion received earlier. When a PE finds a
solution, it records it and stops. The op-
timal solution will incur the minimum
cost. 

Experimental results
To test our two algorithms, we col-
lected data for task graphs of 10 to 28
nodes with five different values of com-
munication-to-cost ratios (CCR) and pro-
cessor graphs of four nodes connected
in three different topologies. For the
parallel algorithm OAPS, we used two,
four, eight, and 16 Paragon PEs.

Workload generation
A realistic workload is important to vali-
date any assignment algorithm, but this
area lacks standard benchmark test cases.
Thus, to test the proposed sequential and
parallel algorithms, we generated a library
of task graphs and processor topologies.

In distributed systems, a number of
process groups usually have heavy inter-
action in the group, but almost no inter-
action outside the group.9 Using this
intuition, we first generated a number of
primitive task-graph structures such as
pipeline, ring, server, and interference
graphs of two to eight nodes. We gen-
erated complete task graphs by randomly
selecting these primitives structures and
combining them until reaching the
desired number of tasks. To do this, we
first selected a primitive graph and then
combined it with a newly selected graph
by a link labeled 1; the last node is con-
nected back to the first node.

To generate the nodes’ execution costs,
the CCR’s five values are 0.1, 0.2, 1.0, 5.0,
and 10.0. The tasks’ execution costs are
generated in this manner: for example, if
the total communication cost (the sum
costs of all edges connected to the task) of
task i is 16 and the CCR is 0.2, i’s average

(1) Init-Partition()
(2) SetUp-Neighborhood()
(3) RReeppeeaatt
(4) Expand the best cost node from OPEN
(5) iiff (a Solution found)
(6) iiff (it’s better than any previously 

received Solution)
(7) BroadCast the Solution to all PEs
(8) eellssee
(9) Inform neighbors that I am done
(10) eenndd  iiff
(11) Record the Solution and Stop
(12) eenndd  iiff
(13) IIff (OPEN’s length increases by a threshold u)
(14) Select a neighbor PE j using RR
(15) Send the current best node from OPEN to j
(16) eenndd  iiff
(17) IIff (Received a node from a neighbor)
(18) Insert it to OPEN
(19) iiff (Received a Solution from a PE)
(20) Insert it to OPEN
(21) iiff (Sender is a neighbor)
(22) Remove this from neighborhood list
(23) eenndd  iiff
(24) UUnnttiill (OPEN is empty) OR (OPEN is full)

Figure 7. The OAPS algorithm.

1 2 3 4

PE1 PE2

30 35

30 45

45 55

35 55

Figure 6. Initial static division for the Optimal Assignment
with Parallel Search algorithm (OAPS).

.
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execution cost will be 80. Because we are
assuming the processors to be heteroge-
neous (homogeneous processors are a spe-
cial case of heterogeneous processors), the
execution cost varies from processor to
processor in the execution-cost matrix (X),
but the average value remains the same
across all processors.

Memory efficiency of
OASS
First, we compare the results of the
memory saved by using the OASS and
A*R algorithms. Both A*R and OASS
start by reordering the tasks, but OASS
also generates a random solution to
prune unnecessary nodes. Generating
the random solutions first (see Table 1
and Figure 8) saves a significant amount
of memory. In Table 1, task graphs of 10
to 20 nodes, using a fully connected
topology of four processors with a CCR
of 0.1 achieve, save an average of 63.84%
memory. For all the cases, OASS ex-
pands fewer nodes than A*R. Figure 8
shows the number of tree nodes gener-
ated by A*R and OASS during the opti-

mal-solution search for task graphs of 10
to 26 nodes using the ring topology. For
this case, the average memory saving is
66.01%.

Table 2 presents the running times 
of A*O, A*R, and OASS for a fully con-
nected topology of
4 processors. A*R
shows a substantial
improvement over
A*O. Furthermore,
A*O could not
generate solutions
with 16 or more
tasks. An entry ** in
a column means
that the algorithm
could not run using
all available mem-
ory at a single Intel
Paragon node, dur-
ing an approxi-
mately four-hour
run. For most of
the cases, task
graphs with lower
CCRs (for exam-

ple, 0.1 and 0.2) result in larger search
trees; that is, they require more memory
and take more time to run than graphs
with high CCRs (1, 5, and 10). Graphs
with a CCR of 10 have the lowest memory
and runtime requirements, for two rea-
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Figure 8. Nodes generated by A*R and OASS for a ring
topology (CCR = 0.1).

Related work
Task-to-processor allocation can be dynamic or static. In
dynamic allocation, tasks are assigned on the fly, depending
on the system’s state.With static allocation, you assume that
the programmer has information about the system’s tasks
and processors, and that the system makes task assignments
before task execution. The main goal in static task-to-proces-
sor assignment is to assign an equal load to all processors and
reduce their interaction overhead. 

Given a parallel program represented by a task graph
and a network of machines represented as a processors
graph, assigning tasks to processors is also known as the
allocation or mapping problem.1 There are, in
general, two models of task graphs: the task
precedence graph, also called the directed
acyclic graph, and the task interacting graph,
with undirected edges. 

The TPG model represents parallel programs
by capturing the precedence relations between
tasks.2,3 The TIG model represents applications
in which multiple tasks can run concurrently,
regardless of their precedence. This model rep-
resents a wide range of iterative parallel pro-
grams, such as those that solve systems of equa-
tions for finite-element applications and power-
system simulations, and VLSI simulation pro-
grams. Further discussion of TIG and TPG models
appears elsewhere.4

A large number of task-assignment algorithms
have been proposed, using various techniques

such as network flow,5 state-space search,6–8 clustering,9 bin-
packing,10 and probabilitic and randomized optimization.11–14

Most of these algorithms can be classified using the taxonomy
in Figure A. One can classify these algorithms at the hierar-
chy’s first level into optimal and suboptimal categories. The
optimal algorithms can be further classified to restricted or
nonrestricted. Restricted algorithms give optimal solutions in
polynomial time by restricting the program’s structure, the
processor network, or both. Nonrestricted solutions, on the
other hand, consider the problem in general and give optimal
solutions, but not in polynomial time.

Suboptimal algorithms can be classified as approximate or
heuristic. Approximate algorithms for task assignment use the

Static task 
assignment

Suboptimal

Nonrestricted Heuristics

Optimal

Approximate

Greedy Bin-packingRandomized
optimization

Task
clustering

Mean field
annealing

Genetic
algorithms

Simulated
annealing

Restricted

Mathematical
programming

State-space
search

Graph
theory

Figure A. A classification of task-assignment algorithms.

.
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sons. First, for higher CCRs, the algo-
rithm follows a straight path in the search
tree, assigning a group of highly commu-
nicating tasks to the same processor, while
for lower CCRs such as 0.1 and 0.2, it ex-
plores different paths (considers more
options) and, hence, takes more time. Sec-
ond, because the optimal solution’s cost
for higher CCRs is less than that of lower
CCRs, the algorithm finds the optimal
solution quickly, starting from an initial

cost 0. For example, a task graph of 10
tasks using a CCR of 10 has a 7.36 solu-
tion cost. The same graph using a CCR of
0.1 has a 374.0 solution cost. Thus, a CCR
of 10 takes only 0.4 seconds to find the
optimal solution, while a CCR of 0.1 takes
4.3 seconds.

Processor topology also significantly
impacts the search tree’s size and run-
ning time. This is because the algorithm
assigns two communicating tasks to two

different processors only if the proces-
sors are directly connected. Based on this
constraint, in a chain or ring topology,
the algorithm prunes some search-tree
nodes. On the other hand, no such prun-
ing occurs for the fully connected case.
Therefore, the task graphs with a CCR
of 0.1 using the fully connected proces-
sor topology have the greatest running
times and memory requirements among
the graphs generated.

Table 1: Memory savings for a fully connected topology, CCR = 0.1. An entry ** in a column means that the
algorithm could not run using all available memory at a single Intel Paragon node, during an approximately

four-hour run.

NODES EXPANDED NODES GENERATED

NO. OF TASKS (A*O) (A*R) (OASS) (A*O) (A*R) (OASS) MEMORY SAVINGS (%)

10 6,046 2,296 2,265 24,180 9,188 2,456 73.27
12 52,554 3,135 2,953 210,212 12,544 4,976 60.33
14 113,407 4,057 1,743 453,624 16,232 2,791 82.81
16 ** 73,904 71,953 ** 295,620 106,572 63.95
18 ** 85,294 82,917 ** 341,180 121,306 64.45
20 ** 58,367 57,833 ** 233,468 144,149 38.26

Average 37,842 36,610 151,372 63,708 63.84

same computational model as the optimal algorithm but aim
for good solutions instead of searching the complete solution
space for optimal solutions. Heuristic approaches use special
parameters that affect the system indirectly—for example,
clustering the groups of heavily communicating tasks together.
A greedy heuristic starts from a partial assignment and, with-
out any backtracking, assigns one task at each step until it ob-
tains a complete assignment. A bin-packing technique uses a
sizing policy, an ordering policy, and a placement policy for
the tasks to be assigned. Randomized optimization methods
start from a complete assignment and search for an improve-
ment in the assignment by exchanging two tasks on different
processors or moving a task to another processor.

Because of the assignment problem’s intractable nature,
most research focuses on developing heuristic algorithms.
Some optimal algorithms are also available either for re-
stricted problem cases or for very small problems.
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Speedup using the
parallel algorithm
We evaluated our parallel algorithm’s
performance by observing its speedup
over its sequential counterpart on a vary-
ing number of processors. Table 3 pre-
sents the speedup for a fully connected
topology of four processors with a CCR
of 0.1. The second, third, fourth, and
fifth columns include the speedups of the
parallel algorithm over the serial algo-
rithm for two, four, eight, and 16
Paragon PEs. The table’s bottom row
includes the average speedup of all the
task graphs considered. The speedup is

almost linear for most of the cases using
two or four PEs, while for eight and 16
PEs speedup increases with the problem-
size increase. Also, the problems with a
CCR of 0.1 and 0.2 give good speedup
in most of the cases, because the serial
algorithm’s running time is longer than
the higher CCRs.

Figure 9 depicts the average speedup
values for fully connected, ring, and chain
topologies using different CCR values.

BECAUSE OF THE ASSIGNMENT PROBLEM’S
NP-completeness, its worst-case com-

plexity remains exponential. However,
our algorithms reduce the average-case
complexity by a large margin and, there-
fore, can help generate optimal solutions
for medium problems. The proposed al-
gorithms apply to homogeneous or het-
erogeneous processors, although in this
article we only considered the heteroge-
neous cases. The sequential algorithm
provides considerable improvements in
terms of memory and time over the pre-
vious studies (see the “Related work”
sidebar). Using a fully connected proces-
sor topology will further improve the
sequential algorithm’s performance.6 In
addition, faster versions of the OASS al-
gorithm are possible, without a guaran-
tee of an optimal solution but with ap-
proximated close-to-optimal solutions.6

Parallelizing the assignment algorithm
is an interesting problem that leads to
several avenues of research. We have
used a simple mapping scheme for the
Paragon’s parallel algorithm, but some
fine-tuning of the search-tree partition-
ing can further improve performance.
Also, to make additional improvements,
further study is required to better under-
stand the parallel algorithm’s behavior.
One possibility is to let a PE find more
than one solution and implement a ter-
mination-detection policy. Also, more
experimentation about what should be an
ideal value for threshold u can be done.
Researchers could implement and com-
pare different load-balancing policies for
the algorithm’s speedup.
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Figure 9. The parallel algorithm’s average speedup for the (a) fully connected, (b) ring, and (c) chain processor
topologies.

Table 2: Running times using a fully connected topology (CCR=0.1).

TIME (SECONDS)
NO. OF TASKS A*O A*R OASS

10 81.41 30.14 30.68
12 1,033.46 58.96 56.88
14 3,025.66 105.05 62.13
16 ** 1,550.46 1,501.38
18 ** 3,839.00 3,627.06
20 ** 3,191.86 3,173.18

Table 3: Speedup with the parallel algorithm using a fully connected
topology (CCR = 0.1).

TIME(OASS)
TIME(OPAS)

NO. OF TASKS 2 PES 4 PES 8 PES 16 PES

10 1.87 3.48 5.72 7.63
12 1.96 3.68 3.60 12.85
14 1.70 2.02 4.58 4.64
16 2.00 2.94 4.72 6.71
18 2.00 3.86 7.59 13.16
20 1.78 3.72 5.62 9.97

Average 1.89 3.28 5.30 9.13

.



July–September 1998 51

Acknowledgments
We thank the anonymous referees whose
comments helped improve this article. We
also thank Vipin Kumar for useful discussions
and suggestions. The Hong Kong Research
Grants Council under contract numbers
HKUST 734/96E and HKUST 6076/97E
funded this research. 

References
1. M.R. Garey and D.S. Johnson, Comput-

ers and Intractability: A Guide to the The-
ory of NP-Completeness, Miller Freeman,
San Francisco, 1979.

2. S.H. Bokhari, “On the Mapping Prob-
lem,” IEEE Trans. Computers, Vol. C-30,
No. 3, Mar. 1981, pp. 207–214.

3. N.J. Nilson, Problem Solving Methods in
Artificial Intelligence, McGraw-Hill, New
York, 1971.

4. C.-C. Shen and W.-H. Tsai, “A Graph
Matching Approach to Optimal Task
Assignment in Distributed Computing
System Using a Minimax Criterion,”
IEEE Trans. Computers, Vol. C-34, No.
3, Mar. 1985, pp. 197–203.

5. S. Ramakrishnan, H. Chao, and L.A.
Dunning, “A Close Look at Task Assign-
ment in Distributed Systems,” Proc.
IEEE Infocom ’91, IEEE Computer Soci-

ety Press, Los Alamitos, Calif., 1991, pp.
806–812.

6. M. Kafil, On Optimal Task Assignment
Algorithms in Distributed Computing Sys-
tems, master’s thesis, Dept. of Computer
Science, Hong Kong Univ. of Science
and Technology, 1996.

7. A. Grama and V. Kumar, “Parallel Search
Algorithms for Discrete Optimization
Problems,” Operations Research Soc. Amer-
ica J. Computing, Vol. 7, No. 4, Fall 1995,
pp. 365–385.

8. V. Kumar, K. Ramesh, and V.N. Rao,
“Parallel Best-First Search of State-
Space Graphs: A Summary of Results,”
Proc. 1988 Nat’l Conf. Artificial Intelli-
gence, 1988, pp. 122–126.

9. N.S. Bowen, C.N. Nikolaou, and A.
Ghafoor, “On the Assignment Problem
of Arbitrary Process Systems to Hetero-
geneous Distributed Computer Sys-
tems,” IEEE Trans. Computers, Vol. 41,
No. 3, Mar. 1992, pp. 197–203.

Muhammad Kafil’s research interests
include parallel and distributed algorithms,
operating systems, and video compression.
He received his BSC in mathematics and
physics from Bahauddin Zakariya University,
Multan, Pakistan; his MS in computer science
from De La Salle University, Manila; and a
MPhil in computer science from the Hong

Kong Univ. of Science and Technology. Con-
tact him at the Dept. of Computer Science,
Hong Kong Univ. of Science and Technol-
ogy, Clear Water Bay, Kowloon, Hong Kong;
kafeel@cs.ust.hk.

Ishfaq Ahmad is an associate professor in the
Computer Science Department at the Hong
Kong University of Science and Technology.
His research interests include parallel-pro-
gramming tools, scheduling and mapping
algorithms for scalable architectures, multi-
media systems, video compression, and dis-
tributed multimedia systems. He received his
BSc in electrical engineering from the Uni-
versity of Engineering and Technology,
Lahore, Pakistan, and both his MS in com-
puter engineering and his PhD in computer
science from Syracuse University. He is a
member of the IEEE Computer Society.
Contact him at the Dept. of Computer Sci-
ence, Hong Kong Univ. of Science and Tech-
nology, Clear Water Bay, Kowloon, Hong
Kong; iahmad@cs.ust.hk; http://www.cs.ust.
hk/faculty/iahmad/.

An earlier version of this work ap-

peared as “A Parallel Algorithm for

Optimal Task Assignment in Distributed

Systems,” in 1997 Advances in Parallel

and Distributed Computing Conf.

(APDC ’97) (IEEE Computer Society

Press, Los Alamitos, Calif., 1997).

Call for Papers
Special Issue of IEEE MultiMedia on

Multimedia Telecommunications for National
Information Infrastructures

for July–August 1999 issue
The era of building national information infrastructures (NII) has begun. This special issue will focus on top-

ics and areas that document the experience provisioning multimedia telecommunications applications over
the NII. Topics of interest comprise the following three main areas:

■ Case studies of the application of multimedia telecommunications in different sections of soci-
ety (for example, government, healthcare, education, commerce, and entertainment), plus
situational analyses, solution descriptions, and lessons from the field.

■ Models and frameworks for the provisioning of NII services, including business models and
regulatory and legal policies (multimedia content and transactions via teleprescence are par-
ticularly encouraged).

■ Review of technology assessment programs, international collaboration, and emerging stan-
dards that promote common understanding in multimedia telecommunications.

We are also inviting related, but smaller works in progress, submissions to the Multimedia at Work and
Project Reports departments as well as Standards and Media Reviews contributions.

Guest editors for this issue will be Ravi Sharma and Gurdeep Singh Hura. Submit eight hard copies or an elec-
tronic version of the article by 1 December 1998 to manuscript assistant Alkenia Winston, IEEE Computer
Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720.  Complete author guidelines are available at http://
computer.org/multimedia/edguide.htm.

.


