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Abstract

Driven by the rapidly increasing demand for audio-visual applications, digital video com-

pression technology has become a mature field, offering several available products based on

both hardware and software implementations. Taking advantage of spatial, temporal, and sta-

tistical redundancies in video data, a video compression system aims to maximize the compres-

sion ratio while maintaining a high picture quality. Despite the tremendous progress in this

area, video compression remains a challenging research problem due to its computational re-

quirements and also because of the need for higher picture quality at lower data rates. Design-

ing efficient coding algorithms continues to be a prolific area of research. For circumvent the

computational requirement, researchers has resorted to parallel processing with a variety of

approaches using dedicated parallel VLSI architectures as well as software on general-purpose

available multiprocessor systems. Despite the availability of fast single processors, parallel

processing helps to explore advanced algorithms and to build more sophisticated systems. This

paper presents an overview of the recent research in video compression using parallel process-

ing. The paper provides a discussion of the basic compression techniques, existing video cod-

ing standards, and various parallelization approaches. Since video compression is multi-step in

nature using various algorithms, parallel processing can be exploited at an individual algo-

rithm or at a complete system level. The paper covers a broad spectrum of such approaches,

outlining the basic philosophy of each approach and providing examples. We contrast

these approaches when possible, highlight their pros and cons, and suggest future research
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directions. While the emphasis of this paper is on software-based methods, a significant discus-

sion of hardware and VLSI is also included.
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1. Introduction

The current revolution of information technology has created a vast number of
innovative applications and services, such as digital TV/high definition television
(HDTV) broadcasting, voice over the Internet, video streaming, networked multime-
dia conference, virtual classroom, personal video recording content-based database
search and retrieval, etc. For these applications, digital video is now as essential as
the traditional media such as text, images, and audio. But the massive amount of
data to represent video poses serious storage and communication challenges [25], de-
spite the advancements in disk and networking technologies. Video compression,
therefore, is essential for reducing the storage and communication requirements of
multimedia systems. For instance, digital television broadcast and video retrieval
and streaming on the Internet are only feasible with compressed video data. For
storage of digital video on small disks such as CD or DVD (digital versatile disk),
compression is necessary. Similarly, other than compression, there is currently no
other way of obtaining the quality demanded by the entertainment industry while
at the same time storing feature length films, which may last up to two hours or
longer.

Efficient digital representation of image and video signals has been a subject of
prolific research over the past two decades. Digital video compression technology
is developed into a mature field, with several techniques available for a wide range
of applications. Taking advantage of spatial, temporal, and statistical redundancies
in the video data, numerous compression algorithms (such as predictive, transform,
subband, entropy and fractal coding) are now in existence and several new ideas are
being explored [31]. Experts have harnessed several of these algorithms and tech-
niques to develop video coding standards. Standardization of coding methodology
is also necessary to ensure correct communication between encoders and decoders
developed by various groups and industries [44]. The international video standard-
ization development are mainly lead by International Telecommunication Union-
Telecommunications (ITU-T, International Telecommunication Unit) (H.261, H.263,
H.263þ and H.26L) [24,52,53,69] and Moving Picture Experts Group (MPEG)
(MPEG-1, MPEG-2 and MPEG-4) [75–77]. These standards do not prescribe the en-
coding methods, rather they only specify formats (syntax) for representing data in-
puts to the decoder, and a set of rules (semantics) for interpreting them. This
implies that there does not exist a unified way of implementing the encoder and, fur-
thermore, continuing improvements in the encoder are possible with various kinds of
optimizations even after the standard is complete.
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Compression algorithms require a substantial amount of processing, which may
range from 100 mega operations per second (MOPS) to more than one tera opera-
tions per second, depending on the target quality and data throughput. Broadly
speaking, there are two approaches in video compression: hardware-based and soft-
ware-based. A hardware solution with a dedicated architecture design may achieve a
high compression speed. In addition, some special purpose programmable digital sig-
nal processors (DSPs) or multiprocessors-on-chip can be used flexibly for various
video processing with high performance [20]. However, hardware is less flexible
and unsuitable for frequent updates. Due to the ever-changing communication and
signal processing standards, most application systems should be preferably program-
mable. A software solution using a general-purpose computing platform is more flex-
ible, and allows optimal algorithm updates from time to time. The main obstacle in
software approach is that it requires a massive amount of computing power to sup-
port real-time encoding operations. However, the latest developments in parallel
and distributed systems promise a higher degree of performance. Now, with the pro-
liferation of networked computers using off-the-shelf components and portable par-
allel programming environments such as PVM, and MPI, parallel processing can be
exploited in a cost effective manner. This paper is motivated by an extensive amount
of research work done in video compression using parallel processing.While our focus
is on software-based approaches, we provide an overview of hardware-based parallel
architectures as well. A wide range of parallel processing approaches exists for video
compression, each with its own basic philosophy and merits as well as demerits.

This paper is organized as follows: Section 2 begins by describing the fundamen-
tals of digital video and its representation, followed by an overview of existing com-
pression standards. The same section touches upon the basics of hardware and
software-based approaches. Section 3 presents an overview of parallel processing
technologies, including architectures and parallel programming software. Section 4
presents a survey of the video compression techniques using parallel processing sub-
dividing the section into four subsections: The first subsection describes parallel
VLSI implementations of various parts of compression, such as vector quantization
(VQ), discrete cosine transform (DCT), wavelets, variable length coding (VLC), and
motion estimation (ME). The second subsection presents complete encoders imple-
mented using parallel hardware. The third subsection describes encoding techniques
that are entirely implemented in software. This section also includes a discussion on
various parallelization approaches. The last subsection explains how to exploit par-
allelism even from a single processor by processing multiple data items within the
same instruction. Finally, Section 5 provides some concluding remarks and observa-
tions.

2. Digital video and compression technologies

This section presents some fundamentals of digital video, core compression tech-
niques, an overview of existing video compression standards, and basic implementa-
tion approaches.
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2.1. Fundamentals

A still picture or an image represents the distribution of light intensity and wave-
lengths over a finite size area. Video is a sequence of still images (frames) of a scene
taken at various successive time intervals. Human visual system cannot react to rapid
changes of intensity, so that a sequence of slightly different frame is perceived to be a
smooth motion. The minimum number of frames necessary for smooth motion ren-
dition is 15 frames per second (fps), but annoying flicker may still be perceived. Films
use 24 fps (to avoid flicker), computer uses 60 fps, and television standards, such as
PAL and NTSC, use 25 and 29.97 fps, respectively.

Video data originates from a camera wherein a transducer converts the light in-
tensity to an analog electrical signal. The analog signal is then digitized by taking
samples of the input signal at a minimum rate (called Nyquist rate) of twice the high-
est frequency present in the signal. Usually 8 bits (256 levels) per pixel are sufficient
for an end-to-end system. The video signal consists of Red, Green and Blue compo-
nents, which are then converted to luminance (Y) and two color components, U and
V (or I and Q). Color components are usually subsampled as the human eye is less
sensitive to colors, resulting in the size of U and V components reduced by a factor
of 4.

The data rates for digital video are simply enormous. For example, uncompressed
CCIR (ITU-R) 601 with resolution of 720 pixels/line and 576 lines (RGB) has a data
rate of close to 300 Mbps without color space subsampling. The first step is usually
color subsampling, which itself is compression. After color subsampling, the bit rate
of CCIR 601 video (YUV) is reduced close to 150 Mbps. After compression, MPEG-
2 coding of the CCIR601 video sequence may require only 4–15 Mbps with accept-
able visual quality. The bit rates for uncompressed HDTV signal may be around one
Gbps. Even a lower resolution video conferencing application using CIF resolution
(352� 288) may need more than 15 Mbps. The main objective of video compression
is to reduce the data rate while preserving the video quality. In general, the higher the
compression ratio (defined as the data size of the uncompressed video over the size of
compressed video), the lower the picture quality. In general compression ratios in ac-
cess of 50 may be needed for practical purposes. Table 1 provides estimated uncom-
pressed and compressed bit rates for various applications [45].

2.2. Basic compression techniques

As illustrated in Fig. 1, the entire compression and decompression process re-
quires a codec consisting of an encoder and a decoder. The encoder compresses
the data at a target bit rate for transmission or storage while the decoder decom-
presses the video signals to be viewed by the user. In general encoding is considerably
more complex than decoding. Therefore, research and implementation efforts are
more focused on encoding.

Compression can be lossless or lossy. In lossless compression, an image after com-
pression/decompression is numerically identical to the original image on a pixel-
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by-pixel basis. Only a modest amount of compression, generally in the range of 1.5:1
to 4.0:1 (depending on the original image characteristics such as image detail, noise,
resolution and bit-depth), can be achieved. In lossy compression, the reconstructed
image contains degradations relative to the original image. As a result, much higher
compression can be achieved. In general, lower bit rates are achieved by allowing
more degradation. These degradations may or may not be visually apparent, depend-
ing on the viewing conditions. The term visually lossless is sometimes used to char-
acterize lossy compression schemes that result in no visible degradation. This
definition, however, is subjective and highly depends on the viewing conditions.
An algorithm that is visually lossless under certain viewing conditions (e.g., a 19-
in. monitor viewed at a distance of 4 feet) could result in visible degradations under
more stringent conditions.

Compression can be done with variable bitrate (VBR) 3þþ . . . or constant bitrate
(CBR). In VBR video, the encoder tries to achieve best encoding and pays attention
to output buffer (no overflow or underflow). VBR video in general has a better pic-
ture quality, for example the DVD video. In CBR video, which is typically used in

Table 1

Estimated bit rates for various applications

System Video resolution

(pels� lines� frames/s)

Uncompressed

bitrate (RGB)

Compressed bitrate

Film (USA and Japan) (480� 480� 24 Hz) 66 Mbits/s 3 to 6 Mbits/s

CCIR 601 video (digital TV) (720� 576� 30 Hz) 150 Mbits/s 4 to 15 Mbits/s

HDTV video (1920� 1080� 30 Hz) 747 Mbits/s 18 to 30 Mbits/s

HDTV video (1280� 720� 60 Hz) 664 Mbits/s 18 to 30 Mbits/s

ISDN videophone (CIF) (352� 288� 29:97 Hz) 36 Mbits/s 64 to 1920 kbits/s

PSTN videophone (ACIF) (176� 144� 29:97 Hz) 9 Mbits/s 10 to 30 kbits/s

Two-channel stereo audio 1.4 Mbits/s 64 to 384 kbits/s

Five-channel stereo audio 3.5 Mbits/s 384 to 968 kbits/s

Fig. 1. Block diagram of a video codec.
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video streaming on the Internet and LANs with specified bandwidth, the objective is
to maintain a specified bitrate.

Video compression may be done with one or more of the following objectives, sev-
eral of which conflict with one another:

• high degree of compression;
• high quality of video;
• low complexity for implementation;
• low cost;
• small delay;
• low power and memory requirement;
• resilience to transmission errors.

According to different target applications, video compression can also be catego-
rized as real-time or non-real-time. In the former case, video compression must be
achieved on-line, implying the video signal is continuously generated from a source,
which is then digitized and encoded at about 30 fps. In the latter case, data may be
pre-stored on a storage device, allowing compression can be done off-line without
strict compression speed requirements.

A generic encoder showing transform and predictive coding is depicted in Fig. 2, a
structure 1 common to MPEG-1, MPEG-2, MPEG-4 (with additional functions),
H.261, H.263, and H.263þ (see Section 2.3). The first step is to performME by block
matching. ME refers to finding the displacement, henceforth referred to as motion
vector, of a particular macroblock (MB) (16� 16 or 16� 8 pel area) of the current
frame with respect to a previous or future reference frame or both of them. All
searches are based on the minimum-error matching criteria (see Section 4.1.5).
The next step is motion-compensated prediction in which the motion vector is
used to reconstruct the predicted frame. The predicted frame is then compared
with the original frame to determine the difference signal, i.e., the prediction error.
Spatial redundancies in the original frame are also transformed into the frequency
domain, using a block transform coding technique such as two-dimensional
(2D) 8� 8 DCT. The prediction error is also compressed using the DCT. The re-
sulting 63 AC transform coefficients are mapped to a 1D data before it is quantized
in an irreversible process that discards the less important information. Several vari-
ations exist between standards on ME, DCT coefficient scanning, quantization, and
so on.

Finally, the motion vectors are combined with the DCT information, and trans-
mitted using variable length codes. The VLC tables may be optimized for a limited
range of compression ratios appropriate for the target applications. The output
video buffer may be observed regularly to tune the quantization step size. The de-

1 At a finer detail level, there are several differences among the coding methods employed by these

standards.
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coder goes through a similar process but in the reverse order, with some exceptions
such as it does not perform ME.

2.3. Video compression standardization

Standardization of audio–visual information compression is necessary to facilitate
global interchange of digitally encoded video data, and to enable the sharing of tech-
nology across diverse industries. In addition, coding standards are efficient as they
support good compression algorithms and allow efficient implementation of encoder
and decoder. For multimedia communication, two major standard organizations are
the ITU-T, and the International Organization for Standardization (ISO). During
the last decade, a number of ISO and ITU standards, such as MPEG-1, MPEG-2
and H.261, H.263, have been developed targeted towards different application do-
mains. These standards define the bitstream syntax of audio–visual data and dictate
a set of guidelines and rules that must be followed in developing hardware or soft-
ware compression solutions. Video compression standards do not strictly prescribe
the coding process but they do take advantage of the prevailing research in compres-
sion techniques and recommend a set of tools or algorithms for achieving an efficient
compression and decompression. MPEG-1 and MPEG-2 standards are well adapted
by the industry while new standards such as MPEG-4 and H.263þ, are generating
immense interest due to their potential to exploit new functionalities and capabilities.
Table 2 provides an overview of various standards.

H.261 [69] is a video coding standard defined by the ITU-T for providing video-
phone and video-conferencing services at p � 64 kbps (p ¼ 1; . . . ; 30) bit rate which
covers the entire ISDN channel capacity. The basic coding structure of H.261 in-
cludes spatial and temporal coding schemes. Spatial coding involves taking the
DCT of 8� 8 pixel blocks, quantizing the DCT coefficients based on perceptual

Fig. 2. Generic structure of a video encoder and decoder (similar to MPEG-1, MPEG-2, H.263, etc.).
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weighting criteria, storing the DCT coefficients for each block in a zig-zag scan, and
performing a variable run-length coding for the resulting DCT coefficient stream;
temporal coding is achieved by motion-compensated prediction.

H.263 [52] is aimed at compressing the moving picture component of audio–visual
services and applications at a very low bitrate. Although H.263 video codec is based
on the same DCT and motion compensation (DCT–MC) techniques as used in
H.261, H.263 provides better picture quality at low bit rates. H.263þ [24] is specified
by ITU-T to enhance the H.263 standard in terms of coding efficiency, error resil-
ience, and functionalities. H.263þ is backward compatible with H.263 and extends
the negotiable options enabling either improved quality, or additional capabilities
to broaden the range of applications.

MPEG-1 [36] is defined by the MPEG of the ISO and International Electrotech-
nical Commission. It is a widely successful video coding standard with the coding
capable of VHS video quality, or better, at about 1.5 Mbps and covering a bit rate
range of about 1–2 Mbps.

The second standard developed by the MPEG, named MPEG-2 [45], is a generic
coding standard for low to high-resolution moving pictures and the associated audio
data with the bit rate ranging from 2 to 30 Mbps. MPEG-2 was designed to encom-
pass MPEG-1 and to also provide better quality with interlaced video sources at
higher bit rates. In addition, MPEG-2 supports a variety of packet formats and pro-
vides an error correction capability that is suitable for transmission over cable TV
and satellite links.

As Fig. 3 illustrates, MPEG-2 video is structured in a hierarchical fashion. A video
sequence (as in encoded order) consists of groups of pictures (GOPs), with each
group starting with a reference picture, also called I frame (intra coded) followed
by a number of frames. I frames are only intra coded and provide random access
in a scene. The rest of the frames are either P (predicted) or B (bi-directionally pre-
dicted). Each frame can be partitioned into slices and each slice consists of a number
of MBs. A MB consists of 6 blocks, 4 luminance and 2 chrominance blocks, where
each block is an 8� 8 pixels data unit. From parallel processing point of view, this
structure offers various levels of granularity (the partitioned amount of data assigned

Table 2

Various video compression standards

H.261 H.263 MPEG-1 MPEG-2 MPEG-4

Format CIR/QCIF 29.97

fps (max)

Flexible

mostly QCIF

SIF 30 fps Flexible Flexible

Compressed

bitrate

p � 64 kbps

p ¼ 1; 2; . . . ; 30
Mostly <28.8

kbps

1.5 Mbps >2 Mbps Flexible

Applica-

tions

Videophone/

Videoconferencing

Mostly video-

phone

VCR quality

entertainment

video

Wide range of

applications

Multimedia,

Web video

Transport N-ISDN Mostly tele-

phone line or

wireless

Primarily

ADSL

DVD and digital

TV broadcast

Various

media
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to each processor). The granularity can be coarse (with one or more frame assigned
to each processor) or fine (with one MB assigned to each processor). An MB is the
smallest data unit in parallel processing as ME is performed at MB level.

Due to the rapid progress in information technology, the traditional boundaries
between areas of telecommunication, computer and TV/film have become rather
blurred. In order to handle the special requirements from rapidly developing multi-
media applications, MPEG developed a new standard, MPEG-4 [96]. MPEG-4 is a
multimedia standard that specifies coding of audio and video objects, both natural
and synthetic; a multiplexed representation of many such simultaneous objects;
and the description and dynamics of the scene containing these objects. MPEG-4
supports a number of advanced functionality’s: (a) efficient encoding of multimedia
data such as audio, video, graphics, text, images, and animation; (b) scene descrip-
tion for multimedia scene; (c) error resilience to enable robust transmission of com-
pressed data over noisy communication channels; (d) support for arbitrary-shaped
video objects; (e) multiplexing and synchronizing the data associated with these ob-
jects so that they can be transported over network channels providing a quality of
service; and (f) object-based interaction and manipulation with the scene.

MPEG-4 includes most of the technical features of the prior video and still-picture
coding standards, as well as a number of new features such as zero-tree wavelet cod-
ing of still pictures, segmented shape coding of objects, and coding of hybrids of syn-
thetic and natural video objects [95]. MPEG-4 covers essentially all bit rates, picture
formats and frame rates, including both progressive and interlaced video pictures. As

Fig. 3. The hierarchical structure of MPEG-2 video.
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can be imagined, MPEG-4 supports a diverse set of functionalitys and thus a very
wide range of applications.

2.4. Implementation strategies

There are a number of approaches to implement the video compression. These ap-
proaches can be roughly divided into two categories: hardware-based implementa-
tion using dedicated VLSI and software-based implementation using general
purpose computing platforms.

Since, a software solution also needs a hardware circuitry to run the application,
there exists some overlap between software and hardware, which can be explained
through Fig. 4. The size of the circle in the figure roughly represents the ‘‘total re-
sources’’ needed for each platform. The application specific integrated circuit (ASIC)
solution is totally hardware and is the most efficient approach in terms of required
silicon area. Programmable ASICs and video signal processors (VSP) require a little
more circuitry in order to accommodate a limited degree of software. DSPs require
less ‘‘total resources’’ than general-purpose processor because they are designed for
scientific applications but have more software capability and hence more circuitry
than the programmable ASICs (or VSPs). Finally general-purpose processors need
more resources and have the maximum flexibility in terms of programming.

2.4.1. Hardware-based approach
The most common approach is to design a dedicated VLSI circuit for video com-

pression [74]. One can have function specific hardware, such as block matching,
DCT, VLC and associated inverse operations. Due to the exploitations of the special
control and data flow of the algorithm, the processing capability of these approaches
can be increased tenfold compared to those of conventional microprocessors [88].
However, function specific approaches provide limited flexibility and cannot be mod-

Fig. 4. Various implementation approaches and hardware–software relationship.
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ified for later extensions. In addition, the architecture design usually requires a reg-
ular control paradigm and data flow of the algorithms that may not be suitable for
most content-based techniques. Furthermore, the complexity limitations of the cir-
cuit design, such as processing speed, silicon area, throughput and the number of
translators, also restrict its implementation potential for growing multimedia appli-
cations.

Programmable processors, such as programmable DSP or VSP, provide a more
cost-effective alternative [33]. Such an approach can execute different tasks under
software control, which can avoid cost intensive hardware redesign. It is flexible in
that it allows the implementation of various video compression algorithms without
the need for a hardware redesign. In addition, multiple algorithms can be executed
on the same hardware and their performance can be optimized as well [60]. Usually,
programmable processors require silicon area for control unit and program storage,
and dissipate more power than dedicated VLSI solutions. Consequently, their imple-
mentation time and cost increase accordingly. Furthermore, they also incur signifi-
cant costs in software development and system integration.

2.4.2. Software-based approach
Software-based approaches are becoming more popular because the performance

of general-purpose processors has been increasing rapidly. Further, the rapid evolu-
tion of multimedia techniques has dramatically shortened the required time-to-mar-
ket making it very difficult to come up with a new hardware design for each updated
technique. Furthermore, more and more emerging multimedia standards emphasize
high-level interactivity, flexibility, and extensibility, posing significant opportunities
for software-based solutions.

The major advantage of using the software-based approach is that it allows to in-
corporate new research ideas and algorithms in the encoding process for achieving a
better picture quality at a given bit rate, or alternatively reduce the bit rate for a de-
sired level of picture quality. The inherent modular nature of various video compres-
sion algorithms allows experimenting with and hence improving various parts of the
encoder independently, including DCT, ME algorithm and rate-controlled coding.
The software-based approach is also flexible in that it allows tuning of various pa-
rameters for multiple passes for optimization. Added benefits of software-based
approach are portability, and flexibility to adapt to the continuing changes in mul-
timedia applications.

While decoding can be easily done in software, encoding is more challenging due
to enormous amount of computation required. Encoding for simple video profiles of
various standards can now be done on a single processor, but real-time performance
for high-quality profiles is still quite difficult. A natural alternative is to utilize the
accumulated processing capability of parallel processing to speed up the compression
[92]. However, parallelism can be exploited in different ways, ranging from simulta-
neous instructions execution within a single processor, to distributed networks and
massively parallel processors (MPPs), and there is no unique philosophy for the best
solution. It is important to recognize that parallel processing alone may not be en-
ough in software-based implementation, rather one needs to optimize all design
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and implementation phases, including efficient algorithms for DCT, fast ME and
other parts of the encoder [4]. In addition, low-level programming primitives that
take advantage of the machine architecture must be harnessed to accelerate the com-
putation [84,102]. Finally, several issues should be addressed in software-based par-
allel processing such as I/O [2,4], memory access [98,99], and achieving better rate
control [12,78,83,101].

3. Parallel processing technologies

Limits to sequential computing arise from the traditional processor architecture,
processor–memory bandwidth and the physical limitations of circuit design. In re-
cent years, the performances of commodity off-the shelf components, such as proces-
sor, memory, disk, and networking technology, have improved tremendously. Free
operating systems are available and well supported.

3.1. Parallel architectures

Driven by the intensive computational processing demand over the past two de-
cades, a variety of parallel architectures with opposing philosophies have evolved,
such as distributed versus shared memory, SIMD versus MIDM, tightly coupled ver-
sus loosely coupled [49]. Since it is beyond the scope of this paper to provide a de-
tailed overview of various parallel architectures, we briefly describe the architectures
that can be exploited for video compression.

3.1.1. Symmetric multiprocessors
A symmetric multiprocessor (SMP) system uses commodity microprocessors with

on-chip and off-chip caches. The processors are connected to a shared memory
through a high-speed snoopy bus or a switch. It is important for the system to be
symmetric, in that every processor has equal access to the shared memory, the I/O
devices, and the operating system services. Most SMPs have at most 64 processors,
such as the Sun Ultra Enterprise 10000. The limitation is mainly due to a centralized
shared memory and a bus or crossbar system. Examples include the IBM R50, the
SGI Power Challenge, and the DEC Alpha server 8400. SMP systems are heavily
used in commercial applications, such as databases, on-line transaction systems,
and data warehouses. SMP can be very useful for video compression because of their
low cost.

3.1.2. Massively parallel processors
The term MPP generally refers to a very large-scale computer system that is built

using commodity microprocessors in processing nodes, each having its own memory
and connected by a network with high communication bandwidth and low latency.
MPPs can be scaled up to hundreds or thousands of processors. The program con-
sists of multiple tasks, each having its private address space. Tasks interact by pass-
ing messages. Examples are the Intel Paragon and TFLOP. MPPs are not
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commercially viable but can be useful for off-line encoding of very large videos, such
as a digital library.

3.1.3. Distributed shared-memory machines
The main difference between distributed shared-memory (DSM) machines and

SMP is that the memory is physically distributed among different nodes. However,
the system hardware and software create an illusion of a single address space to ap-
plication users. A cache directory is used to support distributed coherent caches. A
DSM machine can be also implemented with software extensions on a network of
workstations such as the TreadMarks. Examples are the Stanford DASH, and Cray
T3D. Due to the ease of programming and scalability, DSMs can be potentially ex-
ploited for video compression.

3.1.4. Cluster computing
A cluster is a collection of complete computers (nodes) interconnected by a high-

speed network or a local-area network [49]. Typically, each node is a workstation,
PC, or SMP. Cluster nodes work collectively as a single computing resource and fill
the conventional role of using each node as an independent machine. A cluster com-
puting system is a compromise between a massively parallel processing system and a
distributed system. An MPP system node typically cannot serve as a standalone com-
puter; a cluster node usually contains its own disk and a complete operating system,
and therefore, also can handle interactive jobs. In a distributed system, nodes can
serve only as individual resources while a cluster presents a single system image to
the user.

Cluster of workstations [4] or PCs (Beowlf) [85] are growing rapidly as a result of
the advances in high-speed communication networks and the economics of replica-
tion. Clusters have several advantages such as high availability, rapidly improved
performance, cost effective, high network throughput, scalability, and easy integra-
tion [1].

Recently, PCs or workstations-based clusters connected together with high-speed
networks have emerged as popular platforms, primarily because of the fast speed of
processors and low cost of off-the-shelf components. Several standard parallel pro-
gramming environments, such as MPI, PVM and BSP, are also available that are
added as message-passing libraries in standard C or Fortran programs running on
top of Windows or Unix operating systems. In addition to traditional scientific
and engineering problems, parallel processing is becoming increasingly popular for
commercial applications [41].

Clusters of commodity PCs and workstations using off-the-shelf processors and
communication platforms such as the Myrinet, Fast Ethernet, and Gigabit Ethernet,
are becoming increasingly cost effective. With proper design, clusters can provide
scalability by allowing the system to scale up or down, and hence, offering a variable
range of computational power. Furthermore, since each computing node in a cluster
is equipped with a disk, the cumulative disk space of the whole system can be sub-
stantial. These features of cluster computing are highly suitable for implementing
software-only encoders needing heavy but low-cost computing power. The inherent
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problem of inefficient inter-processor communication in cluster computing can be
overcome if the video data is partitioned in a coarse-grained manner and thus reduc-
ing the amount of communication data.

3.2. Processor architectures

Word-parallelism: At the data word level through SIMD 2 instructions enabling
multiple data to be executed simultaneously. Such parallelism takes advantage of
the intrinsic parallelism that exists in the computation of data and generally can
be applied when there is regular, repetitive computation. In general, digital video
and image processing have high data-level parallelism potentials since each pixel,
block or MB data of each image or frame of video sequence performs the same cod-
ing procedures repetitively, such as DCT/IDCT transform, quantization, ME and
compensation. This is a kind of data-parallel processing employed in both general-
purpose processors and DSPs. Currently, most media processors use SIMD-based
multimedia accelerate instructions to speedup the multimedia processing. Typical ex-
amples of such multimedia extensions are Intel’s MMX (MultiMedia Extension)
technology for extending the �86 architecture [84]; HPs MAX and MAX-2 acceler-
ate primitives in its 64 bits PA-architectures [64]; Sun’s VIS (Visual Instruction Set)
in UltraSPARC [102]. SIMD approach has also been adopted in DSPs such as
TigerSHARC of Analog Devices [34], AltiVec of Motorola [28], etc.

Instruction parallelism: At the instruction level through very long instruction word
(VLIW) or superscalar scheduling to execute a group of independent instructions in
parallel. Instruction level parallelism is used to execute several instructions from a
single process that are independent from one another and coordinated either at
run-time by conventional dynamic superscalar processors or VLIW processors
[57]. Major superscalar �86 microprocessors include Intel Pentium, Pentium Pro
and Pentium-2; AMD K5 and K6; and Cyrix 6� 86. High-end superscalar micro-
processors include PowerPC620/604e, HP PA8000, MIPS R10000/5000 and Digital
Alpha 21164. VLIW style has been introduced mainly into latest DSPs (for example,
Trimedia TM-1 of Philips, TI C6X DSP and Chromatic Mpact) for multimedia and
networking services.

Multi-processors integration on a chip is a form of very coarse parallelism, pro-
cess-level parallelism, involves complete independent applications running in inde-
pendent processes controlled by the operating system. The efficient exploitation of
multiple processors or core on a chip include various technologies such as real-time
scheduling, load balance prediction and detection, memory access methodology, par-
allel I/O design and inter-processor communications.

2 The SIMD paradigm here implies processing of multiple data in one instruction; this is not to be

confused with the SIMD paradigm at the multiprocessor level.
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3.3. Software for parallel processing

There are currently four models of parallel programming that are widely used on
real parallel computers: implicit, data parallel, message-passing, and shared variable
[49].

A parallelizing compiler on vector multiprocessors, VLIW and superscalar pro-
cessors typically exploits implicit parallelism, usually expressed by a user in the pro-
gram through compiler directives or language constructs (e.g., HPF for data-parallel
programming). The compiler performs dependence analysis on the source code and
uses a suite of program transformation to convert the sequential code into native
parallel code. In the case of video compression, loops on blocks of video data
may benefit from implicit parallelism. However, the efficiency of even the manually
optimized codes is not high and improvement can be achieved by combining user
direction and run-time parallelization. Therefore, only part of the video encoding
program may be parallelized.

Data-parallelism, using both SIMD and single program multiple data (SPMD)
programming paradigms, can be very effective for video compression because there
is ample opportunity for exploiting data-parallelism due to the characteristics of
video and image processing, such as common integer operations, predicted memory-
access patterns, and fixed data precision, etc. While SIMD paradigm at the multipro-
cessor level is no longer very popular, exploiting parallelism through the processing
of multiple data words for the same instruction is become wide spread. Under the
SPMD paradigm, the data is partitioned into smaller pieces that are assigned to dif-
ferent processors. A single program is written for all processors that asynchronously
execute the program on their local piece of data. Communication of data and syn-
chronization is done through message-passing. Several standard open tools for mes-
sage passing are now available for different parallel architectures. MPI [104] and
PVM [37] for message passing that extend Fortran or C programs with library sub-
routines.

Shared-memory programming model using shared variables and locking schemes
is attractive due to its ease of programming but is not very highly portable. Cost-
effective software-based video compression solutions can be designed using plat-
forms such as SMPs or multiple-processor PCs. While there is no widely adapted
standard for shared-memory model, several tools and libraries such as X3H5 and
POSIX Pthreads multithreading library are available [49]. A thread is a piece of code
within an application that runs concurrently with the application’s other threads,
sharing an address space with them, along with access to the application’s variables,
file handles, device contexts, objects, and other resources. Threads are different from
processes, which typically do not share resources or an address space and communi-
cate only through the mechanisms provided by the operating system for inter-process
communication, such as pipes and queues. Threads often use simpler and less re-
source-intensive forms of communication like semaphores, mutexes, and events. In
using multithreading to implement parallelism, the overhead caused by thread cre-
ation and thread synchronization can counteract the benefits of parallelism. Because
threads require synchronization mechanisms to guard against race conditions in

I. Ahmad et al. / Parallel Computing 28 (2002) 1039–1078 1053



shared data, the volume of processing data in each thread can be a major factor in
determining whether a process is suitable for multithread processing. Multithreading
is also supported by Java Virtual Machine to enable concurrent execution of the
multiple portion of a program.

4. Parallel processing approaches for video compression

In this section, we describe various parallel processing techniques that have been
employed for different algorithms or to build complete compression systems.

4.1. Parallel video coding algorithms on VLSI

Various coding techniques are widely deployed for video compression targeting
different bandwidth and quality. Some compression algorithms, such as DCT/IDCT,
ME and entropy coding, are shared by most video coding standards due to their ex-
cellent performance and reasonable complexity. The high computational complexity
of some algorithms is an impediment for real-time implementation in many applica-
tions. Fortunately, many of these algorithms are structured in such a way that a
small number of basic arithmetic operations are repeatedly applied to a large body
of data. In addition, the operations of the algorithm are very regular with a prede-
fined sequence of operations and data access. Therefore, these algorithms can be
mapped onto specific VLSI architectures or DSP/VSPs with extensive use of parallel
processing such as pipelining and multi-processor techniques [87].

From VLSI design perspective, compressed video is an application that places
special demands on the technology in terms of parallelism, scalability and program-
mability [38]. Parallel processing has been applied to VQ [32,112,113], DCT/IDCT
[21,55,97], wavelet transform [72,89], VLC [14], and most compute intensive tasks,
such as ME [15,18,19,30,35,43,48,51,68,86,90,110,111,114–116]. Further details are
provided below.

4.1.1. Vector quantization
VQ is a powerful technique for very low bit rate image/video compression. The

computation complexity of VQ is high (for example, the encoding complexity for
K input vectors of dimension L, and a codebook of size N is O(KLN) [1]). In VQ,
each block of symbols is uniquely represented by a subinterval within 0 and 1. Its
coding scheme is a two-stage process: The first stage is to determine the subinterval
the block represents. The second stage is to find the binary representation (with min-
imum number of bits) of a value that lies within that subinterval.

Several processor architectures are proposed to implement VQ for real-time video
compression. The processor designed in [32] can handle 2048 template vectors by a
single chip using massively parallel operation and a new search algorithm. A pipeline
VQ algorithm proposed in [112] makes efficient use of the parallel capabilities of the
SIMD machine. A memory-based parallel processor was proposed in [113] for VQ,
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which accelerates the neighborhood search by computing all distances between the
input and reference vectors in codebook in all processors simultaneously.

4.1.2. Parallel discrete cosine transform
The DCT is an orthogonal transform with superior energy compaction property

and near optimal performance. 2D DCT has been widely accepted as the most effec-
tive technique in image and video compression. The DCT function reduces spatial
redundancy in video and image data. DCT provides the basis for compression on
the 8� 8 pixels block by decomposing pixels value into a weighted sum of spatial
frequencies, and IDCT is the inverse of it. Compression is achieved by quantization.
Using 8� 8 DCT/IDCT blocks, the required real-time processing speed for CIF at
30 f/s is approximately 73 M multiplications per second. The 8� 8 2D DCT and
IDCT used in MPEG compression are defined in the following equations.

Forward 8� 8 2D DCT:

Cðu; vÞ ¼ aðuÞaðvÞ
X7

x¼0

X7

y¼0

f ðx; yÞ cos ð2xþ 1Þpu
16

cos
ð2y þ 1Þpv

16
ð1Þ

Inverse 8� 8 2D DCT (IDCT):

f ðx; yÞ ¼
X7

u¼0

X7

v¼0

aðuÞaðvÞCðu; vÞ cos ð2xþ 1Þpu
16

cos
ð2y þ 1Þpv

16
ð2Þ

where aðkÞ ¼ 1, if and only if k 6¼ 0, otherwise,

aðkÞ ¼ 1

2
ffiffiffi
2

p

The DCT coefficients are then scanned in a zig-zag scan fashion to convert the 2D
signal into 1D bitstream. The coefficients are then quantized using a quantization
matrix (see Fig. 5), followed by run-length entropy coded by using variable-length
code (VLC) tables.

The chip design proposed in [97] uses a bit-serial/bit-parallel architecture and dis-
tributed arithmetic to implement a 16� 16 DCT. The chip contains 32 processing

Fig. 5. DCT quantization and zig-zag scanning.
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elements (PEs) working in parallel for performing a 16� 16 matrix transposition.
The chip designed for real-time processing performs an equivalent of a half billion
multiplications and accumulations per second.

Most of the 2D DCT architectures are implemented by the row-column decompo-
sition methods. In [21], an architecture combining pipelining and frame-recursive ar-
chitecture is proposed in which the 2D DCT is implemented by 1D DCT lattice
arrays, such that the total number of multipliers required for an N � N 2D DCT
is 8N. The design is shown to be very suitable for VLSI implementation for bit-rate
systems. Another VLSI architecture for DCT is proposed in [55] that uses row-col-
umn decomposition to implement a 2D transform. The architecture also uses distrib-
uted arithmetic combined with bit-serial and bit-parallel structures to implement the
required vector inner product concurrently.

4.1.3. Parallel wavelet
The discrete wavelet transform (DWT) is an efficient tool for image and video

compression. Various dedicated VLSI ASIC solutions have been proposed based
on either SIMD architecture or pipeline realization. An efficient approach using gen-
eral-purpose parallel computers without inter-processor communications was pro-
posed in [72]. The basic idea is to use a matrix-vector multiplication with
intrinsically parallel filter bank algorithm to perform the DWT in standard form.
Each filter can be described as a matrix and the filtering as matrix-vector multiplica-
tion. The algorithm is tested on AT & T DSP-3 multiprocessor system (16–128 pro-
cessors), and speedup was found to be higher than traditional parallel methods that
use input data partitioning. A massively parallel video codec proposed in [89] imple-
ments wavelet transform on an array of intelligent pixel processors.

4.1.4. Parallel variable length coding
Several image and video coding standards have adopted VLC due to its high com-

pression efficiency and algorithmic simplicity. A VLC encoder is usually realized by
using a table look-up implementation. The concatenation of the variable-length
codewords can be done bit-serially, demanding high operation speed at the output
and causing the bottleneck of the data-intensive application. A parallel VLC encoder
architecture reported in [14] enables the codeword concatenation in one clock cycle.
Therefore, the encoder can operate at the same rate as the input sampling data rate.

4.1.5. Motion estimation
ME is the central part of MPEG1/2/4 and the H.261/H.263 video compression

standards and has attracted much attention in research and industry for the reason
that it is computationally the most demanding algorithm of a video encoder (about
60–80%). In addition, it also has a high impact on the visual quality [58]. Prediction
is accomplished by ME that is done in the spatial domain. ME information together
with error image (if any) requires much less number of bits to code than that of the
original block. Prediction is based on a previously processed frame. In block-based
ME, the algorithm compares each block of a frame at time t with the corresponding
block in the frame at time t � 1 and then within a certain range (a window) around
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that position. Block matching is a widely used ME algorithm in current video sys-
tems. Typically ME is performed on a block size of 16� 16, or 8� 8. The size of
search window depends on frame differences, speed of moving objects, resolution,
etc. The matching criteria include accuracy and complexity. Let Cðxþ i; y þ jÞ de-
note the pixels inside the MB at location ðx; yÞ in the current frame, and let
Rðxþ iþ u; y þ jþ vÞ denote the pixels inside the MB in the reference frame with
motion vector ðu; vÞ defined within the search range, 06 i6 15, 06 j6 15 for
16� 16 block.

The algorithm compares the pixel values of the two blocks using the sum of ab-
solute difference (SAD), defined as follows:

SADðu; vÞ ¼
X16
i¼0

X16
j¼0

jCðxþ i; y þ jÞ � Rðxþ iþ u; y þ jþ vÞj ð3Þ

The mean absolute error (MAE) is calculated by dividing SAD by 256. Alternatively,
some algorithms use mean square error (MSE), defined as:

MSEðu; vÞ ¼ 1

256

X16
i¼0

X16
j¼0

½Cðxþ i; y þ jÞ � Rðxþ iþ u; y þ jþ vÞ�2 ð4Þ

Finding the best matching MB, with the minimum error, in the reference frame is the
core operation in ME. Rather than searching the entire reference frame, the ME
algorithm restricts the search range to a ½�p; p� region around the ðx; yÞ location of
the MB in the current frame, (see Fig. 6). The ME algorithm finds a motion vector by
matching the current block with the blocks at displacement ðu; vÞ in the previous
frame.

Among typical searching strategies, the full search scheme provides better preci-
sion and regular data flow as well as a higher degree of parallelism, a characteristic
that is advantageous for VLSI implementation. Some of the well-known techniques
are hierarchical approach, subsampling of motion field, reducing number of check-
ing points (fast search algorithm), etc. (see [59] for a detailed survey on ME).

The full search is not optimal but is considered to be a reference since it uses an
exhaustive method to find the best match. Fast search algorithms are suboptimal and
not robust in general. Further, they require much less computation and are suitable

Fig. 6. Block-based ME.
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for software implementation [109]. The complexity of real-time processing for the
full search ME can be calculated as follows: Let, the block size ¼ 16� 16, and win-
dow size ¼ 32� 32, then assuming CIF frame at 30 fps, we need

256
ops

search

� �
289

search

block

� �
296

block

frame

� �
30

frame

sec

� �
¼ 879 Mops=s: ð5Þ

For CCIR 601 or HDTV, it would require several or tens of giga operations per
second (GOPS)=s. The full search has been used in certain applications with specially
designed hardware. Other search algorithms with reduced complexity have been and
are still being developed.

A carefully designed ME chip (or module) implies that it will meet application re-
quirements such as the desired performance level, proper throughput, and able to
match with I/O bandwidth. It should also be cost effective, and occupy the minimum
chip size and utilize minimum set of computational resources.

The full search can find the best matched motion vectors, but it requires high com-
putational power. Therefore, VLSI-based implementation is critical for its process-
ing speedup. A VLSI architecture for implementing a full-search block-matching
algorithm is proposed in [48]. Based on a systolic array processor and shift register
arrays with programmable length, it allows serial data inputs to save the pin counts
but performs parallel processing. The parallelism and pipelining nature are fully ex-
ploited with the 2D systolic array that reduces the computational complexity.

A linear array architecture for a full-search block matching algorithm is proposed
in [114] that uses a parallel algorithm based on the idea of partial result accumula-
tion. Combining a serial data input with registers for a line of search window pixels
and operating on them in parallel, the partial results of the candidate block distor-
tions are obtained for all horizontal search positions. A real-time encoding rate is re-
ported.

Most VLSI realizations of full search ME are based on systolic arrays, laid out for
a specific set of parameter values. Hence these approaches do not offer flexibility. In
contrast, programmable DSP can offer a large flexibility, however, since a DSP is
conceived for a large variety of image/video processing algorithms, only part of
the DSP hardware can be used for common block matching. A flexible VLSI archi-
tecture for the full search is proposed in [110]. Flexibility is increased by cascading
and/or with parallel operations. Several identical block-matching chips are placed
in a serial way. Only the first chip of the cascade is directly connected with the ex-
ternal buffers. The data supplied to the first chip is then passed on from chip to chip
within the cascaded duration.

A programmable ME processor is introduced in [86], which has ability to work in
parallel making it ideal for real time applications like video compression. The archi-
tecture implements four 4� 16 arrays that can support all target matching size, such
as 4� 8, 8� 8, 8� 16 and 16� 16 pels block matching. Another programmable ar-
chitecture is presented in [15] featuring cascadable modules of PEs with simple inter-
connection. Therefore, flexibility in computing power is available. The architecture is
implemented with 32 PEs in one chip that consists of 102K transistors.
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A 165 GOPS exhaustive Me processor ME3 has been developed [43]. The ME3 is
powerful enough to realize a range of )64/þ63 pixels horizontally and )32/þ31 pix-
els vertically with a single chip. A dual-array architecture supports both the joined
operation and the parallel operation of the PE-arrays. The parallel operation realizes
a wide search range with a single chip configuration. ME3 chips can work concur-
rently in a cascade fashion to support a multi-chip configuration, so that the exhaus-
tive search range can be easily expanded to meet the requirements of high-resolution
encoder. A 64-processors architecture is reported in [90] that consists of four clusters
of 16 processors each, with each cluster working in a pipelined fashion. The ME al-
gorithm combines full search block matching with sparse search.

The existing fast ME approaches can be identified into three groups: (1) fast
search by reduction of motion vector candidates; (2) fast block-matching distortion
computation; and (3) motion field subsampling [109]. However, the fast algorithms
are often designed to merely reduce arithmetic operations without considering their
overall performance in VLSI parallel implementation. A new three-step fast search
algorithm based on hardware consideration proposed in [115] uses a 1D systolic
array as the basic computing engine (see Fig. 7). A checking-vector-based search
strategy processes several adjacent checking points. Compared to other widely used
fast ME algorithms, this scheme can be implemented cost-effectively in terms of sil-
icon area, I/O rate and processing speed. The paper also proposes a VLSI design for
block ME in [116], which results in more than 60% reduction in power consumption.

Fig. 7. Three 1D systolic array architecture.
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This is a useful attribute as power consumption is also one of the major concerns due
to the presence of multiple processors.

A flexible architecture for ME and compensation using a 1D pipeline systolic
array is reported in [111] to implement a fast ME algorithm with an aim to be incor-
porated into the digital compression unit of a single-chip video camera. The target
application is QCIF resolution at 20 fps, with a source rate of 3.877 Mbps and
the compressed bitrate of 56 kbps. Another fast block-matching algorithm called
the parallel hierarchical 1D search (PHODS) for ME is proposed in [19]. Instead
of finding the 2D motion vector directly, PHODS finds two 1D displacements in
parallel on the two axes (say x and y) independently within the search area. A fully
pipelined parallel architecture for the 3-step hierarchical search block-matching algo-
rithm is reported in [51]. The paper also proposes techniques for reducing intercon-
nections and external memory accesses. The proposed 3-PE, 9-PE, and 27-PE
architectures provide efficient solutions for real-time MEs required by video applica-
tions of various data rates, from low bitrate video to HDTV systems. An architec-
ture proposed in [68] is designed for a high-speed motion estimator using the 2D
log search algorithm. It consists of five simple PEs where each PE is capable of com-
puting the SAD to exploit the parallelism. For each step in the 2D log search proce-
dure, the 5 SADs of the 5 search points are computed in parallel. The architecture is
well suited for encoding MPEG2 video up to the main profile.

Various hardware engines have been for implementing different block-matching
algorithms. Some of them utilize array processors, while some others use LSI-based
pipelined architectures or ASIC-based VLSI systems. But they can only implement a
single algorithm. The advantage of having a programmable ME engine is that the
chip can be used in different search algorithms and the custom can upgraded ME al-
gorithms. In [30] a flexible architecture is proposed for implementing widely varying
motion-estimation algorithms. To achieve real-time performance, it employs multi-
ple PEs. Three different block-matching algorithms-full search, three step search,
and conjugate-direction search-have been mapped onto this architecture to illustrate
its programmability.

Besides block matching algorithms, other ME algorithms are also of interest in
parallel VLSI architecture design. For example, a pipelined parallel CORDIC archi-
tecture is proposed in [18] that estimates motion in the DCT domain instead of the
spatial domain. The linear array of processors architecture design described in [35]
leads to column parallelism in which one processor is allocated to one or more image
rows. The array of processors performs the ME process for a whole column of pels in
parallel using a pel-recursive ME.

4.1.6. Rate control
Rate control algorithms try to optimize the bit rate through proper adjustment of

quantization and bit allocation. Availability of parallel processing implies that more
detailed and complex rate control algorithms can be designed and implemented. Sev-
eral papers report algorithms for bit allocation and rate control in software-based
parallel encoders. The scheme proposed in [101] analyzes future frames in order to
determine bit allocation for the current frame. The analysis uses of preliminary
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ME, masking factor computation, and coding regions of future frames to model
their coding complexity.

In [83], a number of rate control methods for parallel encoder architecture using
picture partitioning are proposed, which are suitable for MPEG-2 VIDEO Main
Profile @ High Level encoders. Partitioning boundaries are sometimes visible in de-
coded pictures because of control discontinuity. An adaptive bitrate allocation
scheme is proposed to reduce the discontinuity of picture quality around partitioning
boundaries. Another rate control scheme for an MPEG-2 HDTV parallel encoding
system consisting of multiple encoding units is described in [78]. An effective scene
change rate control algorithm for software-based video compression on network
of workstations is proposed in [12]. Taking advantage of the available processing
power, the system uses two-pass bit allocation and a rate control algorithm for gen-
erating high quality output.

4.2. Complete encoders implemented on parallel hardware

Because of the defect density, production of very large area chips is not econom-
ical. Therefore, most encoders are implemented with a moderate number of chips
[11,70,71]. In order to enable high complexity encoder systems integration into a sin-
gle chip, some video DSPs (VSP) use pipeline structures supporting multiprocessors-
on-a-chip [17,54,73,81,106]. There exist several examples of parallel architectures for
dedicated video processors. A multimedia processor based on a SIMD architecture
optimized for block-based video processing algorithms, called digital generic proces-
sor, consists of 64 pixel processors (SIMD) connected by a programmable network,
and a 32 bit RISC controller [73]. The SIMD array has a peak computational power
of 1.7 GOPS to perform video compression according to standards such as H.261,
H.263, MPEG-1 and MPEG-2. The processor can be programmed in order to run
the code corresponding to each specific algorithm. It can easily satisfy real-time de-
coding of MPEG-2 and H.263. The various speedup factors for MPEG range from
12 to 45. Another programmable parallel processor architecture for real-time video
signal processing is reported in [81]. The architecture is composed of several parallel
processor clusters and bus-switch units. Each parallel processor cluster can process
one frame picture in real time.

A single-chip VSP supporting H.261 coding standard reported in [106] has a max-
imum performance of 300MFOPS. The VSP is based on a pipeline processing unit
structure, in which each of the four data processing units has a three-stage pipeline.
Thus, the VSP can execute 12 operations in one machine cycle. Multiple VSPs sys-
tems can be used to achieve further speedup using a tightly coupled share-memory
system. With 4 VSPs, the frame rate of H.261 can reach 10 fps at 20 MHz and
12.5 fps at 25 MHz. A parallel implementation of H.263 video encoder on quad
DSP (TMS320C6201) platform is presented in [118], reporting real-time encoding
speed of 30 fps for CIF (352� 288) picture. A single-board all-ASIC CMOS imple-
mentation of the H.261 video encoder and decoder together with pre- and post-pro-
cessing modules is reported in [70]. The encoder consists of multiple chips, each
carrying out a different function, such as pre-filtering DCT/IDCT, motion vector
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detection, buffer control and quantization, VLC, forward error correction, etc. It
uses 14 ASICs together with 20 MB SRAM.

A multimedia video processor (MVP), called UWGSP5 [54], performs real-time
MPEG video and audio encoding at SIF (360� 288) resolution, 30 fps. The proces-
sor contains multiple DSP cores that are capable of maintaining a very high rate of
operation, and especially optimal to perform DCT, FFT and other video processing
routines. The Grand Alliance HDTV encoder developed by Motorola Broadband
Communication Sector (formal General Instrument) and AT & T is reported in
[71]. This encoder hardware is partitioned into 23 circuit boards supporting different
functions respectively. The entire video frame is spatially partitioned into 6 panels.
Each panel encoding processor formats compressed data to the MPEG ‘‘slice’’ layer.
It can handle high peak 62.2 Mpixels/sec video processing. In addition, the world’s
first all-digital HDTV system, the DigiCipher� MPEG-2 system developed by Moto-
rola BCS, also implemented spatial parallelism on multi-processor platform for
achieving real-time encoding performance. A VLSI chip, named MOVIE [17], is de-
signed to facilitate the development of software-only solutions for real-time video
processing applications. This chip can be seen as a building block for SIMD process-
ing, and its architecture has been designed so as to facilitate high-level language
programming. Parallelism levels in the MOVIE architecture is exploited using a sub-
array of PEs and one I/O processor. Two arrays of MOVIE are shown to be suffi-
cient to implement a fully programmable MPEG-2 real-time encoder.

A parallel design using pipelining for compression/decompression of video data is
described in [11]. The encoder tasks are divided into ME and error encoder, achiev-
ing a throughput of 30 fps with frame size of 352� 272 pixels. VLIS architectures for
simplified versions of MPEG-4 have started to emerge [39,100].

4.3. Software-based encoders

A considerable amount of work has been reported for software-only encoders,
using computer systems ranging from massive parallel systems, such as Intel Para-
gon, Cray T3D and IBM SP2 [2,5,80,94,108], to cluster of computers [4,6,79]. A wide
variety of schemes for parallel encoding on using both DSPs and general-purpose
processors, exists based on temporal, spatial, data-parallel, and control-parallel
strategies [3,13,22,27,29,66,67,80,91,103]. Cluster of workstations, due to their cost-
effectiveness are more useful for flexible software-only video encoding [4,6,79,
107].

4.3.1. Spatial parallelism
Spatial parallelism allocates different parts of a single frame to different PEs. The

granularity of the workload may be slices or MBs (see Fig. 8). Processors concur-
rently encode data sets and then combine the results to generate the final video bit-
stream [5]. Due to frame dependencies, processors may need to reference other
processors’ encoding results or previous frame’s encoding results for MC. To deal
with this problem, one can send overlapped parts of frames to each processor, but
it causes overhead in the I/O and scheduling. Due to the limited spatial resolution
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of a video frame, only a limited number of processors can be used [40,94]. Another
disadvantage is that the encoding system needs to tolerate a relatively large commu-
nication overhead.

A fine-grained software-only MPEG-2 video encoder on various parallel and dis-
tributed platforms and its performance is described in [6]. The platforms include an
Intel Paragon XP/S and an Intel iPSC/860 hypercube parallel computer as well as
various networked clusters of workstations. The encoder exploits parallelism by dis-
tributing each frame across the processors. The frame data may be divided among
processors up to the point when the search window can be made available to the cor-
responding processor. The partitioning scheme accomplishes this by distributing one
or more 16� 16 block to each processor, and then either by sending the required
boundary data to corresponding processors to form their local frame (see Fig. 9),
that is search window, or equivalently, storing the redundant data at the local mem-
ory of each processor, which is necessary to form the search window to be used for
determination of motion vectors for the next frame.

A 2D frame data may be mapped onto a 2D processors array. Let P and Q to be
the height and the width of the frame respectively, and let p be the total number of
processors to be used, with ph to be the number of processors in the horizontal di-
mension and pv to be the number of processors in the vertical dimension of the
2D grid. Thus, p ¼ ph � pv. If the search window size is the size of the MBs in a par-
ticular processor �W in both dimensions, with overlapped (redundant) data distri-
bution, given ph and pv, then the local frame size in each processor is given by

Xlocal ¼
Q
Ph

�
þ 2W

�
P
Pv

�
þ 2W

�
ð6Þ

Fig. 8. Spatial parallelism using MB and slice distribution: part of the picture is decomposed and distrib-

uted at MB (a) and slice (b) level.
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Overlapped data distribution method allocating some redundant source data for ME
circumvents the excessive amount of inter-processor communication. A MB is the
finest grain size assigned to a processor, providing an upper bound on the maximum
number of processors. Let the MB size be w� h (typically 16� 16) for which motion
vectors are to be determined.

ph;max ¼
Q
w

	 

and pv;max ¼

P
h

	 

: ð7Þ

Hence, for w ¼ h ¼ 16, the maximum number of processors is

pmax ¼
Q
16

	 

� P

16

	 

) p6

Q
16

	 

� P

16

	 

ð8Þ

Fig. 9. Data distribution to processor ði; jÞ and its overlapping region with neighboring processors.
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For example, if Q ¼ 360, P ¼ 240, then, ph;max ¼ 22, pv;max ¼ 15 and consequently
p6 330.

Another version of this parallel MPEG-2 video encoder is implemented on vari-
ous clusters of workstations connected via ATM switch and Ethernet [7].

Similar approaches are reported for other platforms and video standards. In a vi-
sualization application on massively parallel computer CRAY T3D [80], the whole
image is divided into parts of equal size and each processor processes its own data
partition. Depending upon the complexity of the compression algorithm, 8–12 im-
ages are compressed, decompressed and visualized per second. An H.261 encoder
is implemented using a data-parallel approach on the IBM SP2 with 24 processors
[108]. Using a load-balancing scheme across the processors, the encoder predicts
the workload based on the previous frame workload, and schedules MB bounded
by the locality constraint. The results show 19–23% reduction in the worst-case delay
with both the prediction and scheduling overhead taken into account.

A parallel implementation of H.263 video encoder is presented [56] for video con-
ferencing applications, allowing encoding of any of the five standard H.263 picture
formats in real-time. The proposed approach uses data parallel implementation by
partitioning the image in horizontal or vertical slices along the MB boundaries. With
the prototype system using four ADSP-21062 DSPs, a real-time encoding is achieved
with QCIF sized picture. Another parallel H.263 video encoder [23], exploiting spa-
tial parallelism, is modelled using a multi-threaded program. The encoder subdivides
a frame into equal parts (as far as physically possible). The parallel video coding is
implemented on a PC using 2, 3 and 4 parallel threads, each with an additional
thread for relocating the output bitstream. A software-based H.263 video encoder
is implemented using a cluster of workstations [4]. Again the granularity is a marco-
block. The experimental results indicate an encoding rate of 30 fps for QCIF using
12 workstations.

An algorithm for automatic data partitioning and scheduling algorithm for video
processing on multiprocessors is proposed in [63]. It proposes a compiler time pro-
cessor assignment and data partitioning schemes that optimize the average run time
performance of the task chains. The experiments carried out on CS-2 computing sys-
tem using 4, 16 and 25 processors (PEs), shows a high performance gain.

Multiprocessor DSPs are also attractive since they offer performance typical of
parallel machines together with limited cost. The paper provides performance anal-
ysis and software design issues according to different data partitioning models, such
as overlap partitioning and non-overlap partitioning. The scheme proposed in [26]
uses the idea of crossbar multiprocessor DSPs for data parallel local algorithms. Test
results on TMS320C80 MVP show high speedup.

4.3.2. Temporal parallelism
In temporal parallelism, the allocation scheme assigns a portion of a video con-

taining a number of video frames that need to be compressed as well as the necessary
reference frames to each processor. One important question is how to schedule
frames to processors with minimum load unbalancing and scheduling overhead.
For example, if a processor encodes B4B5P6, then it requires the previous reference
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frame, P3, as shown in Fig. 10. Here P3, P6 and I9 are penalty frames and are not
encoded. If an original frame is used as a reference frame, this previous reference
frame is read at least twice, by the processor that needs it as reference frame and
by the other processor that encodes this P frame. A frame that is needed by another
processor but is not encoded is a penalty frame. A similar but worse scenario is that
if reconstructed frames are used as reference frames. Then the second process must
wait for the reconstructed P frame from the first process, the third must wait for the
reconstructed P frame from the second process, and so on. This lowers the degree of
temporal parallelism. Making each processor encode frames starting with an I frame
can solve this problem. When each process encodes GOP with pattern like
I0B1B2P3B4B5P6 (closed GOP size equal to seven for this case), in which no frame
uses another GOPs frame as reference, there will be no penalty frames.

Temporal parallelism does not limit the number of processors but may cause de-
lay in the encoding time due to rapid I/O traffic [2,93]. In addition, synchronization
may be required after each round of frame encoding, which may add extra waiting
times at various processors [94]. An administrative mechanism is needed to avoid
this situation. One possible solution to solve this problem is to improve the overlap
of frame distribution and encoding process [82,92]. Various issues involved in I/O for
a parallel MPEG-2 video encoder on a cluster of workstations are discussed in [2].
Four scheduling schemes are proposed to remove I/O bottleneck.

Another scheme using temporal parallelism for MPEG-2 video encoder on the
Intel Paragon parallel computer is reported in [2]. This scheme uses GOP as the gran-
ularity of parallelism. This work shows that the entire system including the compu-
tation, and I/O (reading of uncompressed data and writing of compressed data) has
to work in a balanced fashion in order to achieve the final high throughput. The pro-
posed scheme partitions multiprocessor system to groups of compute nodes, and
schedules the computing nodes, I/O nodes, and disks in a highly balanced fashion.
The experimental results show a frame rate of about 71 fps for SIF sequence on Intel
Paragon using 126 processors. A parallelizing scheme for MPEG-1 video encoding
algorithm on Ethernet-connected workstations reported in [79] uses the slice-level,
frame-level. Experiments on thirty workstations shows that the MPEG-1 Video

Fig. 10. Temporal parallelism with frame distribution including penalty frames.
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encoding time can be reduced in proportional to the number of workstations
used in encoding computations although there is a saturation point in the speedup
graphs.

Another possibility is to use spatial-temporal parallelism that is a combination of
spatial and temporal approaches [92]. The scheme evenly divides the PEs into
groups, each of which contains n PEs and compresses one video section at a time.
Frames in the video section are spatially divided into m parts and processed by n
PEs. The compressed data from each PE is sent to one of the PEs in that group,
which assembles and writes the cumulative compressed data to a disk.

4.3.3. Shared-memory implementations
Parallel encoders have also been implemented on shared-memory parallel ma-

chines. A shared memory system, IBM Power Visualization System (PVS) is used
for a parallel implementation of a MPEG-2 compliant, a constant bit rate video en-
coder [101]. Maximum PVS has 32 Intel i860 processors and 1 GB shared memory.
The proposed scheme defines an I partition unit which includes all pictures between
two I frames. Each processor then compresses one IPU at a time and parallelism at
the IPU level is explored.

In another approach [27], a simple shared-memory parallel algorithm for MPEG-
1 video encoding based on the parallel execution of different coarse-grained tasks
(read pictures, write coded frames, I, P, and B frames coding) is proposed and im-
plemented on the Sun enterprise 100000 containing 32 processors. The GOP and
frame encoding tasks are mapped to the parallel system using a multithreaded meth-
odology. Two synchronization strategies on encoding and writing operations are
implemented.

4.3.4. Pipelining
Another possibility is to use pipelining. A real-time ITU-T H.263 codec using a

multi-processor DSP system based on TMS320C80 MVP is reported in [103], which
consists of 4 parallel 32-bit fixed-point DSP. The basic H.263 codec is estimated to be
40–50% computationally more demanding than H.261 at the same image size, frame
rate and other conditions. For inter-frame encoding, the ME and DCT-related mod-
ules are carried out in parallel with two fixed pointed DSPs. Encoding tasks are car-
ried out in parallel using task-partitioning pipelining method. The ME for a MB is
carried out in PP0 and the rest of the encoding tasks of the same MB are then carried
on PP1. The MVPs 64-bit parallel instructions are explored. The system works ap-
proximately with 29 fps for the decoder and 7.5 fps for the encoder with QCIF for-
mat. In [29], the H.261 coding algorithm is mapped onto a generalized image coder
parallel-pipeline model using general purpose parallel processor systems, achieving
a maximum speedup of about 11 on 16 processors.

An MPEG-2 video codec is implemented on a specialized DSP, the TMS320C80
MVP [13]. The proposed approach models the MPEG-2 codec as an 8� 8 pixel
block-based pipeline. These blocks flow through the four parallel processors of
MVP. The pipeline consists of different codec performing ME, DCT, quantization,
etc. The approach truncates the pipeline chain into 4 parts of equal delay, each part
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being executed sequentially on one dedicated parallel processor. The obtained codec
is able to encode CIF-format 4:2:0 colour intra- and P-pictures in real-time (25 Hz)
with one motion vector per 16/spl times/16 MB.

4.3.5. Object-based parallelization
As opposed to frame-based structure in previous video standards like MPEG-1,

MPEG-2, H.261, and H.263, the structure of MPEG-4 is object based. An MPEG-
4 scene may consist of a single video to multiple videos (rectangular or arbitrarily
shaped) as well as images, text, graphics, audio, and animation. In addition, a scene
is described by BIFS (binary format for scenes) language. Thus, each object in the
scene has to be encoded individually including the scene description, and then mul-
tiplexed to form a single system bitstream. A parallel implementation of the MPEG-
4 encoder has to take into account the dynamic nature of MPEG-4 video in which
multiple objects may arrive or leave the scene. Furthermore, each object may need
a different encoding efficiency and scalability level. Orchestrating various tasks of
the encoder and distributing and dividing objects dynamically into pieces for concur-
rent execution requires efficient scheduling and load balancing schemes.

Several results showing object-based parallelism are reported. Parallelism is ex-
ploited to implement ME for MPEG-4. In a VLSI implementation [58] of the flexible
high throughput ME architecture supporting fixed and variable block size full search
ME, arbitrarily shaped video objects are supported. It is shown the additional area
costs for the support of block-matching with arbitrary shaped objects are very small.
Parallelization of an iterative partial quarter ME algorithm is shown with less than 1
dB PSNR loss. A 2D mesh-based object ME architecture that generates a content-
based video object is reported in [9]. The proposed approach decomposes the mesh
into independent triangular patches that can be processed in parallel. The three steps
ME algorithm is used to simplify the ME of the mesh nodes. The proposed architec-
ture is suitable for very low bit rate online applications and it can be used as a build-
ing block for an MPEG-4 codec.

Wavelet transform, which has inherent parallelism, is a potential candidate algo-
rithm for MPEG-4. In a high speed VLSI architecture [16] of the DWT for MPEG-4,
the input data are separated between even and odd, and the two data streams are
inputted in parallel. This causes faster DWT operation than other architectures.
In the proposed architecture the N-point DWT is computed in N/2 cycles with
100% hardware utilization.

In a parallel MPEG-4 system encoder on a cluster of workstations, [46] three
scheduling algorithms are used for different situations. The encoder is scalable in that
the encoding speed can be adjusted depending upon the number of available proces-
sors. A model generator first generates an analysis of the scene to determine object
dependencies and then a scheduler uses this information to assign video compression
tasks to a group of workstations. The scheduler also assigns the audio, image and
text encoders to a workstation (see Fig. 11). The experiment results indicate that a
real-time encoding rate can be achieved for the sequences with multiple media ob-
jects. Another version of a parallel MPEG-4 video encoder on a cluster of worksta-
tions with load balancing is described in [47]. A shape adaptive data partitioning
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method divides the arbitrary shaped video objects so that each workstation can com-
plete the video encoding at near same time.

Another parallel software implementation of the MPEG-4 video encoder using
multithreaded technique is reported in [42]. A scheduling policy is proposed to
guarantee via a buffer synchronization a significant speed up which under some
special circumstances reach an optimized load balancing solution. The proposed
scheme is tested using the hardware resources of Unix multiprocessor hardware plat-
form.

4.3.6. Exploiting multithreading
Multithreading can be powerful mechanism to implement video encoder on multi-

processor PCs and shared-memory system which are widely available and are cost
effective. It is important to minimize the effect of synchronization overhead by keep
the thread creation overhead small and by processing larger data blocks in each
thread [50]. In order to improve the encoding speed and to minimize the overhead
mentioned before, the number of threads, the amount of data processed by each
thread, management of shared data I/O and the concatenation of results mechanism
should be determined properly. In addition, threads should be properly scheduled.
Without proper scheduling, thread switching and data sharing may cause extra over-
head or resource deadlocks.

In terms of data distribution, GOP level temporal parallelism is the coarsest grain
data distribution in MPEG-2 encoding. The multithreaded encoder proposed in [61]
uses closed GOP (with pattern like IBBPBB1/4P) as the data block unit (see Fig. 12).
No penalty frames exist because the frames inside each GOP do not make refer-
ence to the previous GOP. The encoder uses a fast RAID disk system for I/O. A
raw video input thread reads raw video data into memory, operating concurrently
with the encoding process. Double buffering with round-robin scheduling reduces
the I/O wait time. A concatenator thread combines the encoded GOPs into a single
MPEG-2 stream. As each of the encoded GOPs can be considered as one inde-
pendent MPEG-2 stream, operations for the concatenator are read as unordered

Fig. 11. An object-based MPEG-4 system encoder using a cluster of workstations.
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encoded GOPs from different multithread encoders, refilling information of each
frame inside the GOP and writing the single MPEG-2 stream in the right order.
At the same time, the concatenator acts as a synchronizer for controlling the start
of encoding next batch of GOPs. A separate thread performs audio encoding and
multiplexing. The multiplexer also acts as a synchronizer, after each batch of encod-
ing tasks, N GOPs from N threads are assembled by the multiplexer. Similar to the
audio encoder, the multiplexer incurs a very little computation on the overall system.

In order to occupy the CPU time efficiently, multithreaded video encoders work
exclusively. After encoding each batch of GOPs, raw video pre-loading thread, audio
encoder and multiplexer grab all of the CPU time and work concurrently. Fig. 12
illustrates the scheduling of thread execution. In the very beginning, audio signal cor-
responding to first N GOPs is encoded and first N GOPs are streamed to the buffer
by the raw video pre-loading thread. Then multithreaded video encoders start encod-
ing video frames. Next, encoded video and audio are multiplexed. At the same time,
the next batch of GOPs is streamed to the buffer and the corresponding audio signal
is encoded, and so on.

The multithreaded MPEG-2 encoder runs on a multiple processor CPU. The ob-
jective is to have a full-scale MPEG-2 encoder Including audio encoding and multi-
plexing that is a cost-effective and complete practical solution that is not only highly
efficient but is also scalable in that it can be used on a single-processor or multiple-
processor PC. The encoder uses temporal parallelism with small overhead. The en-
coder achieves faster than real-time and half of real-time encoding rate for CIF
(352� 288) and CCIR601 (720� 576) video sequences, respectively.

4.3.7. Miscellaneous parallel approaches
A system implementing a real-time H.263 codec using a multi-processor DSP sys-

tem, TMS320C80 MVP is described in [67]. The intra frame encoding and the frame
interpolation tasks are divided equally between 2 parallel processors (PP) using data-
partitioning method where even MBs are coded in PP0 while odd MBs are coded in

Fig. 12. Scheduling of threads in the multithreaded encoder.
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PP1. For the inter-frame encoding modules such as ME, DCT/IDCT, quantization
and bitstream encoding, tasks are carried out in parallel using the task-partition-
ing pipeline method. The ME is carried out in PP0 and the rest encoding tasks are
then carried out on PP1. The results of both spatial and temporal parallelization
of H.261 video coding algorithm on IBM SP2 multiprocessor system is also de-
scribed in [117].

A single-chip 480 MOPS programmable DSP for real-time MPEG/H261 video
codec is reported in [98]. The chip employs 4 SIMD processing units. The parallel
architecture is suitable for parallel calculation of matrix-vector product, multiplica-
tion or addition among matrix elements, and matrix-scalar operations. These oper-
ations are frequently used in transform-based video encoding. The DSP can achieve
30 fps for CIP MPEG/H261 encoding.

Using a heterogeneous approach, a parallel processing system using a combina-
tion of a DSP and a PC-AT host processor to increase the computational speed of
the MPEG compression algorithm is reported in [91]. The algorithm tries to divide
its tasks, which are then allocated to the DSP as well as the host processor based on
the relative merits of the tasks, and computed concurrently, resulting in a twofold
increase in speed. In another heterogeneous approach, a multiprocessor system for
high-speed processing of hybrid picture coding algorithms such as H.261, MPEG
or digital HDTV is developed [22], using a combination of a highly parallel 32-bit
microprocessor, DCT and ME function specific devices. In addition, an adaptive
load balancing technique is also proposed that improves the performance of the sys-
tem. An integrated image compression DSP, named VDSP2, integrates four different
types of processors in the architecture that allows them to operate in parallel [3]. The
device is capable of both encoding and decoding the MPEG2-based algorithm by
changing programs on the same chip. A new dedicated hardware for ME is de-
veloped, which consists of two-pixel precision estimation and full and half pixel
precision estimation. The codec can process MPEG2 main profile at main level in
real-time at broadcast resolutions.

A Petri-net based representation is proposed to perform decomposition and
scheduling of H.261 encoder on a TMS320C80 MVP [65]. The speedup of the
H.261 is about 3.7 on 4 processors for QCIF and CIF video, which correspond to
30.7 and 9.25 fps. For a comprehensive analysis of major issues and difficulties in
real-time DSP implementation of hybrid video coding, see [66]. The paper discusses
methodologies for MOPS reduction of ME and DCT, code optimization, task divi-
sion in parallel processing, and codec adaptation. Performance of real-time H.263
and MPEG-4 video systems using these techniques are demonstrated.

4.4. Exploiting parallelism within a single processor

Data-parallel instructions developed by Intel and SUN Microsystems allow to ex-
ecute the same instruction on multiple data set simultaneously, hence allowing a sin-
gle processor to mimic as an SIMD (Single Instructions Steam Multiple Data
Stream) machine. These instructions are used as library routines. The algorithm de-
veloper and programmer needs to understand how to pack the data into processor
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registers in order to exploit parallelism. Operations such as ME and DCT/IDCT
contain ample data-parallelism and, therefore, are natural candidates to benefit from
these instructions.

SUN Microsystems proposed VIS for its Sparc processors. Previously, Intel’s
MMX instructions allowed SIMD integer operations on its Pentium processors.
The recent streaming SIMD extensions (SSE) library expands the capabilities of
the Intel Architecture by allowing floating-point operations on a set of eight regis-
ters. Furthermore, the SSE set provides new integer instructions as well as cache con-
trol instructions to optimize memory access.

Recall that ME computes motion vectors of pixel blocks, typically on a 16 by 16
MB. The motion vector is the relative displacement of the MB from one frame to a
reference frame. Eq. (3) can be used to calculate the MAE (i.e., SAD/256). The C
code for calculating MAE function is listed in Fig. 13.

The code needs 16� 16 iterations for calculating the SAD. One SSE instruction,
psadbw, can effectively speed up the SAD calculation. A 64-bit register stores eight
8-bit values, which is subtracted from another eight 8-bit values and the SAD is cal-
culated. Block matching is implemented by using psadbw. Two psadbw instructions
calculate the SAD between the pixels in one row of the reference and current MB.
These two SADs are added to produce a 16-bit (word) result. It takes about 20 as-
sembly instructions for calculating absolute differences of 16 pixels. For SSE, only
two psadbw instructions are required. Moreover, fewer instructions are executed in
SSE version because unrolling the loop four times save on loop overhead.

DCT and IDCT function provide the basis for compression on the 8� 8 pixels
block by decomposing pixels value into a weighted sum of spatial frequencies, and
IDCT is the inverse of it. The DCT for one 8� 8 elements block takes 4096 multi-
plications and 4032 additions. A number of algorithms are proposed for fast calcu-
lation of the 1D and 2D DCT that can be suitable for exploiting VIS and SSE. Most
algorithms are variants of Lee’s Fast DCT algorithm [62], Winograd’s FFT [105],
and AAN algorithm [10]. VIS and SSE can speed up the calculation of DCT by pro-
cessing four 16-bit data elements in parallel [8].

Fig. 13. The C code for implementing MAE.
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5. Conclusions

While the speeds of individual processors continue to rise at a sustained pace, the
computing requirements driven by applications have always out-paced the available
technology. This prompts the designers to seek faster and more cost-effective com-
puter systems. Parallel and distributed computing goes one step ahead to provide
computing power beyond the technological limitations of a single processor system.
Both hardware and software approaches continue to make improvements, each with
its own suitability to various applications. Cost effective hardware systems are now
widely available. Software-based compression previously inconceivable is now ex-
tending from research laboratories and universities to the commercial market. Single
chip solution are now widely available, but efficient designs using parallel architec-
tures for multiple chips and pipelining techniques continue to result in fast encoder
circuits for advanced applications. Programmable multimedia processors are becom-
ing increasingly popular as they can be flexibly embedded in complex applications.
While several simple video compression solution can now be handled by a single pro-
cessor, efforts to achieve higher picture quality and lowering bit data rates continue
to drive the research in compression to develop more complex algorithms that can
benefit from the availability of parallel processors. Parallel processing can therefore
be very effective for high-quality video applications where tuning of parameters and
multiple passes of encoding are needed to generate the best possible compressed
video signal.

Software-based approach requires optimizations at all design and implementa-
tion phases, including algorithmic enhancements, efficient implementations of all
encoding modules, and taking advantage of certain architectural features of the ma-
chine. Since cost is a major factor in Internet-based applications, the availability of
networked computers using off-the-shelf components and using portable parallel
programming environments, parallel processing for software-only encoders can be
exploited in a cost effective manner. In software-based compression system using
parallel processing, the entire system including the computation, and I/O (reading
of uncompressed data and writing of compressed data) must work in a balanced
fashion in order to achieve the final high throughput. In addition, a scalable design
is highly suitable for allowing adjustments in compression speed, resolution, and
quality. Parallel processing also helps in designing new ME algorithms for more ef-
fective motion vector search and rate control algorithms for efficient bit allocation
process.
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