
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 687

Transactions Briefs

Performance of Software-Based MPEG-2 Video
Encoder on Parallel and Distributed Systems

Shahriar M. Akramullah, Ishfaq Ahmad, and Ming L. Liou

Abstract—Video encoding due to its high processing requirements
has been traditionally done using special-purpose hardware. Software
solutions have been explored but are considered to be feasible only for
nonreal-time applications requiring low encoding rates. However, a soft-
ware solution using a general-purpose computing system has numerous
advantages: It is more available and flexible and allows experimenting
with and hence improving various components of the encoder. In this
paper, we present the performance of a software video encoder with
MPEG-2 quality on various parallel and distributed platforms. The
platforms include an Intel Paragon XP/S and an Intel iPSC/860 hypercube
parallel computer as well as various networked clusters of workstations.
Our encoder is portable across these platforms and uses a data-parallel
approach in which parallelism is achieved by distributing each frame
across the processors. The encoder is useful for both real-time and
nonreal-time applications, and its performance scales according to the
available number of processors. In addition, the encoder provides control
over various parameters such as the size of motion search window, buffer
management, and bit rate. The performance results include comparisons
of execution times, speedups, and frame encoding rates on various
systems.

Index Terms—Motion estimation, MPEG-2, network of workstations,
parallel and distributed systems, software, video coding.

I. INTRODUCTION

Video is a fundamental component of a wide spectrum of mul-
timedia applications. The great interest for digital—as opposed to
analog—video is because it is easier to transmit, access, store, and
manipulate visual information in a digital format. The key obstacle
to using digitized video, however, is the enormous amount of data
required to represent video in digital format. Compression of the
digital video, therefore, is an inevitable solution to overcome this
obstacle. Compression algorithms like MPEG-2 [3] emerged with
a view to reduce the data rate to a manageable level by taking
advantage of the redundancies present in both spatial and temporal
domains of the digital video. Video compression requires an encoder
and a decoder. An encoder compresses the data for transmission or
storage, and a decoder decompresses the data to make the video in
a presentable form. Since video encoding is much more complex
and time-consuming than decoding, efforts are generally required to
speedup the encoding process.

Video encoding can be done using special-purpose hardware, but a
hardware-based approach has certain disadvantages: first, a hardware-
based encoder is usually very expensive and ordinary users cannot
afford it, and, thus, the number of potential users is restricted; second,

Manuscript received September 30, 1996; revised January 31, 1997. This
paper was recommended by Guest Editors B. Sheu, C.-Y. Wu, H.-D. Lin, and
M. Ghanbari.

S. M. Akramullah and M. L. Liou are with the Department of Electrical
and Electronic Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong.

I. Ahmad is with the Department of Computer Science, The Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong.

Publisher Item Identifier S 1051-8215(97)05876-X.

a dedicated hardware is less flexible and can become obsolete; and
third, a hardware-based encoder is often optimized for a particular
coding algorithm, and thus does not allow exploration of other present
and future algorithms.

A software solution using general-purpose computing platforms,
on the other hand, is more available. The inherent modular nature
of various video compression algorithms allows experimenting with
and, hence, improving various parts of the encoder independently.
For example, exploring new motion estimation algorithms is an
active area of research, and software solutions have the flexibility
to allow experimentation with such algorithms. In addition, for
nonreal-time applications, a software implementation can produce
better quality video compression by tuning various parameters and
by allowing multiple passes for optimization. However, the very high
computation requirements of video applications often overwhelm the
single-processor, sequential computers [1], [11]. Therefore, exploiting
the potentially enormous computing power offered by parallel and
distributed technologies is a promising solution for video encoding.

A software-based encoder using multiple processors requires an
efficient parallelization scheme. There have been some previous
approaches ([5], [10], [11], [15]–[17]) on parallel video encoding
and decoding. An MPEG-1 encoder has been reported in [17] with a
special-purpose parallel hardware using digital signal processors. A
parallel implementation of the H.261 video coding algorithm using
a single-instruction multiple-data (SIMD) parallel machine has been
reported in [10]. This system is reported to have achieved a frame
rate of about 5 frames/s. Distributed load balancing schemes for a
parallel video encoding system have been described in [6] involving
a hybrid video-encoding algorithm recommended by CCITT SG XV
for p�64 kb/s. Parallel MPEG-1 video encoding with a performance
of about 4 frames/s using nine HP 9000/720 machines connected via
Ethernet has been documented in [5]. Subsequently, it was modified
[15] to run on the Intel Touchstone Delta and the Intel Paragon. An
implementation of MPEG-2 encoding using a local area network is
described in [19]; the performance of this implementation in terms of
the frame encoding rate is not reported. These works, in summary,
lack the prospect of real-time video encoding.

Networked clusters of workstations using communication environ-
ments such as Express, PVM, and MPI are becoming increasingly
faster and cost effective. Since video compression involves processing
of a large number of operations, it can be decomposed along a spatial
dimension, making parallelism a logical method for handling the
processing. In this paper, performance of a parallel video encoder
with MPEG-2 quality on various parallel computers and networks
of workstations is presented. Our objective is to make video com-
pression algorithms architecture-independent without compromising
the processing speed. The idea is to make it portable, flexible,
and scalable. The portability of the code implies that the parallel
software should be able to run on a vast variety of high-performance
parallel supercomputers as well as general-purpose networks of
workstations. Flexibility means that the performance of the software
in terms of its processing speed should not depend on a particular
hardware configuration, rather it should optimize itself according
to the available hardware. Scalability means that by increasing the
computing resources, the processing speed should increase as linearly
as possible.

1051–8215/97$10.00 1997 IEEE

688 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997

The platforms used in our experimentation include an Intel
Paragon/XP-S, an Intel iPSC/860 hypercube, a cluster of HP
workstations, a cluster of SGI workstations, and a cluster of
SUN workstations. Our encoder uses a data-parallel approach in
which parallelism is achieved by distributing each frame across the
processors. The encoder is useful for both real-time and nonreal-time
applications, and its performance scales according to the available
number of processors. The rest of the paper is arranged as follows.
Section II provides a brief overview of the MPEG-2 algorithm,
Section III elaborates the parallelization technique, and Section IV
describes the parallel and distributed platforms. Section V includes
experimental results, while the last section concludes the paper.

II. OVERVIEW OF MPEG-2

As opposed to MPEG-1 which is targeted for applications requiring
1.5 Mb/s, MPEG-2 [3] is intended for a variety of applications at a
rate of 2 Mb/s or above with a quality ranging from good quality
National Television Standards Committee (NTSC) to high-definition
television (HDTV). MPEG-2 embodies different modules, some of
which are very computation intensive. Since MPEG-2 is designed as
a genericstandard to support a wide variety of applications, several
bit rates, and various qualities and services, it often needs to process
large amounts of data—for example, more than 10 million pels/s
according to CCIR 601 specification.

The aim of MPEG-2, such as having better picture quality while
keeping the provision for random access to the coded bitstream, is a
rather difficult task. Obtaining good picture quality at the bit rates of
interest demands very high compression, which is not achievable with
intraframe coding alone. The random access requirement, however, is
best satisfied with pure intraframe coding. This necessitates a delicate
balance between intra- and interframe coding and between recursive
and nonrecursive temporal redundancy reduction. This leads to the
definition of intra coded (I), predictive coded (P), and bidirectionally
predictive coded (B) pictures [3].

The algorithm first selects an appropriate spatial resolution for
the signal. It then performs motion estimation by block matching.
Motion estimation refers to finding the displacement of a particular
macroblock (16� 16 or 16� 8 pel area) of the current frame with
respect to a previous or future reference frame or both of them. All
searches are based on minimum absolute difference (MAD) matching
criteria, i.e., on minimizing the accumulated absolute values of the
pel differences for all macroblocks. To achieve temporal redundancy
reduction, motion compensation is used both for causal prediction
of the current picture from a previous reference picture and for
noncausal, interpolative prediction from past and future reference
pictures.

In order to achieve spatial redundancy reduction, the difference
signal, i.e., the prediction error, is further compressed using the block
transform coding technique which employs the two-dimensional
(2-D) orthonormal 8� 8 discrete cosine transform (DCT) to remove
spatial correlation. The resulting 63 ac transform coefficients are
mapped in an alternate scanning pattern (or zig–zag scanning pattern
when providing compatibility to MPEG-1) before it is quantized in
an irreversible process that discards the less important information.
In MPEG-2, adaptive quantization is used at the macroblock (16�

16 pel area) layer, which permits smooth bit-rate control as well as
perceptually uniform quantization throughout the picture and image
sequence. Finally, the motion vectors are combined with the residual
DCT information and transmitted using variable length codes. The
variable length coding tables are nondownloadable and are therefore
optimized for a limited range of compression ratios appropriate for
the target applications.

Fig. 1. The cluster of workstations connected as a two-dimensional virtual
topology.

III. T HE PARALLEL IMPLEMENTATION

To achieve a portable and scalable parallel implementation of the
MPEG-2 video encoder, we have used thedata-parallel or single
program multiple data(SPMD) programming paradigm. Under this
paradigm, we partition1 the frame-data into smaller pieces which are
assigned to different processors. A single program is written for all
processors which asynchronously execute the program on their local
pieces of data. Communication of data and synchronization is done
through message-passing usingExpress[13] parallel programming
environment. To distribute a frame data across processors, we set
up a virtual multidimensional grid of processors regardless of the
underlying hardware topology. For example, a cluster of worksta-
tions connected via a bus such as Ethernet is turned into a virtual
2-D grid (see Fig. 1). The processors are assignedx–y coordinates
which facilitate interprocessor communication and identification of
the neighboring processors. The data is then mapped onto the virtual
processor grid.

A. Data Partitioning and Processor Allocation

For efficient parallel computing, the design of distributed data
structures are of particular importance. This design should be made
with a view to balance the computational load on individual pro-
cessors and to gain maximum parallelism of interprocessor data
communications. In our approach, a frame of sizeNx � Ny is
partitioned into rectangular tiles of equal sizeMx � My, and
each tile is assigned to one processor of the array, preserving the
correspondence between nearest neighbor tiles and nearest neighbor
processors. In order for the frame to fit on a rectangular processor
array of sizePx�Py, we should havePxMx � Nx andPyMy � Ny.
The size of a tileMx�My depends on the availability of processors.
For instance, if only one processor is available,Mx = Nx and
My = Ny.

A frame data needs to be distributed as evenly as possible to all
the processors. This can be done, for example, by just apportioning
the requisite part of the frame data (one or more 16� 16 mac-
roblock) to the corresponding processors (see Fig. 2). But this method

1Note that in an even simpler approach [15], an entire video sequence can
be partitioned into groups of pictures which can then be running multiple
copies of sequential encoder on many processors. While this approach can be
useful for off-line encoding, it is not suitable for real-time where it must be
done on a frame-by-frame basis.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 689

Fig. 2. Distribution of a frame on the virtual network topology.

TABLE I
PICTURE QUALITY IN TERMS OF PSNR

necessitates excessive communication among the processors as the
search window (during motion estimation) moves to the boundary.
On the contrary, usually each processor has enough memory to store
the entire search window. Taking this into account, it is possible
to eliminate excessive communication. In this case, the frame data
is distributed among the processors allowing overlap such that each
processor is allocated some redundant data, depending on the user-
supplied size of the motion search window.

Let P andQ be the height and the width of the frame, respectively,
and letp be the total number of processors to be used, withph being
the number of processors in the horizontal dimension andpv being
the number of processors in the vertical dimension of the 2-D grid
(thus, p = ph � pv). If the search window size is the size of the
macroblocks in a particular processor�W in both dimensions, with
overlapped (redundant) data distribution, givenph and pv, one can
determine the local frame size in each processor, which is given by

Xlocal =
Q

ph
+ 2W �

P

pv
+ 2W : (1)

We use this approach because it avoids interprocessor communica-
tion during motion estimation. In our implementation, the number of
processors to be used is an input parameter, allowing the control

TABLE II
FRAME ENCODING RATE ON SGI WORKSTATIONS (FRAMES/S)

TABLE III
FRAME ENCODING RATE ON SUN WORKSTATIONS (FRAMES/S)

TABLE IV
FRAME ENCODING RATE ON HP WORKSTATIONS (FRAMES/S)

of the granularity (workload assigned to each processor) of the
problem. Therefore, it can be ported to environments with a few
powerful processors, to those with a large number of relatively slow
processors, as well as to hardware platforms with limited memory
or slow communication. Using our partitioning scheme, a calculation
reveals that the maximum number of processors that can be used is
330 [1] (for a frame size of 360� 240).

B. Implementation Features

In our parallel implementation, motion compensation is done by
forming a prediction for each nonintra coded macroblock from
previous or future reference frames. For the forward or backward
prediction types, the final prediction is formed in-place in a single
step. For the other prediction types, two steps are involved, where
each step is like the forward/backward prediction; the final prediction
is formed by averaging two independent predictions from the two
steps.

For motion estimation, the search window size is a user-defined
parameter. By using the estimated motion vectors and the reference
frames, the prediction for the whole frame is constructed. Intracoded
macroblocks, without having motion vectors, are treated as having a
constant prediction of arbitrary value (128 in this implementation).

690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997

(a) (b)

(c) (d)

Fig. 3. Speedup of (a) motion estimation, (b) DCT, (c) quantization and VLC and (d) overall speedup on the SGI cluster.

The prediction error is transformed into frequency domain by
applying DCT. For both DCT and inverse DCT (IDCT), we distribute
the data such that each processor performs DCT and/or IDCT on
one or more 8� 8 pixel-block of data. In order to have a fast
implementation and to cope with the IEEE specification of IDCT
accuracy, we have used Wang’s fast algorithm [18] with double
precision.

Quantization and variable length coding are treated as a single
module, since the rate control strategy requires highly localized
feedback from the coded data buffer in order to derive the macroblock
quantization scale factor. Therefore, quantization is done in parallel

with the final macroblock coding stages. The strategy is similar to
the one described in [4].

The allocation of target bits for the current picture being coded is
based on a global bit-budget for the GOP, that is, a bit budget for the
coded sequence of pictures, and a ratio of weighted relative coding
complexities of the three picture types. The number of target bits
for the current picture is broadcasted to all the processors. All the
processors then devise their local target bits based on the received
target bits for the whole picture and according to the amount of data
available in that processor. The local buffer fullness in each processor
is updated on a macroblock basis.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 691

Fig. 4. Comparison of modules and frame processing speed on the SGI cluster.

The coding complexity is estimated locally as the product of the
average macroblock quantization step size and the number of bits
generated by each processor. The local bit allocation for the current
macroblock is based on the deviance from estimated buffer fullness
(i.e., the product of macroblock number and the average bits per
macroblock) in a particular processor and the normalized spatial
activity, similar to the sequential implementation [12]. The variance
of a macroblock (calculated earlier on the four 8� 8 luminance
blocks, regardless of the ultimate macroblock prediction mode) has
been chosen as the spatial activity measure to perform fine tuning
of the quantization step size. The macroblock quantization scale is
adapted according to the deviation of the locally generated bits and the

estimated uniform distribution of bits in each processor, controlled by
a compensation factor (difference between predicted and true buffer
fullness of the current macroblock).

IV. PARALLEL AND DISTRIBUTED PLATFORMS

In our experiments, we used five systems which are briefly de-
scribed below.

The Network of SUN Workstations:The cluster of Sun worksta-
tions includes two Sparcstation 2, two Sparcstation IPX, and twelve
Sparcstation 10. All 16 workstations are connected to each other via
a 10-Mb/s switched Ethernet.

692 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997

(a) (b)

(c) (d)

Fig. 5. Speedup of (a) motion estimation, (b) DCT, (c) quantization and VLC and (d) overall speedup on the paragon.

The Network of SGI Workstations:The network of SGI worksta-
tions consists of 16 SGI workstations of type SGI-5 connected via
a 10-Mb/s switched Ethernet. They all use similar processors with
homogeneous hardware capabilities.

The Network of HP Workstations:This cluster comprises four HP
workstations linked with a fiber distributed data interface (FDDI)
ring giving an aggregate bandwidth of 3.6 Gb/s. Each workstation
is equipped with 144-Mbyte memory, a 400-Mbyte system disk, a
1-Gbyte SCSIdisk, and a 2-Gbyte fast wideSCSIdisk for storage

of user’s data. The CPU of the HP workstations are HP 9000 model
735. The HP 735 machines use 99-MHz Precision Architecture RISC
(PA-RISC) 7100 microprocessor.

The Intel iPSC/860 Hypercube:The Intel iPSC/860 is a message-
passing multiple instructions stream, multiple data stream (MIMD)
distributed-memory parallel system consisting of compute nodes and
a host computer [7]. By configuration, the compute nodes are inde-
pendent processor/memory pairs with capability of running distinct
programs concurrently. These nodes are connected as ahypercube.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 693

Fig. 6. Comparison of modules and frame processing speed on the paragon.

Each node consists of a 32-b i860 RISC processor with up to
16 Mbyte of local memory. The compute nodes can be thought
of belonging to a node network, where each node interfaces to the
node network through its direct-connect module (DCM). Essentially,
communication between nearest neighbors occurs over the DCM
channel using a circuit-switched routing method.

The Intel Paragon XP/S:The Intel Paragon XP/S [8] is also
a distributed-memory MIMD machine and was first delivered
in September 1992. Its processing nodes are arranged in a 2-D
rectangular grid. The system consists of three types of nodes:
compute nodes for executing parallel programs; service nodes

offering capabilities of a UNIX system, including compilers and
program development tools; and I/O nodes providing interface to
mass storage and LAN’s. All three types of nodes are implemented
by the same general purpose (GP) node hardware, the i860 XP using
a clock speed of 50 MHz.

Paragon’s mesh routing chips (MRC’s) connected by high-speed
channels are the basis of the communication network connecting
the nodes. There are two independent 16-b wide channels—one
for each direction—between two neighboring nodes. The MRC’s
using wormhole routing can route messages autonomously and are
independent of the attached nodes. For our experiments, we have

694 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997

TABLE V
FRAME ENCODING RATE ON THE INTEL PARAGON (FRAMES/S)

TABLE VI
FRAME ENCODING RATE ON THE INTEL IPSC/860 (FRAMES/S)

used a 140-node Paragon at the Hong Kong University of Science and
Technology, Hong Kong, and a 512-node Paragon at the California
Institute of Technology.

V. EXPERIMENTAL RESULTS

Experiments were performed on all five platforms described above,
using various numbers of processors. We used five video sequences2:
Football (360 � 240), Table Tennis,(360 � 240), Salesman,(360
� 288), Miss America,(352� 288), andSwing(352� 288). These
sequences are representative of different kinds of motion and are very
useful for testing motion estimation.

The measured time was averaged over 50 frames of a video
sequence. The time to process 50 frames of a video sequence was
not necessarily the same in each processor, so the average was also
taken over all the processors. All of the timings were measured with
microsecond precision.

We used a constant bit rate of 5 Mb/s and avideo-buffering-verifier
buffer size of 112 as input for all 50 frames, with a group of pictures
(GOP) of 12 and an I-to-P frame distance of three, while the search
window was�11 pels for P-pictures and�10 pels for B-pictures.
With a view to achieve speedup in motion estimation, 2-D-logarithmic
search [9] was performed and the corresponding performance was
monitored. In order to measure the quality of the video, we used the
peak signal-to-noise ratio (PSNR), as there exists no unique metric
for this measure [5]. The average values of PSNR obtained for the
luminance frames of different sequences using our encoder are shown
in Table I.

2Although picture resolutions specified by CCIR601 (720� 480 or 720�
576) are often used for MPEG-2 implementations, our experiments involved
smaller sized pictures described above. However, since our implementation is
scalable, it can be performed on pictures of any resolution. In order to achieve
maximum parallelism, larger pictures should be divided more (up to a single
macroblock).

Note that there is no performance loss due to parallelization since,
in our parallel programming model, various MPEG-2 modules in
each processor use the same computational logic that is used in
the sequential version; the magnitude of PSNR is dependent on
the motion estimation algorithm and could be improved with an
exhaustive search technique.

The frame encoding rate using various numbers of processors on
the network of SGI workstations is shown in Table II.

Fig. 3 shows the speedups of various computational modules as
well as the overall speedup. The linearly increasing curves for the
modules show that use of more processors will result in greater speed
of processing a picture. Even the curve for the overall computation
is almost linearly increasing, indicating that if more processors are
involved, less time will be required to encode a frame.

Fig. 4 illustrates the comparison of actual time taken to complete
various MPEG-2 modules and a plot of the frame encoding rate. It
shows that “the others” is the most time-consuming module. This
module, in fact, consists of some housekeeping functions required
to build the parallel environment, for example, decomposition of the
processor array into a 2-D mesh and to start the parallel daemons. It
also involves all the initialization, allocation of memory, validating
input parameters according to their relations, writing header infor-
mation in the bitstream, shuffling of reference frames during coding,
putting the sequence end code in the bitstream, etc. Therefore, the
time taken by this module depends on the parallel platform.

The plot of the encoding rate clearly shows that as the number of
processors increases, the encoder is able to process more frames per
second. The shapes of the curves are almost linear and it is expected
that if enough number of processors are available, the encoder can
perform real-time MPEG-2 video encoding. In other words, if more
processors are involved and work load is divided to each processor,
we can encode larger frame sizes at the same expense of time. A
simple calculation can determine the number of processors needed for

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 695

real-time video encoding, and it turns out that a network of about 215
general-purpose SGI workstations will suffice to achieve real-time
video encoding. However, for larger frame sizes, more workstations
will be required.

The frame encoding rate on the network of SUN workstations is
shown in Table III. Compared to the SGI cluster, the performance of
the SUN cluster is slightly lower. A simple calculation reveals that a
network of 230 general-purpose SUN workstations will be required
for real-time video.

The frame encoding rate on the network of HP workstations is
shown in Table IV. The performance of the HP cluster is comparable
to that of the SGI cluster and better than that of the SUN cluster. With
a rough estimation, we can expect a network of 124 general-purpose
HP workstations to achieve real-time video encoding.

The frame encoding rate on the Intel Paragon is shown in Table V
indicating a real-time encoding rate using 330 processors. Even with
256 processors, the encoding rate is close to real-time. Fig. 5 depicts
the speedups of various computational modules and the overall
speedup. The results indicate that the encoding rate increases almost
linearly with an increase in the number of processors up to 128
processors. The gain in performance is not linear beyond that. Fig. 6
shows the relative time taken by each module and the frame encoding
rate. This figure is again consistent with the results of the SGI cluster,
that is, various components of MPEG-2 are parallelized efficiently but
the performance bottleneck is the overhead due to parallelization.

The frame encoding rate on the Intel iPSC/860 is shown in
Table VI. These results are not as encouraging as those on the
Paragon but indicate that workstation clusters can outperform some
of the parallel machines. The linear nature of the curves indicate that
real-time processing can be achieved using about 452 processors of
the hypercube.

VI. CONCLUSIONS

We have presented the implementation and performance of a
parallel MPEG-2 video encoder on various parallel and distributed
platforms. In our implementation, video data within each frame are
distributed among the processors such that both real-time and nonreal
time operations are possible. The encoder is suitable for on-line
as well as off-line video encoding. Execution of the same encoder
on various parallel platforms ensures portability of the program.
Different combinations of processors have been used and the results
show that the problem does scale as the number of processors
increases. Almost linear speedup in processing is achieved on all
the platforms.

The results indicate that various components of MPEG-2 can be
parallelized very efficiently. Also, a comparison of the workstation
clusters with parallel machines indicate that the former can be a viable
choice for video encoding provided the overhead of parallelization
is minimized. Since high-performance workstations are becoming
increasingly faster, real-time video encoding is possible with suf-
ficiently large number of such workstations and further optimization
in the software. Our current efforts are directed in that direction

REFERENCES

[1] S. M. Akramullah, “Real-time MPEG-2 video encoding on parallel
and distributed systems,” M.Phil. thesis, The Hong Kong University
of Science and Technology, Dept. Electr. Electronic Eng., July 1995.

[2] L. Chiariglione, “The development of an integrated audiovisual coding
standard: MPEG,”Proc. IEEE,vol. 83, no. 2, pp. 151–157, Feb. 1995.

[3] Draft International Standard ISO/IEC 13818, “Generic coding of moving
pictures and associated audio,” Seoul, Nov. 1993.

[4] S. Eckart and C. Fogg, “ISO/IEC MPEG-2 software video codec,” in
Proc. SPIE,Feb. 1995, vol. 2419, pp. 100–109.

[5] K. L. Gong and L. A. Rowe, “Parallel MPEG-1 video encoding,”
presented at 1994 Picture Coding Symp., Sacramento, CA, Sept. 1994.

[6] Z. Huang, Y. Takeuchi, and H. Kunieda, “Distributed load balancing
schemes for parallel video encoding system,”IEICE Trans. Fundamental
Electron. Commun. Comput. Sci.,vol. E77-A, no. 5, pp. 923–930, May
1994.

[7] Intel Supercomputer Systems Division, Intel Corporation,iPSC/860
System User’s Guide,Mar. 1992.

[8] Intel Supercomputer Systems Division, Intel Corporation, Intel Paragon
XP/S technical summary, Jan. 1994.

[9] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in interframe image coding,”IEEE Trans. Commun.,vol. 29, pp.
1799–1808, Dec. 1981.

[10] A. C. P. Loui, A. T. Ogielski, and M. L. Liou, “A parallel implementa-
tion of the H.261 video coding algorithm,” inProc. IEEE Workshop on
VSPC,Raleigh, NC, Sept. 1992, pp. 80–85.

[11] P. Moulin, A. T. Ogielski, G. Lilienfeld, and J. W. Woods, “Video
signal processing and coding on data-parallel computers,”Digital Signal
Processing,vol. 5, no. 2, pp. 118–129, Apr. 1995.

[12] MPEG Software Simulation Group,MPEG-2 Video Encoder, Version
1.1a, July 1994.

[13] Parasoft Corporation,Express System User’s Guide. Pasadena, CA,
1992.

[14] P. Pirsch and H. Jeschke, “A MIMD multiprocessor system for real-time
image processing,” inProc. SPIE,vol. 1452, pp. 544–555.

[15] K. Shen, L. A. Rowe, and E. J. Delp, “A parallel implementation of an
MPEG1 encoder: Faster than real-time,” inProc. SPIE,Digital Video
Compression: Algorithms and Techniques, San Jose, CA, Feb. 1995,
vol. 2419.

[16] F. Sijstermans and J. van der Meer, “CD-I full-motion video encoding
on a parallel computer,”Commun. ACM,vol. 34, no. 4, pp. 81–91, Apr.
1991.

[17] H. H. Tayloret al.,“An MPEG encoder implementation on the Princeton
Engine video supercomputer,” inData Compression Conference 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993, pp. 420–429.

[18] Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing,vol. ASSP-32, no. 4, pp. 803–816, Aug. 1984.

[19] Y. Yu and D. Anastassiou, “Software implementation of MPEG-II video
encoding using socket programming in LAN,” inProc. SPIE,Feb. 1994,
vol. 2187, pp. 229–240.

