
386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

Response Time Driven Multimedia Data
Objects Allocation for Browsing Documents

in Distributed Environments
Siu-Kai So, Ishfaq Ahmad, Member, IEEE, and Kamalakar Karlapalem, Member, IEEE

Abstract—Distributed information processing, in many world wide web applications, requires access, transfer, and synchronization
of large multimedia data objects (MDOs) (such as, audio, video, and images) across the communication network. Moreover,
the end users have started expecting very fast response times and high quality of service. Since the transfer of large MDOs
across the communication network contributes to the response time observed by the end users, the problem of allocating these
MDOs so as to minimize the response time becomes very challenging. This problem becomes more complex in the context of
hypermedia documents (web pages), wherein the MDOs need to be synchronized during presentation to the end users. Note
that the basic problem of data allocation in distributed database environments is NP-complete. Therefore, there is a need to pursue
and evaluate solutions based on heuristics which generate near-optimal MDO allocation. In this paper, we address this problem by:
1) conceptualizing this problem by using a navigational model to represent hypermedia documents and their access behavior from
end users, and by capturing the synchronization requirements on MDOs, 2) formulating the problem by developing a base case cost
model for response time, and generalizing it to incorporate user interaction and buffer memory constraints, 3) designing two
algorithms to find near-optimal solutions for allocating MDOs of the hypermedia documents while adhering to the synchronization
requirements, and 4) evaluating the trade-off between the time complexity to get the solution and the quality of solution by
comparing the solutions generated by the algorithms with the optimal solutions generated through an exhaustive search.

Index Terms—Data allocation, response time, multimedia data objects, hypermedia documents, distributed hypermedia document
systems, navigational model.

——————————���F���——————————

1 INTRODUCTION

ISTRIBUTED information processing has become the norm
in recent years. Most of the Internet driven web based

information access requires distributed processing. In many
applications, this processing typically requires, access, trans-
fer and synchronization of multimedia data objects (MDOs)
(such as, audio, video, and images) [1], [5]. The quality of
services provided in presenting these MDOs to end users
has become an issue of paramount importance. End users
have started expecting strict adherence to synchronization
and response time constraints. Any application or system
which cannot respond quickly and in a timely manner for
presenting MDOs to end users is at a clear disadvantage.
In order to manage and present large number of hyperme-
dia documents and their MDOs distributed hypermedia
database systems have been proposed [19]. In fact, a set
of web servers can be treated as a distributed hypermedia
database system. Therefore, the solutions and the ap-
proaches developed in this paper can also be applied
in designing efficient web servers in intranet environ-
ments (wherein the organization has a complete control
in placing the web pages at different internal web servers).

Distributed database systems have introduced a number
of problems, such as the data fragmentation and data allo-
cation problems, that do not exist in centralized database
systems [12]. A good data allocation scheme is always
highly desirable, even in single-media distributed database
systems, since it can significantly reduce the response time
of database queries. Due to the large variations in the sizes
of MDOs such a data allocation scheme is even more ur-
gently needed for distributed hypermedia database sys-
tems. These systems also cater to high performance appli-
cations wherein a set of end users can access multiple hy-
permedia documents in any order and expect good re-
sponse time and quality of service. Since the hypermedia
documents may not be located at the end users’ sites, they
need to be transferred across the communication network
incurring delays (increasing response time) in presenting
the MDOs of the hypermedia documents. Since end users at
different sites may access the same hypermedia documents,
the problem of hypermedia data allocation gets further
complicated. Hence the allocation of the hypermedia
documents and their MDOs govern the response time for
the end users. Further, since the MDOs in a hypermedia
document need to be synchronized, the allocation should
also adhere to these synchronization constraints.

We model a hypermedia document as a directed graph
with each node representing a hypermedia document with
its MDOs, and each out going directed edge as a hyperlink
to another hypermedia document. Because of the vagaries
of the communication network, the MDOs are presented to

1041-4347/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

�� The authors are with the Department of Computer Science,
Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong. E-mail: iahmad@cs.ust.hk.

Manuscript received 15 November 1997; revised 7 July 1998.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 107202.

D

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 387

the end users only after they are buffered at the end-users’
site. Therefore, the synchronization requirements may im-
pose additional delays for presenting the MDOs to the end
users [13], [26]. We also take into consideration end-user
behavior in accessing the hypermedia documents from
various sites, and the frequencies with which they access
these hypermedia documents. We then develop a cost
model which takes into consideration the synchronization
constraints for calculating the response time for the end
users for a given allocation scheme. We present two algo-
rithms for finding the near-optimal data allocation of hy-
permedia documents. Subsequently, we illustrate our
model and approach by a real-life example and evaluate the
goodness of the proposed algorithms in terms solution
quality (by comparing with the optimal solution) and time
complexity in achieving this solution.

We design and evaluate data allocation algorithms so as
to optimize the response time for a set of end users while
adhering to the synchronization requirements of the MDOs
presentation in distributed hypermedia database systems.
In Section 2, we introduce different modeling specifications
of multimedia documents. In the same section we propose a
graphical notion to represent navigation in the hypermedia
systems. In Section 3, we develop a cost model for the data
allocation problem of distributed hypermedia systems. This
cost model is used to evaluate an example hypermedia da-
tabase system. In Section 4, we describe the proposed algo-
rithms based on Hill-Climbing and probabilistic neighbor-
hood search approaches. In Section 5, we include the ex-
perimental results. In Section 6, we provide an overview of
existing related work as well as other issues related to our
problem. Section 7 presents conclusions and possible exten-
sions to this work.

2 MODELING HYPERMEDIA DOCUMENTS

A hypermedia document is a directed graph DG(H, E)
where H = {D1, D2, ..., Dn} is the set of vertices, each Dp rep-
resenting a hypermedia document, and each directed edge
from Dp to Dp� is a link denoting access of document Dp�
from document Dp. Therefore, a user can start browsing the
documents from (say) document Dp and then proceed to
access document Dp� etc. Further, each hypermedia docu-
ment has a set of MDOs which need to be presented to the
end users accessing this document. Since the end users can
access the hypermedia documents in any order and browse
through them, we have a label attached to each directed
edge from Dp to Dp� giving the probability of end users

accessing document Dp� from document Dp. These prob-
abilities can be generated by gathering statistics (about
document access, and browsing through logs of users
browsing activity) about end-user behavior over a period of
time. Further, since a user may end browsing after access-
ing any hypermedia document, the probabilities of out-
going edges from a vertex do not add up to 1.0, and the
difference is the probability of ending the browsing at
document Dp, and is shown by an edge connecting to the
ground (see Fig. 1). An n � n matrix Nav is used to capture
this information.

EXAMPLE 1. Suppose we have four hypermedia documents
D1-D4, Fig. 1 shows the links between these docu-
ments and the probabilities of access from one docu-
ment to another. Further, we also show the probability
of ending the browsing session at each hypermedia
document. For instance, there is a probability of 0.1
that browsing ends after accessing document D1. The
corresponding Nav matrix is shown on the right-hand
side (of Fig. 1).

From the above navigational model, we can calculate the
cumulative long run probabilities of accessing a hyperme-
dia document Dp� from document Dp. This is done by con-
sidering all possible paths from document Dp to Dp� , and
calculating the probability of accessing Dp� from document
Dp for each path, and taking the maximum of all these
probabilities. Note that we assume each document access
and browsing from one document to another to be inde-
pendent events. Therefore, for a path with t edges from
document Dp to document Dp� , the probability of this path
is the product of t probabilities for the edges. Since there
can be potentially infinitely long paths, we limit the length
of the path by limiting the value of the cumulative prob-
ability given by the path to be greater than a parameter
value (bpl). Let R be the n × n matrix, with each element rpp�
giving the cumulative long run probability of accessing
document Dp� from document Dp.

EXAMPLE 1 (continued). From the navigational model, we
can construct a tree for each document representing
the possible navigation path for each session starting
from that document. These are given in Fig. 2. We
set the bpl value to be 0.01. Notice that we do not
need to further expand a node if the document repre-
sented by that node is the same as that of the root.
(This happens in the first tree in Fig. 2). Therefore, if
we start navigating the hypermedia system from
document D1, we have probability 0.2 that we browse

Fig. 1. Probability model of navigational links between hypermedia documents.

388 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

document D2. For document D3, if we follow the right
path from D1, the probability is equal to 0.7. But if we
follow the path D1 � D2 � D3, the probability is equal
to 0.2 × 0.6 = 0.12. In this case, we use the greater
probability to represent the long run probability of
browsing D3 from D1 as 0.7.

Similarly other cumulative probability values are calcu-
lated. Therefore, the matrix R is

R

D
D
D
D

D D D D

=

�

!

"

$

###

1

2

3

4

1 2 3 4

1 0 0 70 0 06
0 15 1 0 60 0

0 0 1 0
0 50 0 10 0 40 1

.20 . .
. . .30

. . .

 .

We use the Object Composition Petri Nets (OCPNs) [13]
for modeling the synchronization constraints among the
MDOs in a hypermedia document. Petri nets are powerful
tools for representing objects that must be synchronized. In
addition, they have the advantage of generating database
schema as well as extracting spatio-temporal and content
semantics [5]. In contrast to HyTime [6], Petri nets use a
graphical notation for representing synchronization con-
straints. The hyperlinks are associated with the transitions
[21] of the Petri net. With this mechanism, we can easily
maintain a hyperlink by storing the address of the destina-
tion document in the database [10] and we will no longer be
concerned about invalid links when the document ad-
dresses are changed. Further, OCPN simplifies the Petri nets
by restricting the number of outgoing edges from each
transition to two and enhances them by introducing the
duration and the addressing scheme for each place. This
enhancement makes OCPN suitable for modeling synchro-
nization constrains among MDOs of hypermedia docu-
ments. We can transverse a transition (called as firing) if all
places pointing to this transition have a token and are in an
unlocked state. When the transition fires, the places that the
transition is pointing to will become active (a token is
added to these places) and locked. Places will become
unlocked when their durations have expired. All OCPN
models can be mapped to a corresponding HyTime model
[3]. In Fig. 3, the following synchronization constraint is
represented: MDO A has to be shown exactly 10 time

units after the start of the presentation of the hyper-
media document, and after another 30 time units MDO B
must be shown.

In [13] the multimedia specification associates time with
a place. However, in traditional timed-Petri net, time is as-
sociated with a transition [15]. The reason for associating
time with a place is for compactness. By using the tradi-
tional method, we can model user interaction [21] during
hypermedia document presentation. In Fig. 4 the presenta-
tion of MDO D, represented as a box, will continue as long
as both of the two places pointing to it have tokens. The
user can interrupt the presentation by pressing the button
associated with the immediate transition, represented in
Fig. 4 by a bold vertical line. This user interaction will fire
the upper transition, removing the token in the middle
place on the left.

EXAMPLE 1 (continued). The OCPN synchronization specifi-
cations of hypermedia documents D1 to D4 are
shown in Fig. 5.

Fig. 2. Navigation paths starting from each hypermedia document (bpl is set as 0.01).

Fig. 3. The OCPN model of synchronizing MDOs A and B, where E
represents some delay event.

Fig. 4. Traditional timed-Petri net modeling of user interaction of
presentation.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 389

3 COST MODEL FOR DATA ALLOCATION SCHEME

In order to reduce response time for the end users browsing
activities, we need to develop a cost model for calculating
the total response time observed. This response time de-
pends on the location of the MDOs and the location of the
end user. Further, it depends on the synchronization con-
straints among the MDOs of the hypermedia document
browsed. The hypermedia document navigational model
presented in Section 2 is used to estimate the number of
accesses (times browsed) to each MDO from each site. This
gives us the information regarding the affinity between the
MDOs and the sites of the distributed environment. Typi-
cally, one would assign an MDO to a site which accesses it
the most. But this may incur large delay for other sites that
also need to access this MDO. Further, synchronization con-
straints may impose additional delays in transferring the
MDO to the end-user site. This is done when two streams of
MDOs need to simultaneously finish their presentation,
and one of them is for shorter duration than the other. Since
we buffer the MDOs at the user sites before the start of the
presentation, the MDO allocation problem needs to mini-
mize the additional delay incurred because of the synchro-
nization constraints. We also take into consideration limited
buffer space constraint at end user’s site and user interac-
tion during MDO presentation.

Table 1 lists a number of notations used throughout
this paper.

3.1 Total Response Time Cost Function
Suppose there are m sites in the distributed hyperme-
dia database system. Let Si be the name of site i where
1 � i � m. These m sites are connected by a communi-
cation network. A communication link between two sites Si

and Si’ will have a positive integer cii� associated with it
giving the transmission speed from site i to site i �. Note that
these values depend on the routing scheme of the network.
If fixed routing is used, we can get the exact values. How-
ever, if dynamic routing is used, we can only obtain the
expected values statistically. Let there be j hypermedia
documents, called {D1, D2, ..., Dj} accessing k MDOs, named
{O1, O2, ..., Ok}.

EXAMPLE 1 (continued). Assume that the hypermedia data-
base system for storing the MDOs is distributed in a
network with three sites. The transmission speeds be-
tween the three sites can be represented as an m × m
matrix C, with entry cii� representing the transmission
speed from Si to Si�.

C

S S S
S
S
S

=
�
!

"
$
##

1 2 3

1

2

3

0 38 41
38 0 35
41 35 0

.

As explained above, from the navigation model, we can
construct j trees representing the navigation path of the
session starting from each document. Since the height
of these trees will typically be infinite, we must limit the
level we will use for our cost model. We limit the height
of the trees such that the cumulative probability of each
path is greater than a threshold value bpl, say 0.001. These
trees will give us cumulative long run probability rjj� of re-
trieving the document Dj� if we start navigating from the
document Dj.

For each site, we use an irreducible continuous-timed
Markov process [23] to model the user behavior across
browsing sessions as a stationary regular transition prob-
ability matrix, Pi, 1 � i � m. These processes will converge in
the long run and from these long run behaviors, we can
estimate the probability of using each document as starting
point for each browser session initiated in each site. These
Markov chains will have n + 1 states representing the prob-
abilities of using each of the documents as the starting point
for browsing session (n, states), and probability of not
browsing any of the documents ((n + 1)th state, shown by
row/column E in matrices Pi below). After analyzing the
long run behavior of the Markov chain at each site, we will
have the probabilities of using each document as initial
browsing document and of not browsing at each site. As
there is no delay when the user does not browse, we can
eliminate the probability of not browsing. If we normal-
ize the probabilities derived from long run behavior of
Markov chain at each site and multiply them by a constant
vector F (number of accesses to documents at each site), we
get the expected frequencies of initiating browsing at each

Fig. 5. The OCPN specification of each hypermedia document; the tuple is [start time, duration, media size in kilobytes].

390 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

document from each site in unit time. The resultant infor-
mation is represented by an m � n matrix B.

We multiply this matrix to the n � n matrix R obtained
from the hypermedia document trees to generate m � n
matrix A with entries aij giving the expected number of
times Si needs to retrieve the MDOs in Dj.

EXAMPLE 1 (continued). Suppose the user navigation prob-
abilities in the three sites are,

P

D D D D E
D
D
D
D
E

1

1 2 3 4

1

2

3

4

0 2 0 1 0 1 0 3 0 3
0 1 0 6 0 2 0 1 0
0 0 2 0 6 0 1 0 1

0 1 0 2 0 2 0 4 0 1
0 3 0 1 0 1 0 3 0 2

=

�

!

"

$

####

.

. . . .
. . . .

.

.

,

P

D D D D E
D
D
D
D
E

2

1 2 3 4

1

2

3

4

0 0 4 0 0 0
0 1 0 6 0 1 0 0
0 4 0 0 0 0
0 0 0 0 0 1
0 0 0 4 0 0

=

�

!

"

$

####

.2 . .2 .2

. . . .2
. .2 .2 .2
.3 .3 .3 .
.2 .2 . .2

,

P

D D D D E
D
D
D
D
E

3

1 2 3 4

1

2

3

4

0 5 0 0 0 4 0 1
0 2 0 3 0 2 0 1 0 2
0 2 0 2 0 3 0 1 0 2
0 2 0 1 0 1 0 6 0
0 3 0 1 0 1 0 2 0 3

=

�

!

"

$

####

. . .

.

.

. . . .

.

.

TABLE 1
SYMBOLS AND THEIR MEANINGS

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 391

After the analyses of the long run behavior of these
Markov chains, the expected starting document frequencies
out of F = {900, 800, 900} browsing sessions, matrix B is,

B

D D D D
S
S
S

=
�
!

"
$
##

1 2 3 4

1

2

3

100 300 300 200
200 400 200 0
300 100 100 400

.

Then the matrix A (B � R) is,

A

D D D D
S
S
S

=
�
!

"
$
##

1 2 3 4

1

2

3

245 340 630 296
260 440 580 132
515 200 530 448

 .

Further, we need the size, starting time, duration, and
presentation rate (synchronization constraint specification)
of each MDO in each hypermedia document. For the last
three items, we only need any two of them; the remaining
one can be derived from the other two. This information
can be obtained from the OCPN specification of MDOs in a
hypermedia document.

A box is added at the beginning of each OCPN which
represents the delay in starting the presentation of the hy-
permedia document so as to adhere to the synchronization
requirements. The duration of this delay box is related to
the browsing site and the sites where the MDOs in the
document are allocated. Thus, we use dij to represent the
duration of the delay box when site Si accesses the docu-
ment Dj.

An OCPN representation provides the starting time,
startjk, and duration, durjk, of each Ok in each document Dj.
In addition, the n � l usage matrix U is generated from
the OCPN specifications (if document Dj uses MDO Ok, then
ujk = 1, otherwise, ujk = 0). Then, by multiplying A by U, we
can estimate the access frequencies of each MDO from each
site. Let sizek be the size of MDO Ok.

With this information, we can calculate dij as follows,

d max
size

c dur startij k u
k

site k i
jk jkjk

= - -
�
��

�
��" =

¼
,

()
1 (3.1)

where site(k) represents the site where Ok is allocated.
We can calculate the values of all dij, 1 � i � m, 1 � j � n,

by using the above formula. This formula means that
the delay is equal to the maximum value of (transmission
duration - presentation duration - presentation starting
time) for each MDO in the document. When this value is
negative, it implies that the transmission time is shorter
than the presentation time, as we can start presenting the
MDOs in the hypermedia document as soon as the MDOs
arrive at the end-user site. When this value is positive, we
must delay the presentation, otherwise the MDOs presen-
tation cannot end at the synchronization time, and hence
will not adhere to the synchronization constraints.

For example, suppose we need to present the document
with OCPN specification shown in Fig. 6. If the MDO A is
not in the site where this document is presented, we need to
retrieve it from the network. If the transmission duration
for the whole MDO A is greater than 30, we need to intro-
duce some additional delay for fulfilling the synchroniza-
tion requirement (to avoid jitter).

Fig. 6. OCPN representation of a simple MDO.

Therefore, the objective function is,

t d aij ij
j Di S

= ¼
³³
ÊÊ (3.2)

By minimizing this value through the change of the
function site(k), we obtain the data allocation scheme that is
optimal (the (delay incurred) response time is minimal),
while adhering to the synchronization constraints.

EXAMPLE 1 (continued). There are three MDOs, namely, A, B
and C (E is a delay state, so there is no associative ac-
tual MDO). If we allocate A at Site 2, B at Site 3, and C
at site 1, then d11 is equal to,

d max11

2 280
38 15 40

1 220
41 55 0 5= - -

�
��

�
�� - -

�
��

�
��

�
��

�
�� =

,
,

,
 .

Similarly, we can calculate the values of all dij, 1 � i � 3,
1 � j � 3, as we have the MDO allocation scheme. And the
total response time delay will be,

11430 + 40650 + 29130 = 81210.

3.2 User Interactions and Buffer Space Constraints
The model presented above does not consider user interac-
tions and buffer space constraints. It assumes that the user
does not interrupt the presentation and the size of the local
storage facility is large enough for storing any one of the
hypermedia documents in the database system. The origi-
nal OCPN model does not incorporate user interactions. As
stated in Section 2, we can model these kinds of user inter-
actions by using the traditional timed-Petri net. However,
as there are many different kinds of interactions, this
method alone is insufficient. The model must include the
semantics for user interactions as well. There are a number
of extensions to the Petri net that include these semantics
[17], [20], [25]. However, in our paper, we only need to be
concerned with the probabilities of each user interaction;
therefore, we will not introduce these models here. Inter-
ested readers can refer to these papers for details. By in-
cluding user interactions and buffer space constraints, there
can be four different cases for hypermedia document allo-
cation problem given below.

3.2.1 No User Interaction and Unlimited Buffer Space
This is essentially the best scenario, because we can retrieve
all MDOs in a hypermedia document at the beginning since
there is no storage limitation. As there is no user interac-
tion, the data can be discarded immediately after use. The
cost function for the response time for each hypermedia
document, as presented in Section 3.1, is the maximum of
the delays of the embedded MDOs for satisfying the syn-
chronization requirements.

392 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

3.2.2 User Interaction and Unlimited Buffer Space
By including user interactions, some of the MDOs in a hy-
permedia document may need to be presented multiple
times (e.g., play in reverse or stop and resume later). How-
ever, as there is unlimited buffer space, the system can store
all MDOs of a hypermedia document once they are re-
trieved. Therefore, the delay for handling the user interac-
tions is due to some local processing that is irrelevant to the
data allocation of the MDOs. The cost function is thus the
same as that in the Section 3.1.

3.2.3 No User Interaction and Limited Buffer Space
In this scenario, the system cannot retrieve all the MDOs in
advance. Instead, the system must retrieve the MDOs only
when it needs to present these MDOs. Therefore, every syn-
chronization point in the hypermedia document may cause
some delay and the cost function in such a situation is the
summation of these delays. Indeed, the model presented in
Section 3.1 can be generalized to deal with this scenario.

First, we need to decompose each document into compo-
nent subdocuments. From the OCPN specifications, we know
the states representing the MDOs in each document. Denoting
this set of states as S and for "s, s ³ S, we can get the start-
ing time and ending time of the state (i.e., presentation of the
corresponding MDO) from the OCPN specifications. Then,
we can use the algorithm DECOMPOSE_DOCUMENT(S) to
decompose the document into its subdocuments. The algo-
rithm is outlined on the next page.

EXAMPLE 2. Suppose we have a hypermedia document D5

shown in Fig. 7. Then, we can decompose it into three
subdocuments (at the synchronization points) as shown
in Fig. 8.

Denote these subdocuments as DA, DB, and DC. Calcu-
lating the delays of these subdocuments and summing
them up will give the total delay of the original document
D1. The remaining problems of replacing D1 by DA, DB, and
DC are the corresponding updates of the two matrices R
and B. For the matrix R, as DA is the starting subdocument
of D1, we replace the label of D1 by DA. After that, we
add two columns and two rows for DB and DC. If we
browse to DA, both DB and DC will be retrieved. Therefore,
set the values rAB and rAC to 1. Besides, set rBB and rCC to 1.

Set the remaining values that are not yet specified to 0.
This is because we will not need other documents if we
are in DB or DC and we will not need to retrieve DB or
DC in other documents.

The matrix B represents the probability of using each
document as the initial browsing document. Thus, we only
need to change the label of D1 to DA (the starting subdocu-
ment) and add two columns representing DB and DC. In
these two columns, set all the entries to 0, as we cannot start
browsing from DB or DC. Thus, by decomposing each hy-
permedia document at its synchronization points, the
model presented in Section 3.1 incorporates the constraints
of limited storage.

3.2.4 User Interaction and Limited Buffer Space
If we know the expected number of times each subdocu-
ment will be presented in each hypermedia document,
we can calculate the expected response time of each docu-
ment in each site, which is just the weighted sum of
the delays of the subdocuments in the document. In the
previous scenario, the expected number of times each
subdocument is needed is 1, so the cost function is just
the summation of the delays. After employing the algo-
rithm DECOMPOSE_DOCUMENT(S) to decompose docu-
ments, we do not need to distinguish documents or sub-
documents and we will use documents to represent both
from now on.

To calculate the expected number of times each docu-
ment is needed, we must know the probabilities of relevant
user interactions. Relevant means that the interaction will
need to retrieve the MDOs in the document again such as
reverse playing or stop and resume. Other interactions that
will not need the retrieval of the MDO again (for instance,
termination of browsing) can be ignored. Once we have
these probabilities, we can calculate the expected number of
times each document is presented by employing the first
step analysis method [23]. Note that these probabilities can
be generated by observing user interaction over a period of
time. Alternatively, we can use Markov chain to model the
inter-MDO user interaction and obtain the required prob-
abilities from long run behavior analysis.

For example, suppose the relevant probability of an
MDO Ok in a document Dj is ipjk. Assume that the expected

Fig. 7. The OCPN specification of synchronization requirements for document D5.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 393

 DECOMPOSE_DOCUMENT(S)
begin

Construct state starting time list SSL
Construct state ending time list SEL
Construct transition time list TTL = SSL SEL
Sort TTL and eliminate duplicate items from it
Initiate the resultant document set RDS as empty set
Initiate the current document set CDS as empty set
counter = current_et = 1
while TTL is not empty

Remove the first item from TTL and store it in current_time
if current_time ³ SEL then

for each s ³ S with current_time as ending time
for each document d ³ CDS

if s ³ d then
Remove s from d
if d is empty then
Remove d from CDS
end if

end if
end for

end for
end if
if current_time ³ SSL then

Combine "s ³ S with current_time as starting time into a
new document D
D.name = counter

Calculate the value of etcounter

if etcounter > current_et then

current_et = etcounter

for "d ³ CDS

etd.name = current_et
end for

else

etcounter = current_et
end if
Insert D into CDS and RDS
Increment counter by 1

end if
end while
return RDS

end.

Fig. 8. Subdocuments OCPN specification of synchronization requirements for document D5.

394 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

number of times this MDO is needed is mdo_etjk. Then,
we have,1

mdo_etjk = 1 + ipjk � mdo_etjk,

mdo_etjk = (1 – ipjk)
–1. (3.3)

Similarly, we can estimate the expected number of times
other MDOs composing this document are needed. Then,
the expected number of times this document is needed is
just the maximum of these values. Denoting this value as etj
for document Dj, we have,

etj = max(mdo_etjk), for "k, ujk = 1 . (3.4)

And the delays dij will become,

d max
size

C dur start et

for k u

ij
k

site k i
jk jk j

jk

= - -
�
��

�
��

�
��

�
�� ¼

" =

¼()

, 1

, (3.5)

We have made an assumption here that we can retrieve
the MDOs from anywhere in the middle of it. If this as-
sumption is violated, we can only get the whole MDO
again even if the user just wants the last part of it. Other-
wise, the assumption will introduce some overhead. With
uniform distribution, the overhead will be half of the MDO
presentation duration. That is,

overhead
max dur start et

ij
jk jk j=
+ ¼ -() ()1

2 . (3.6)

And the cost function will become,

t d overhead aij ij ij
j Di S

= + ¼
³³
ÊÊ () . (3.7)

Suppose we add user interactions and worst case buffer
space constraints to the hypermedia database system in

1. Or mdo_et = 1 + ipjk + ipjk
2 + ... = (1 – ipjk)

–1.

Example 1. After adding the probability of relevant user
interruption to the MDO, the augmented OCPN of D1 is
shown in Fig. 9.

Thus, the expected number of times MDO A is needed
when document D1 is retrieved is given by:

mdo_et1A = 1 + 0.4 � mdo_et1A,

mdo et A_ . .1

1
1 0 4 1 667= - = .

Similarly, the expected number of times MDO B is
needed is given by:

mdo_et1B = 1 + 0.5 � mdo_et1B,

mdo et B_ .1

1
1 0 5 2= - = .

Note that when we need B again, A is also needed. Thus,
et1 = max(1.667, 2) = 2.

Since we have the worst-case buffer space constraints,
the delay d11 will become

d max11

2 280
38 15 40

1 220
41 55 0 2 10= - -

�
��

�
�� - -
�
��

�
��

�
��

�
��

�
��

�
�� � =

,
,

,
.

3.3 A Real-World Example
The four semifinalists of the 1998 World Cup Football are
Brazil, Holland, France, and Croatia as shown in Fig. 10.

The World Cup hypermedia documents are updated ac-
cordingly, there are now five hypermedia documents. One
for the overview and four others (one for each team). The
hypermedia database system contains three sites, one lo-
cated in Europe, one in Asia and one in South America.
Users will use the site nearest to them for retrieving the
most up-to-date information.

The OCPN specifications of the D1 and D2 are shown in
Fig. 11 and Fig. 12, respectively. D3, D4, and D5 are similar to

Fig. 9. The augmented OCPN by including user-interaction. Fig. 10. The scenario for 1998 World Cup semifinal round.

Fig. 11. The 1998 World Cup at semifinal round (D1).

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 395

D2 except that they contain other teams information, D3 for
Holland, D4 for France, and D5 for Croatia. The size and
content of the MDOs are shown in Table 2.

The three sites of the hypermedia database system are
fully connected, with the network transmission speed (in
kilobytes per second) between them shown in Table 3.

Fig. 12. Information about the Brazilian team (D2).

TABLE 2
DESCRIPTION OF MDO

S IN THE HYPERMEDIA DATABASE SYSTEM

TABLE 3
TRANSMISSION SPEED BETWEEN THE THREE SITES

(IN KILOBYTES PER SECOND)

$VLD (XURSH 6RXWK�$PHULFD
$VLD � �� ��

(XURSH �� � ��
6RXWK�$PHULFD �� �� �

396 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

The probability matrix of browsing from a document to
another document is,

D D D D D D
D
D
D
D
D
D

1 2 3 4 5 6

1

2

3

4

5

6

0 0 0 0 0 0
0 0 0 5 0 1 0 1 0 1
0 0 5 0 0 1 0 1 0 1
0 0 1 0 1 0 0 5 0 1
0 0 1 0 1 0 5 0 0 1
0 0 0 0 0 1

.2 .2 .2 .2 .2
.2
.2
.2
.2

�

!

"

$

#####

 ,

where D6 represents the end of the browsing session.
Using the methodology developed in Section 3 with bpl

of the trees limited to 0.01, we have the following 5 � 5 ma-
trix, R, representing the probability of retrieving MDOs in a
document if we start browsing from a specific document,

D D D D D
D
D
D
D
D

1 2 3 4 5

1

2

3

4

5

1 0 0 0 0
0 1 0 5 0 1 0 1
0 0 5 1 0 1 0 1
0 0 1 0 1 1 0 5
0 0 1 0 1 0 5 1

.2 .2 .2 .2
.2 . . .
.2 . . .
.2 . . .
.2 . . .

�

!

"

$

####
 .

The users behavior in the three sites are different. The
European and South American users are more interested in
the teams representing their region. The Asian users do not
have such a bias. However, Brazil is the favorite team in
Asia and D2 is accessed more often than other documents.
The following gives the transition matrices for the initial
browsing document for the three sites.

In Asia (P1),

D D D D D N
D
D
D
D
D
N

1 2 3 4 5

1

2

3

4

5

0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 4 0 0 0 0 0

.3 .22

.2 .3 .2 . . .

.2 .2 .2 . . .2

.2 .2 . .2 .2 .

.2 .2 . .2 .2 .

. .3 .3

�

!

"

$

#####

 ,

where N represents the not-start-browsing in the next
transition.

The user behavior in Europe (P2) is,

D D D D D N
D
D
D
D
D
N

1 2 3 4 5

1

2

3

4

5

0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 0 0 1
0 0 0 0 0 0 1

.2 . . .2 .2 .2

.2 .2 . .2 .2 .

.2 . .2 .2 .2 .

. . . .3 .3 .

. . . .3 .3 .

.3 .3 .3 .

�

!

"

$

#####

 .

Correspondingly, that in South America (P3) is,

D D D D D N
D
D
D
D
D
N

1 2 3 4 5

1

2

3

4

5

0 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1

.2 .2 .2 . . .2

. .3 .3 . . .

. .3 .3 . . .

.2 .2 .2 .2 . .

.2 .2 .2 . .2 .

.3 .3 .3 .

�

!

"

$

#####

 .

In the long run, the probability matrix of the initial
browsing document at each site, B, is (F is set to {1,000,
1,000, 1,000}),

D D D D D
S
S
S

1 2 3 4 5

1

2

3

317 293 146 122 122
182 114 114 295 295
182 295 295 114 114

�

!

"

$
##

 .

Denote the first row of this row as x. We can get x from
P1 by solving the linear equations, (similarly, use P2 for row
2 and P3 for row 3)

x ¼ (P1)T = x

where AT is the transpose of matrix A.
Discard the long run probability of not browsing and

normailize the remaining probabilities, we will get the
probability of using each document as entry point for every
browsing session. Multiply these values with expected
number of browsing sessions initiated in unit time, we will
have the access frequencies of each document as initial
browsing document in unit time.

By multiplying B matrix by the matrix of expected navi-
gation path (R), we get the expected access frequency ma-
trix for retrieving each document from each site in a period
of time, A,

D D D D D
S
S
S

1 2 3 4 5

1

2

3

454 454 380 290 290
345 266 266 502 502
345 502 502 266 266

�

!

"

$
##

 .

From this matrix and from the OCPN specifications
of each document, we can estimate the expected number
of times each MDO is retrieved from each site, A � U
(see Table 4).

The delay of the multimedia presentation of the docu-
ment Dj in site Si will be,

d max
size

c dur start for k uij
k

site k i
jk jk jk= - -

�
��

�
�� " =

¼()
, , 1 .

Suppose we allocate the MDOs randomly to the sites, for
example, allocate Oi at site (i mod 3). The presentation de-
lay of each document in each site is (in seconds),

6LWH�� 6LWH�� 6LWH��
'RFXPHQW�� ���� ���� ����
'RFXPHQW�� ���� ���� ����
'RFXPHQW�� ���� ���� ����
'RFXPHQW�� ���� ���� ����
'RFXPHQW�� ���� ���� ����

Using the expected number of retrievals for each docu-
ment from each site, we can calculate the expected total
delay in each site as,

6LWH�� 6LWH�� 6LWH��
'HOD\ ������ ������� �������

The total expected delay of the whole system is 311,313
seconds.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 397

Now, suppose we allocate the data differently, place
MDOs O1 to O11 in Asia, O12 to O19 in South America and
others in Europe. The presentation delay will become,

6LWH�� 6LWH�� 6LWH��
'RFXPHQW�� � ���� ����
'RFXPHQW�� ���� ���� ���
'RFXPHQW�� ���� ���� ���
'RFXPHQW�� ���� ��� ����
'RFXPHQW�� ���� ��� ����

And the expected total time delay in each site will be,

6LWH�� 6LWH�� 6LWH��
'HOD\ ������ ������ ������

The total expected delay of the whole system in this case
is 191,544 seconds, with 38 percent reduction in the re-
sponse time. In a system with three sites and five hyperme-
dia documents, such performance improvement shows that
good data allocation schemes are critically needed.

4 PROPOSED DATA ALLOCATION ALGORITHMS

The data allocation problem in its simple form has been
shown to be NP-complete [4] and the problem discussed
here is more complex than the simple case; there are km

different allocation schemes for a system with m sites and k
MDOs, implying that an exhaustive search would require
O(km) in the worst case to find the optimal solution. There-
fore, we must use heuristic algorithms to solve the problem.

4.1 The Hill-Climbing Approach
We have developed an algorithm based on the Hill-Climbing
technique to find a near optimal solution. The data alloca-
tion problem solution consists of the following two steps:

1)�Find an initial solution.
2)� Iteratively improve the initial data allocation by using

the hill climbing heuristic until no further reduc-
tion in total response time can be achieved. This is
done by applying some operations on the initial allo-
cation scheme. Since there are finite number of allo-
cation schemes, the heuristic algorithm will complete
its execution.

TABLE 4
EXPECTED RETRIEVAL FREQUENCIES OF MDO

S FROM EACH SITE

398 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

For step one, one possibility is to obtain the initial solu-
tion by allocating the MDOs to the sites randomly. How-
ever, a better initial solution can be generated by allocating
an MDO to the site which retrieves it most frequently (this
information can be obtained from the matrix A � U). If that
site is already saturated, we allocate the MDO to the next
site that needs it the most. We call this method the MDO site
affinity algorithm.

In the second step, we apply some operations on the ini-
tial solution to reduce the total response time. Two types of
operations are defined, namely

�� migrate (move MDOs from its currently allocated site
to another site), and

�� swap (swap the locations of one set of MDOs with the
locations of another set of MDOs).

These operations are iteratively applied until no more re-
duction is observed in the total response time. Fig. 13 shows
the major steps in the Hill-Climbing heuristic algorithm.

The set of migrate and swap operations are as follows.

�� migrate(Oj, Si): Move MDO Oj to Si. This operation can
be applied to each MDO, and an MDO can be moved
to any one of the m - 1 sites at which it is not locat-
ed. Therefore, there can be a maximum of k(m - 1)
migrate operations that can be applied during
each iteration.

�� swap(Ox, Ox�): Swap the location of MDO Ox with the
location of MDO Ox�. This operation can be applied to
each distinct pair of MDOs. Therefore, there can be a
maximum of k(k - 1)/2 swap operations that can be

applied during each iteration. Although this opera-
tion is equivalent to two migrate operations, it is nec-
essary as some of the sites may be already saturated
such that we cannot migrate MDO to it any more.

Here, we apply the Hill-Climbing algorithm to the ex-
ample presented in Section 3.1. First, we calculate the ma-
trix A � U for finding the initial allocation solution:

A U� =
�

!

"

$
##

585 1 171 1 266
700 972 1 152
715 1 493 1 178

, ,
,

, ,
 .

It is easy to see that the initial allocation is {S3, S3, S1}.
Then, the total response time given by this initial allocation
is 8,860 + 43,280+ + 23,910 = 76,050.

Table 5 shows the migrate and swap operations applied
to improve the initial solution provided by the MDO
site affinity algorithm. For example, after applying the
migrate(O1, S1), the total response time delay reduces from
76,050 to 66,170. The solution to the data allocation problem
generated by the Hill-Climbing algorithm is {S1, S3, S1} (i.e.,
MDO A is allocated at site S1, MDO B at site S3, and MDO C
at site S1) with the total response time incurred to execute
the query being equal to 66,170. Table 6 shows all of the
feasible allocation schemes and the total response time in-
curred for each of them.

Comparing the Hill-Climbing algorithm with the ex-
haustive solution, we observe that the Hill-Climbing algo-
rithm can generate the optimal solution (which is allocation
number 7 in Table 6). However, the Hill-Climbing algo-
rithm does not guarantee an optimal solution.

Fig. 13. Steps in the Hill-Climbing algorithm for data allocation problem.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 399

4.2 The Neighborhood Search Approach
One drawback of the Hill-Climbing approach is its high
complexity. Another problem is that the algorithm can be
trapped in some local minimum. This is because the ex-
change or migration of MDO is done only if the movement
will give a better solution. To increase the chances of find-
ing the global optimal solution, we must introduce some
probabilistic jumps [11]. The probabilistic jumps must be
large enough by involving MDOs that can have a great ef-
fect on the solution quality. Otherwise, if the jump is small,
the algorithm may remain trapped in the same local mini-
mum. Thus, before the executing the algorithm, we must
determine which subset of the MDO set is important.

One possible set of important MDOs are the MDOs
that are presented at the beginning of some hypermedia
document. The reason being that when we browse a hy-
permedia document, we must retrieve and use the start-
ing MDO immediately, so their transmission delay will
have a great effect on the overall document presentation

delay. Thus, we have two sets of MDOs: critical MDOs and
noncritical MDOs.

Based on the above discussion, the neighborhood search
algorithm is designed as follows,

(1) Get the initial allocation scheme use MDO site
affinity algorithm (see Section 4.1);

(2) Construct the two list of critical MDO (CMDO)
and other MDO (OMDO);

(3) BestRes = infinity; searchcount = 0;
(4) repeat
(5) searchstep = 0; counter = 0;
(6) do { /* neighborhood search */
(7) Choose an OMDO randomly and

migrate it to a random site;
(8) Choose two OMDOs and swap them;
(9) Compare the two resultant

response times and select the
better one;

TABLE 5
OUTPUT OF THE HILL-CLIMBING ALGORITHM FOR DATA ALLOCATION

TABLE 6
ENUMERATION OF ALL ALLOCATION SCHEMES AND THEIR RESPECTIVE RESPONSE TIME DELAYS

400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

(10) If total response time is smaller then
BestRes, do the movement and set
counter to 0. Otherwise, increase
counter by 1;

(11) } while (searchstep++ < MAXSTEP and
counter < MARGIN);

(12) if BestRes > ResTime(NewScheme) then
(13) BestScheme = NewScheme;
(14) BestRes = ResTime(NewScheme);
(15) endif
(16) Choose a CMDO randomly and migrate it

to a random site or choose two CMDOs
and swap them; /* probabilistic jump */

(17) until (searchcount++ > MAXCOUNT);
(18) searchstep = 0; counter = 0;
(19) do { /* neighborhood search */
(20) Choose a CMDO randomly and migrate it

to a random site;
(21) Choose two CMDOs and swap them;
(22) Compare the two resultant response

times and select the better one;
(23) If total response time is smaller then

BestRes, do the movement and set counter
to 0. Otherwise, increase counter by 1;

(24)�} while (searchstep++ < MAXSTEP and
counter < MARGIN);

(25) if BestRes > ResTime(NewScheme) then
(26) BestScheme = NewScheme;
(27) BestRes = ResTime(NewScheme);
(28) endif

The random algorithm starts with an initial solution us-
ing the site affinity algorithm and then constructs two lists
of MDOs. It then tries to merge OMDOs to some random
sites by using either the migrate operation or the swap op-
eration whichever gives more improvement in the solution
quality. It continues to do so for MAXSTEP times but will
stop if there is no improvement in MARGIN number of tri-
als. It then chooses one of the CMDOs and migrates it to a
random site or swap it with another randomly selected
CMDO. This continues for MAXCOUNT times. The algo-
rithm preserves the best solution found so far and then per-
forms a neighborhood search on CMDOs again for further
improvement.

The worst-case running time of the algorithm is

O(MAXSTEP � MAXCOUNT).

It is reasonable to set MAXSTEP as a multiple of the
number of OMDOs and the number of sites. Similarly,
MAXCOUNT is set to be a multiple of the number of
CMDOs and the number of sites.

MAXSTEP = a ¼ Æm ¼ |OMDOs|Ö
MAXCOUNT = b ¼ Æm ¼ |CMDOs|Ö

With these assumptions, we will have an O(m2k2) algorithm.

5 RESULTS

In this section, we present the experimental results for the
data allocation algorithms described in the previous sec-
tions. Comparisons among these algorithms will be made

by considering the quality of solutions and the algorithm
running times.

5.1 Workload
The example considered in the previous section was used
for illustrating how the Hill-Climbing algorithm works. But
it had only four documents, three MDOs and three sites
and thus only 27 different allocation schemes. Since the
solutions were to be compared with the optimal solutions
generated by an exhaustive search which takes a large
amount of time to experiment for a distributed database
system even with moderate number of sites and MDOs (for
k MDOs and m sites, there are km allocation schemes, and
for each allocation scheme the total response time needs to
be calculated), the problem sizes of the experiments we
conducted were limited.

We conducted 25 experiments with the number of MDOs
ranging from four to eight, and the number of sites ranging
from four to eight. Each experiment consisted of 100 alloca-
tion problems with the number of sites and the number of
MDOs fixed. Each allocation problem had between four
and 16 documents, and each document used a subset of the
MDOs with its own temporal constraints on them. The
communication network, the MDO sizes, the link costs, and
the temporal constraints between MDOs in each document
were randomly generated from a uniform distribution. The
two data allocation algorithms described above were tested
for every case and statistics were collected.

5.2 Comparison of Allocation Costs
In Table 7 and Table 8, for each of the experiments con-
ducted in a columnwise fashion, we list the following:

1)� the number of MDOs,
2)� the number of sites,
3)� the number of problems,
4)� the number of problems for which the algorithm gen-

erated the optimal solution,
5)� the average percentage deviation from the optimal

solution for those allocations for which the algorithm
did not generate optimal solution,

6)� the number of near optimal solutions with deviation
of less than 5 percent,

7)� the number of near optimal solutions with deviation
of 5 percent or more but less than 10 percent,

8)� the number of near optimal solutions with deviation
of 10 percent or more but less than 20 percent, and

9)� the number of near optimal solutions with deviation
of 20 percent or more.

From Table 7, we note that the Hill-Climbing algorithm
generated optimal solutions for a large number of prob-
lems: 2,173 cases out of a total of 2,500 cases, corresponding
to about 87 percent of the test cases. Most of the nonoptimal
solutions are in the range of 0-5 percent deviation from the
optimal solution while a few solutions are in the range of
equal to or more than 20 percent. The average percentage
(only for nonoptimal cases) is about 9.1557 across all cases.
These results indicate that the Hill-Climbing algorithm is
able to generate high quality solutions.

Table 8 summarizes the results of the random search
algorithm. Compared to the Hill-Climbing algorithm, the

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 401

number of optimal solutions is less but the average devia-
tion is similar. The Hill-Climbing algorithm is a high-
complexity algorithm and is expected to yield better results.
On the other hand, the complexity of the Random Search
algorithm is low and its performance is satisfactory.

The Random Search algorithm may depend on the
values selected for its parameters such as MAXCOUNT,

MAXSTEP, and MARGIN. As mentioned above, these
parameters are multiples of the number of MDOs
and the number of sites. To study the sensitivity of the
algorithm to these parameters and seek the possibil-
ity of further improvement in the solution quality, we
varied these parameters. The results are plotted in
Fig. 14 which indicates the number of optimal solutions

TABLE 7
EXPERIMENTAL RESULTS OF THE HILL-CLIMBING ALGORITHM

TABLE 8
EXPERIMENTAL RESULTS OF THE RANDOM SEARCH ALGORITHM

402 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

against these numbers. In Fig. 14a, MAXCOUNT is
varied from four to 12 times the number of sites mul-
tiplied by the number of CMDOs. This figure indicates
that MAXCOUNT does have an impact on the perform-
ance and with a higher value can yield more optimal
solutions. However, the performance saturates beyond

a certain range. The parameter MAXSTEP (see Fig. 14b)
does not seem to impact the performance and is in
fact included in the algorithm to control its searching
steps. The MARGIN algorithm (Fig. 14c) does have an im-
pact but, similar to MAXCOUNT, has a certain range of val-
ues that are more effective (such as 1.0 to 1.5).

(a)

(b)

(C)

Fig. 14. Sensitivity of parameters in the random search algorithm: (a) percentage of optimal solutions obtained against MAXCOUNT;
(b) percentage of optimal solutions obtained against MAXSTEP; (c) percentage of optimal solutions obtained against MARGIN.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 403

5.3 Comparison of Running Times
Table 9 contains the average running times of the two algo-
rithms for each experiment. For comparison, the time taken
to generate the optimal solutions by using an exhaustive
search are also listed. The algorithms were implemented
on a SPARC IPX workstation and the timing data was mea-
sured in milliseconds. As can be seen from the table, al-
though the Random Search algorithm took much shorter
time compared with the exhaustive search and about 1
order of magnitude less time than the Hill-Climbing Ap-
proach. Such margins become highly significant when the
problem size gets large. Therefore, while the Hill-Climbing
algorithm may be preferred for small problem sizes, the
Random algorithm would be a better choice for large
problem sizes.

From the experimental results presented in the previ-
ous section, we observe that there is a trade-off between
the execution time and solution quality. The random search
algorithm is very cost-effective if fast execution is de-
sired. If the solution quality is the more prominent fac-
tor, the Hill-Climbing approach is a viable choice for an
off-line allocation.

6 RELATED WORK

There is little doubt that the next generation of information
processing systems are multimedia in nature and are built
on top of a communication network. These resultant sys-
tems will be called as distributed multimedia systems
(DMS). Multimedia documents are different from the tradi-
tional single-media documents in that they have synchroni-
zation requirements between different media. One of the
problems encountered in DMSs is the lack of specification

models for capturing temporal constraints among various
objects. Both HyTime [6], [16] and OCPN [13] are developed
to solve this problem. Numerous variations in OCPN have
been proposed (see [25] for a survey of OCPN and its vari-
ants). As the original OCPN model does not incorporate
user interactions, an extension called AOCPN is developed
in [17] for modeling user interactions such as stop and re-
sume, reverse and terminate.

One limitation of the OCPN model is that there is
no explicit way for modeling the navigation path from
one document to another. This is because of the restriction
of OCPN that each place can only have one outgoing link,
but one can browse to many documents from the current
document.

In [20], a model called TPN is proposed and can be used
to model user interactions that are timed (i.e., can occur
only in a predefined period). This model can specify the
browsing semantics (when and how). The main problem
with this model is that it cannot capture the situation where
the user continues to with a document after its first pres-
entation. The time constraint of the model is too strict that
when the presentation of a document is ends, that is, one of
the transition must be fired (either go to another document
or terminate).

The objective of the above two extensions of OCPN is to
develop models suitable for interactive multimedia docu-
ment specifications. However, these models only specify
the possible path of document presentation, they do not
provide the information about the expected number of
times each state (representing MDO or hypermedia docu-
ment) is needed in a unit time interval. Without this infor-
mation, the total response time of the DMS cannot be esti-
mated. Another extension of OCPN called XOCPN has been

TABLE 9
AVERAGE RUNNING TIMES OF ALL ALGORITHMS (IN MSECS)

404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 1999

proposed which models the object sizes and synchroniza-
tion at a finer level [26].

Our main contribution is the development of the prob-
abilistic models for navigation and hypermedia presenta-
tion. By analyzing these models, we can estimate the total
response time of the DMS. We can use the cost function
to compare different MDO allocation schemes gener-
ated by different allocation algorithms. Our main concern
is in finding optimal data allocation scheme for MDOs
in different sites of a distributed hypermedia database
system such that the total response time of the database
system is minimal.

The enforcement of the synchronized multimedia pres-
entation is another important aspect of a DMS. In [14], the
general composition (including the spatio and temporal
constraints) problem of distributed multimedia objects is
discussed and a scheme for mapping the whole composi-
tion process to network resources is proposed.

By using the buffers in each site efficiently, the delays of
subsequent querying will be reduced significantly if the
data requested is still in a buffer. A buffer management
scheme for continuous media sharing can be found in [9].
Another component that will have a great effect on the
presentation is the network [22]. By partitioning the net-
work bandwidth to channels, we can use the network as
efficiently as possible [2]. The original problem considered
in [2] is for I/O buffering but the principle can be easily
adopted to network channel utilization. If a fault has oc-
curred in the network during a multimedia presentation,
the presentation may stop and need to wait for data arrival,
which is unacceptable. In [24], a scheme of adaptive pres-
entation management is proposed to be used with slow
data arrival. This scheme lowers the presentation quality
but ensures that the presentation is carried out smoothly.

7 CONCLUSIONS

In this paper, we address the problem of response time driv-
en allocation of MDOs for browsing hypermedia docu-
ments in distributed environments. This problem addresses
both the response time optimization, and adherence to syn-
chronization constraints in the context of data allocation.
We develop a probabilistic navigational model for model-
ing the user behavior while browsing hypermedia docu-
ments. This model is used to calculate the expected number
of accesses to each hypermedia document from each site.
The synchronization constraints for presenting the MDOs
of hypermedia documents are modeled by using the OCPN
specification. A cost model is developed to calculate the
average response time observed by the end users while
browsing a set of hypermedia documents for a given allo-
cation of MDOs. This cost model is generalized to take into
consideration end-user interaction while accessing MDOs,
and limited buffer space constraints at the end-user site. A
real-life example is presented to illustrate the utility of the
cost model and motivate the need for a good data allocation
of MDOs. After that, two MDO data allocation algorithms,
one based on Hill-climbing heuristic, and other based on
Neighborhood search are proposed.

The two algorithms use extreme approaches:

1)�a high complexity extensive incremental strategy, and
2)� fast random search.

Results indicate that there is a trade-off between the
execution time and solution quality. The neighborhood
search algorithm is cost-effective if fast execution is de-
sired. If the solution quality is the more prominent factor,
the Hill-Climbing approach is a viable choice for small
problem sizes.

There are some other related aspects we have not ex-
plored in this paper. Dynamic data allocation is one such
aspect. In environment where user behavior change fre-
quently, the allocation scheme must be adapted to main-
tain the system performance. Another important aspect is
data replication. For MDOs that are read only, duplicating
them to all the sites needing them can enhance the overall
system performance. However, such strategy may not be
feasible due to limited storage space. For static allocation
scheme, we can employ some variant of the greedy algo-
rithm to give a near optimal data replication scheme. The
real challenging situation is to develop dynamic data repli-
cation algorithms. There are several methodologies in the
literature [27] to attack this problem for reducing data
transfer cost, we are currently adapting these approaches
to this problem.

REFERENCES

[1]� P.B. Berra, C.Y.R. Chen, A. Ghafoor, C.C. Lin, T.D.C. Little, and
D. Shin, “Architecture for Distributed Multimedia Systems,“ Com-
puter Comm., vol. 13, no. 4, pp. 217-31, May 1990.

[2]� S. Chaudhuri, S. Ghandeharizadeh, and C. Shahabi, “Avoiding
Retrieval Contention for Composite Multimedia Objects,“ Proc.
VLDB, 21st Int’l Conf. Very Large Data Bases, pp. 287-298, 1995.

[3]� R. Erfle, “HyTime as the Multimedia Document Model of Choice,“
Proc. Int’l Conf. Multimedia Computing and Systems, pp. 445-
454, 1994.

[4]� K.P. Eswaran, “Placement of Records in a File and File Allocation
in a Computer Network,“ Information Processing, pp. 304-307, 1974.

[5]� A. Ghafoor, “Multimedia Database Management Systems,“ ACM
Computing Surveys, vol. 27, no. 4, pp. 593-598, Dec. 1995.

[6]� C.F. Goldfarb, “Standards-HyTime: A Standard for Structured
Hypermedia Interchange,“ Computer, vol. 24, no. 8, pp. 81-84,
Aug. 1991.

[7]� E. James, “Media and Hypermedia,“ Proc. IEE Colloquium on Large
Databases in Press and Publishing: The Present and the Future, Digest
no. 101, pp. 1-2, 1990.

[8]� D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis, “How Easy
is Local Search,“ J. Computer and System Sciences, vol. 37, no. 1,
pp. 79-100, Aug. 1988.

[9]� M. Kamath, K. Ramamritham, and D. Towsley, “Continuous Me-
dia Sharing in Multimedia Database Systems,“ Proc. Fourth Int’l
Conf. Database Systems for Advanced Applications, pp. 79-86, 1995.

[10]�F. Kappe, G. Pani, and F. Schnabel, “The Architecture of a Mas-
sively Distributed Hypermedia System,“ Internet Research, vol. 3,
no. 1, pp. 10-24, Spring 1993.

[11]�Y.-K. Kwok, I. Ahmad, and J. Gu, “FAST: A Low-Complexity Al-
gorithm for Efficient Scheduling of DAGs on Parallel Processors,“
Proc. 25th Int’l Conf. Parallel Processing, vol. II, pp. 150-157, Aug.
1996.

[12]�Y. Kwok, K. Karlapalem, I. Ahmad, and N.M. Pun, “Design and
Evaluation of Data Allocation Algorithms for Distributed Multi-
media Database Systems,“ IEEE J. Selected Areas in Comm., vol. 14,
no. 7, pp. 1,332-1,348, Sept. 1996.

[13]�T.D.C. Little, “Synchronization and Storage Models for Multime-
dia Objects,“ IEEE J. Selected Areas in Comm., vol. 8, no. 3, pp. 413-
427, Apr. 1990.

SO ET AL.: RESPONSE TIME DRIVEN MULTIMEDIA DATA OBJECTS ALLOCATION FOR BROWSING DOCUMENTS IN DISTRIBUTED ENVIRONMENTS 405

[14]�T.D.C. Little, “Spatio-Temporal Composition of Distributed Mul-
timedia Objects for Value-Added Networks,“ Computer, vol. 24,
no. 10, pp. 42-50, Oct. 1991.

[15]�M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. France-
schinis, Modelling with Generalized Stochastic Petri Nets, Wiley, 1995.

[16]� S.R. Newcomb, “Multimedia Interchange Using SGML/HyTime,“
IEEE Multimedia, vol. 2, no. 2, pp. 86-89, Summer 1995.

[17]�B. Prabhakaran and S. V. Raghavan, “Synchronization Models for
Multimedia Presentation with User Participation,“ Multimedia Sys-
tems, vol. 2, pp. 53-62, 1994.

[18]�R. Rada, “Hypertext, Multimedia and Hypermedia,“ New Review
of Hypermedia and Multimedia, Applications, and Research, vol. 1,
pp. 1-21, 1995.

[19]�G.R. Rao, V. Balasubramanian, and B.A. Suresh, “Integration of
Hypertext and Object-Oriented Databases for Information Re-
trieval,“ Proc. 1993 IEEE 19th Ann. Northeast Bioeng. Conf., pp. 201-
204, May 1993.

[20]� J. Song, Y.N. Doganata, M.Y. Kim, and A.N. Tantawi, “Modeling
Timed User-Interactions in Multimedia Documents,“ Proc. Int’l
Conf. Multimedia Computing and Systems, pp. 407-416, 1996.

[21]�P.D. Stotts and R. Furuta, “Petri-Net-Based Hypertext: Document
Structure with Browsing Semantics,“ ACM Trans. Information Sys-
tems, vol. 7, no. 1, pp. 3-29, Jan. 1989.

[22]�V.S. Subrahmanian, Multimedia Database Systems: Issues and Re-
search Directions, Springer, 1996.

[23]�H.M. Taylor and S. Karlin, An Introduction to Stochastic Modeling,
Academic Press, 1994.

[24]�H. Thimm and W. Klas, “d-sets for Optimized Reactive Adaptive
Playout Management in Distributed Multimedia Database Sys-
tems,“ Proc. 12th Int’l Conf. Data Eng., pp. 584-592, 1996.

[25]� S. Vuong, K. Cooper, and M. Ito, “Specification of Synchronization
Requirements for Distributed Multimedia Systems,“ Proc. Int’l
Workshop Multimedia Software Development, pp. 110-119, 1996.

[26]�M. Woo, N.U. Qazi, and A. Ghafoor, “A Synchronization Frame-
work for Communication of Pre-Orchestrated Multimedia Infor-
mation,“ IEEE Network, pp. 52-61, Jan./Feb. 1994.

[27]�O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data Replica-
tion Algorithm,“ ACM Trans. Database Systems, vol. 22, no. 2,
pp. 55-314, June 1997.

Siu-Kai So received his bachelors degree in
computer science from the Hong Kong University
of Science and Technology in 1996. Currently, he
is now pursuing his masters degree from the
same university. His research interests are in the
areas of distributed systems, database systems,
multimedia applications and algorithm design.

Ishfaq Ahmad received a BSc degree in electri-
cal engineering from the University of Engineer-
ing and Technology, Lahore, Pakistan, in 1985;
and his MS degree in computer engineering
and PhD degree in computer science, both from
Syracuse University, in 1987 and 1992, respec-
tively. He now is an associate professor in the
Department of Computer Science at the Hong
Kong University of Science and Technology. His
research interests are in the areas of parallel
programming tools, scheduling, and mapping algo-

rithms for scalable architectures, video technology, and interactive
multimedia systems. He has published extensively in the above areas.
He has received numerous research and teaching awards, including
the Best Student Paper Award at Supercomputing ’90 and Super-
computing ’91, and the Teaching Excellence Award of the School of
Engineering at the Hong Kong University of Science and Technology.
He has served on the committees of various international conferences,
has been a guest editor for two special issues of Concurrency Practice
and Experience related to resource management, and is co-guest-
editor of a forthcoming special issue of the Journal of Parallel and Dis-
tributed Computing on software support for distributed computing. He
serves on the Editorial Board of Cluster Computing. He is a member of
the IEEE and the IEEE Computer Society.

Kamalakar Karlapalem received his MStat
degree from the Indian Statistical Institute, Cal-
cutta, India, in 1985; the MTech degree in com-
puter science from the Indian Institute of Tech-
nology, Kharagpur, in 1986; and the PhD degree
from the Georgia Institute of Technology in De-
cember 1992. He has been an assistant profes-
sor in the Department of Computer Science at
the Hong Kong University of Science and Tech-
nology since 1993. He worked for two years as
a software engineer at Tata Consultancy Serv-

ices, India, and the National Informatics Centre, India. He was a stu-
dent intern at Hewlett-Packard, Cupertino, California, working on con-
ceptualization, design, and implementation of a distributed relational
database system. He is interested in the following research areas:
cooperative problem solving technology, data warehousing and data
mining, distributed database design/redesign, multimedia data alloca-
tion, object-oriented class partitioning and workflow systems, and
electronic commerce security. He is a member of the IEEE, the IEEE
Computer Society, and ACM.

