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Abstract

Given a parallel program represented by a task graph, the objective of a scheduling algorithm is to
minimize the overall execution time of the program by properly assigning the nodes of the graph to the
processors. This multiprocessor scheduling problem is NP-complete even with simplifying assumptions,
and becomes more complex under relaxed assumptions such as arbitrary precedence constraints, and
arbitrary task execution and communication times. The present literature on this topic is a large repertoire
of heuristics that produce good solutions in a reasonable amount of time. These heuristics, however, have
restricted applicability in a practical environment because they have a number of fundamental problems
including high time complexity, lack of scalability, and no performance guarantee with respect to optimal
solutions. Recently, genetic algorithms (GAs) have been widely reckoned as a useful vehicle for obtaining
high quality or even optimal solutions for a broad range of combinatorial optimization problems. While a
few GAs for scheduling have already been suggested, in this paper we propose a novel GA-based
algorithm with an objective to simultaneously meet the goals of high performance, scalability, and fast
running time. The proposed Parallel Genetic Scheduling (PGS) algorithm itself is a parallel algorithm
which generates high quality solutions in a short time. By encoding the scheduling list as a chromosome,
the PGS algorithm can potentially generate an optimal scheduling list which in turn leads to an optimal
schedule. The major strength of the PGS algorithm lies in its two efficient genetic operators: the order
crossover and mutation. These operators effectively combine the building-blocks of good scheduling lists
to construct better lists. The proposed algorithm is evaluated through a robust comparison with two
heuristics best known in terms of performance and time complexity. It outperforms both heuristics while
taking considerably less running time. When evaluated with random task graphs for which optimal
solutions are known, the PGS algorithm generates optimal solutions for more than half of the test cases
and close-to-optimal for the other half.

t. This research was supported by the Hong Kong Research Grants Council under contract number HKUST
734/96E.



1 Introduction

To effectively harness the computing power of high-performance parallel computing
systems, it is crucial to employ a judicious scheduling algorithm for proper allocation and
sequencing of tasks on the processors. Given a parallel program modeled by a node- and edge-
weighted directed acyclic graph (DAG), finding an optimal schedule with a minimum turnaround
time without violating precedence constraints among the tasks is well known to be an NP-
complete problem [10], [13], [39]. Only for a few simplified cases [4], [10], [13], [29], [32], the
problem can be solved by a polynomial-time algorithm. If the simplifying assumptions of these
cases are relaxed, the problem becomes NP-hard in the strong sense. Thus, it is unlikely that the
general scheduling problem can be solved in a polynomial-time, unless P = NP . Therefore,
state-space search techniques are considered as the only resort for finding optimal solutions [8],
[9]. However, most of these techniques are still designed to work under restricted environments
and are usually not applicable to general situations. Furthermore, a state-space search incurs an
exponential time in the worst case. As such, with these techniques even moderately larger
problems cannot be solved in a reasonable amount of time.

Due to the intractability of the scheduling problem and the ineffectiveness of state-space
search techniques, many polynomial-time heuristics are reported to tackle the problem under
more pragmatic situations [1], [3], [14], [26]. The rationale of these heuristics is to sacrifice
optimality for the sake of reduced time complexity. While these heuristics are shown to be
effective in experimental studies, they usually cannot generate optimal solutions, and there is no
guarantee in their performance in general. The major weakness of these heuristics is that they
usually employ a deterministic greedy strategy which can be sensitive to the scheduling
parameters such as the number of target processors available and the structure of the input task
graphs. Improving the performance of a heuristic generally increases its complexity.
Furthermore, these heuristics are usually not scalable in terms of their running time and solution
quality for large problem sizes.

In view of the drawbacks of the existing sequential scheduling heuristics, we aim at
designing a new scheduling scheme which has a high capability to generate optimal solutions
and is also fast and scalable. To obtain high quality solutions, we devise a genetic formulation of
the scheduling problem, in which scheduling lists (ordering of tasks for scheduling) are
systematically combined by using computationally efficient operators so as to determine an
optimal scheduling list. To achieve a reduced time complexity, the proposed algorithm is
parallelized. The algorithm not only scales well with the number of processors but can also
handle general DAGs without making simplifying assumptions.

Inspired by the Darwinian concept of evolution, genetic algorithms [6], [11], [16], [18], [36],
[40] are global search techniques which explore different regions of the search space
simultaneously by keeping track of a set of potential solutions called a population. According to
the Building-block Hypothesis [16] and the Schema Theorem [16], a genetic algorithm systematically
combines the good building-blocks of some selected individuals in the population to generate



better individuals for survival in a new generation through employing genetic operators such as
crossover and mutation. Another attractive merit of genetic search is that the parallelization of
the algorithm is possible. With these distinctive algorithmic merits, genetic algorithms are
becoming more widely used in many areas to tackle the quest for optimal solutions in
optimization problems. Indeed, genetic algorithms have been applied to the data partitioning
problem [7], the graph partitioning problem [2], the robotic control problem [15], the standard
cell placement problem [33], etc.

We formulate the scheduling problem in a genetic search framework based on the
observation that if the tasks of a parallel program are arranged properly in a list, an optimal
schedule may be obtained by scheduling the tasks one by one according to their order in the list.
With this concept, we encode each chromosome to be a valid scheduling list, one in which the
precedence constraints among tasks are preserved. We also design two genetic operators: the
order crossover and mutation. These operators effectively combine the good features of existing
scheduling lists to form better lists. Using random task graphs for which optimal schedules are
known, we have found that the proposed algorithm can generate optimal solutions for a
majority of the test cases. Furthermore, when compared with two efficient scheduling heuristics,
the proposed algorithm outperforms them while taking much less computation time due to its
effective parallelization.

The remainder of the paper is organized as follow. In the next section we provide the
problem statement. In Section 3 we give a background of genetic search by presenting a brief
survey of genetic techniques. In Section 4 we present the proposed parallel genetic scheduling
algorithm. Examples are used to illustrate the functionality of the proposed technique. In Section
5 we describe our experimental study and its results. We also describe some related work on
using genetic algorithms for scheduling in Section 6. Finally, we provide some concluding
remarks and future research directions in the last section.

2 Problem Statement

In static scheduling, a parallel program can be modeled by a directed acyclic graph (DAG)
G = (V,E), where V is a set of v nodes and E is a set of e directed edges. A node in the DAG
represents a task which in turn is a set of instructions that must be executed sequentially without
preemption in the same processor. The weight associated with a node, which represents the
amount of time needed for a processor to execute the task, is called the computation cost of a node
n; and is denoted by w(n;). The edges in the DAG, each of which is denoted by (n;, n;),
correspond to the communication messages and precedence constraints among the nodes. The
weight associated with an edge, which represents the amount of time needed to communicate
the data, is called the communication cost of the edge and is denoted by c(n;,n;). The
communication-to-computation-ratio (CCR) of a parallel program is defined as its average
communication cost divided by its average computation cost on a given system.

The source node of an edge incident on a node is called a parent of that node. Likewise, the



destination node emerged from a node is called a child of that node. A node with no parent is
called an entry node and a node with no child is called an exit node. The precedence constraints
of a DAG dictate that a node cannot start execution before it gathers all of the messages from its
parent nodes. The communication cost among two nodes assigned to the same processor is
assumed to be zero. Thus, the data available time (DAT) of a node depends heavily on the
processor to which the node is scheduled. If node n; is scheduled, ST(n;) and FT(n;) denote the
start-time and finish-time of n;, respectively. After all nodes have been scheduled, the schedule
length is defined as max;{ FT(n;)} across all nodes. The objective of scheduling is to minimize
the schedule length by proper allocation of the nodes to the processors and arrangement of
execution sequencing of the nodes without violating the precedence constraints. We summarize
in Table 1 the notations used in the paper. An example DAG, shown in Figure 1(a), will be used
as an example in the subsequent discussion.

Table 1: Definitions of some notations.

Symbol Definition

n; Node number of a node in the parallel program task graph
w(n;) Computation cost of node n;

c(n, ny) Communication cost of the directed edge from node n; to n;
Y Number of nodes in the task graph

e Number of edges in the task graph

p Number of processing elements (PEs) in the target system
b-level Bottom level of a node

t-level Top level of a node

ALAP As Late As Possible start-time of a node

DAT Data available time of a node on a particular PE

ST(ny) Start-time of node n;

FT(n;) Finish-time of node n;

CCR Communication-to-computation Ratio

SL Schedule Length

PPE Physical Processing Elements (on which the PGS algorithm is executed)
K Crossover Rate

M Mutation Rate

N, Population Size

N, Number of Generations

f Fitness value of a chromosome

The processing elements (PES) in the target system may be heterogeneous or homogeneous.
Heterogeneity of PEs means that the PEs have different speeds or processing capabilities; we
assume the communication links are homogeneous. However, we assume every module of a
parallel program can be executed on any PE though the computation time needed on different
PEs may be different. The PEs are connected by an interconnection network based on a certain
topology. The topology may be fully-connected or of a particular structure such as a hypercube
or mesh. That is, a message is transmitted with the same speed on all links. Using this model, a
multiprocessor network can be represented by an undirected graph. An example processor



graph is shown in Figure 1(b).

(b)

Figure 1: (a) An example DAG,; (b) A 4-processor fully-connected target system.

The problem of optimally scheduling a DAG in a polynomial-time has been solved for only
three simple cases. The first case is to schedule a free-tree with uniform node weights to arbitrary
number of processors. Hu [20] suggested a linear-time algorithm to solve the problem. The
second case is to schedule an arbitrarily structured DAG with uniform node weights to two
processors. Coffman and Graham [10] devised a quadratic time algorithm for solving this
problem. The third case is to schedule an interval-ordered DAG with uniform node weights to
arbitrary number of processors. Papadimitriou and Yannakakis [29] designed a linear time
algorithm to tackle the problem. In all these cases, communication among the tasks is ignored.
Recently, Ali and EI-Rewini [4], [12] have shown that interval-ordered DAG with uniform edge
weights, which are equal to the node weights, can also be optimally scheduled in polynomial-
time. Ullman [39] and Garey et al. [13] have shown that for more general cases, the scheduling
problem is NP-complete.

3 Overview of Genetic Search Techniques

In this section we present a brief review of standard genetic algorithms (SGA). This will be
followed by a discussion of different models of parallel genetic algorithms (PGA).

3.1 Standard Genetic Algorithms

Genetic algorithms (GAs), introduced by Holland in the 1970’s [18], are search techniques
that are designed based on the concept of evolution [6], [11], [16], [36]. In simple terms, given a
well-defined search space in which each point is represented by a bit string, called a chromosome,
a GA is applied with its three genetic search operators—selection, crossover, and mutation—to



transform a population of chromosomes with the objective of improving the quality of the
chromosomes. A GA is usually employed to determine the optimal solution of a specific
objective function. The search space, therefore, is defined as the solution space so that each
feasible solution is represented by a distinct chromosome. Before the search starts, a set of
chromosomes is randomly chosen from the search space to form the initial population. The three
genetic search operations are then applied one after the other to obtain a new generation of
chromosomes in which the expected quality over all the chromosomes is better than that of the
previous generation. This process is repeated until the stopping criterion is met and the best
chromosome of the last generation is reported as the final solution. An outline of a generic GA is
as follows. The detailed mechanism of the three operators will be discussed in detail afterwards.

Standard Genetic Algorithm (SGA):

(1) Generate initial population;
(2) while number of generations not exhausted do
3 for i =1 to PopulationSize do

4 Randomly select two chromosomes and apply the crossover operator;
) Randomly select one chromosome and apply mutation operator;

(6) endfor

@) Evaluate all the chromosomes in the population and perform selection;
(8) endwhile

(9) Report the best chromosome as the final solution.

In nature we observe that stronger individuals survive, reproduce, and hence transmit their
good characteristics to subsequent generations. This natural selection process inspires the design
of the selection operator in the GAs. Given a generation of chromosomes, each of them is
evaluated by measuring its fitness which is, in fact, the quality of the solution the chromosome
represents. The fitness value is usually normalized to a real number between 0 and 1, and the
higher the value, the fitter the chromosome. Usually a proportionate selection scheme is used.
With this scheme, a chromosome with a fitness value f is allocated f/ f,,. offspring in the
subsequent generation, where f,, is the average fitness value of the population. Thus, a
chromosome with a larger fitness value is allocated more offsprings while a chromosome with a
smaller fitness value, for example, less than the average, may be discarded in the next
generation.

GAs are least affected by the continuity properties of the search space unlike many other
heuristic approach. For instance, many researchers have found that GAs are better than
simulated annealing [16] as well as tabu search [11], both of which operate on one single solution
only.

For an efficient GA search, in addition to a proper solution structure, it is necessary that the
initial population of solutions be a diverse representative of the search space. Furthermore, the
solution encoding should permit:

= alarge diversity in a small population;



= easy crossover and mutation operations; and
= an easy computation of the objective function.

3.2 Genetic Search Operators

In this section we review the mechanism and characteristics of two important standard
genetic operators: crossover and mutation. A less commonly used operator, called inversion, is
also discussed.

Crossover is a crucial operator of GAs and is applied after selection. While selection is used
to improve the overall quality of the population, crossover is used to explore the search space to
find better individuals. Pairs of chromosomes are selected randomly from the population for
application of the crossover operator. In the simplest approach, a point is chosen randomly as the
crossover point. The two chromosomes then exchange the portions beyond the crossover point
to generate two new chromosomes. A simple example of the standard crossover is given in
Figure 2(a). The rationale is that after the exchange the newly generated chromosomes may
contain the good characteristics from both the parent chromosomes and hence, possess a higher
fitness value. Nevertheless the newly generated chromosomes may be worse than their parents.
With respect to this, the crossover operator is not always applied to the selected pair of
chromosomes. It is applied with a certain pre-specified probability called the crossover rate,
denoted by W.. There are a number of variants of standard crossover operators. These include

From Parent 1

Parent 1 (Target Parent) 1 0101|101 0—  eeeeeeaaaann

Parent 2 (Passing Parent) 1 0000|111

crossover point
(a) Standard crossover.

Mutated the 7th bit
10101111 »101011:0'1

(b) Standard mutation.

Segment to be inverted

Inversion

(c) Standard inversion.

Figure 2: Examples of the standard (a) crossover operator; (b) mutation
operator; and (c) inversion operator on a binary coded chromosome.

the order crossover, partially-mapped crossover (PMX), and cycle crossover [16], [33]. The
characteristics of these variants will be described later in the paper.

Mutation is a genetic operator for recovering the good characteristics lost during crossover.



Mutation of a chromosome is achieved by simply flipping a randomly selected bit of the
chromosome. A simple example of a standard mutation is given in Figure 2(b). Like a crossover,
mutation is applied with a certain probability called the mutation rate which denoted by y,,.
Although mutation is a secondary search operator, it is useful for escaping from the local
minima. For instance, suppose all the chromosomes have converged to 0 at a certain bit position
while the optimal solution has a 1 at that position. Crossover cannot regenerate a 1 at that
position but mutation may be able to. If crossover is the only operator used, then as new patterns
evolve out of the old ones, there is invariably a loss in pattern diversity and hence the breadth of
the search domain.

An inversion operator takes a random segment in a chromosome and reverses it. A simple
example of the standard inversion is given in Figure 2(c). The advantage of the inversion
operator is as follows. There are some groups of properties, or genes which would be
advantageous for offsprings to inherit together from one parent. Such groups of genes, which
interact to increase the fitness of the offspring which inherits them, are said to be co-adapted. If
two genes are close to each other in the chromosome, the probability of being split up, when the
crossover operator divides the chromosome into two segments, will be less.

3.3 Control Parameters

A GA is governed by a number of parameters: population size N,, number of generations
N,, crossover rate ., and mutation rate W, . Finding appropriate values for these parameters
requires extensive experimentations [6], [16], [36]. Even with appropriate parameters, optimal
solutions cannot be guaranteed due to the probabilistic nature of GAs. Grefenstette [17]
proposed using the scaling method for preventing a premature convergence, a scenario in which
chromosomes of a population become homogeneous and converge to a sub-optimal
chromosome. Scaling involves re-adjusting the fitness values of solutions in order to sustain a
steady selective pressure in the population so that a premature convergence may be avoided. To
tune the control parameters on-the-fly, Srinivas and Patnaik [35] proposed an adaptive method
which is driven by the idea of sustaining diversity in a population without affecting its
convergence properties. Their algorithm [35] protects the best solutions in each generation from
being disrupted by crossover and mutation. Extensive experiments have shown that this
adaptive strategy can help prevent GA’s getting stuck at a local minimum.

3.4 Parallel Genetic Algorithms

The inherent parallelism in GAs can be exploited to enhance their search efficiency. In
contrast to simulated annealing which is intrinsically sequential and thus hard to parallelize [28],
parallelism in GAs is easier to exploit [11], [16], [22], [27]. One of the approaches of parallelizing
a GA is to divide the population into q partitions, where ¢ is the number of physical processing
elements (PPEs) on which the parallel GA is executed’. Each subpopulation in a PPE contains
more than one chromosome. Each PPE then runs a separate copy of the original GA with its own

t. A PPE should be distinguished from a PE of the target system to which a DAG is scheduled.



partition of the population. Such a parallel GA (PGA) is called the coarse-grained PGA. Two less
common types of PGAs are the fine-grained PGA and the micro-grained PGA. In a fine-grained
PGA exactly one chromosome is assigned to each PPE. In this type of PGA, it is the topology of
the PPE network that determines the degree of population isolation, and hence diversity, of the
individuals in the whole population. In a micro-grained PGA, only a single population is
maintained, and parallelism comes from the use of multiple PPEs to evaluate the individual
fitness function. We employ the coarse-grained parallelization approach.

In a coarse-grained PGA, there are many possible schemes for the PPEs to communicate and
exchange information about solutions [22], [27], [30]. The objective of communication is to
transfer fitter chromosomes from their local populations to other PPEs for parallel exploitation.
There are two major models of communication: the isolated island model and the connected island
model.

In an isolated island model, PPEs work independently and communicate only at the end of
the whole search process to select the best solution among all the PPEs. No migration of fitter
chromosomes is performed. Obviously linear speedup can be achieved. Nevertheless, a PPE may
waste all its processing cycles when it gets stuck at a poor population without the knowledge
that other PPEs are searching in more promising regions of the search space. This in turn is a
result of partitioning the population, which reduces the diversity of the chromosomes in the
search space.

In a connected island model, PPEs communicate periodically to exchange the information
about their solutions found thus far. It is common for the best chromosome found to be broadcast
to all PPEs so that every PPE may devote the processing power towards the most promising
direction. There are two variants of the connected island model. The first is that PPEs
communicate in a synchronous fashion, that is, all PPEs participate in a communication phase
simultaneously. While this scheme may be easy to implement, its drawback is that the
communication cost paid for by the information exchange can be a significant overhead, limiting
the achievable speedup. The second variant is that PPEs communicate in an event-driven manner,
that is, PPEs communicate only when necessary. Also, not all PPEs participate in a
communication phase. The merit of this scheme is that the communication overhead is lower.
However, a drawback is that this scheme is more difficult to implement. Thus, most PGAs
employ the synchronous connected island model.

Finally, some researchers have found that in a PGA, PPEs can use different sets of control
parameters to further increase the population diversity [37], [38]. This can help avoiding
premature convergence.

4 The Proposed Parallel Genetic Algorithm for Scheduling

In this section we describe the proposed parallel genetic scheduling algorithm. We first
present a scrutiny of the list scheduling method, which is necessary for the proposed genetic
formulation for the scheduling problem. We then proceed to describe the chromosome encoding



scheme, the design of the genetic operators, and the selection of the control parameters, and
finally, the parallelization of the algorithm.

4.1 A Scrutiny of List Scheduling

Classical optimal scheduling algorithms, like Hu’s algorithm [20] and Coffman et al. ‘s
algorithm [10], are based on the list scheduling approach in which the nodes of the DAG are first
arranged as a list such that the ordering of the nodes in the list preserves the precedence
constraints. In the second step, beginning from the first node in the list, each node is removed
and scheduled to a PE that allows an earliest start-time. Hereafter we refer to this second step as
the start-time minimization step, which is outlined as follows.

Start-time Minimization:
(1) 0Oj, ReadyTime(PE;) =0;
(2) while the scheduling list L is not empty do
3) remove the first node n; fromL;
4) Min_ST = oo;
(5) forj=0top-1do

(6) This_ST = max{ReadyTime(PE;), DAT(n;, PE;)};
@) if This_ST < Min_ST then Min_ST = This_ST; Candidate = PE;; endif
(8) endfor

9 schedule n; to Candidate; ReadyTime(Candidate) = Min_ST + w(n;) ;

(10) endwhile

An optimal ordering of nodes in the list is required to generate an optimal schedule using the
list scheduling approach. For instance, in Hu’s algorithm [20], the scheduling list is constructed
by using a node labeling process which proceeds from the top level leave nodes of the free-tree
down to the root node. Such labeling leads to an optimal ordering of the nodes in that the nodes
in the list, when scheduled, will occupy the earliest possible time slot in the processors.
Unfortunately, while optimal scheduling lists can be easily constructed for certain restricted
cases (e.g., a unit-weight free-tree as in the case of Hu’s algorithm), such lists cannot be
determined for arbitrary DAGs. Indeed, there are an exponential number of legitimate lists for a
DAG that can be used for scheduling. An exhaustive search for an optimal list is clearly not a
feasible approach.

Recent heuristics use node priorities to construct scheduling lists. Node priorities can be
assigned using various attributes. Two frequently used attributes for assigning priority are the t-
level (top level) and b-level (bottom level). The t-level of a node n; is the length of the longest path
from an entry node to n; (excluding n;). Here, the length of a path is the sum of all the node and
edge weights along the path. The t-level of n; highly correlates with n;’s start-time which is
determined after n; is scheduled to a processor. The b-level of a node n; is the length of the
longest path from node n; to an exit node. The b-level of a node is bounded by the length of the
critical path (CP). A CP of a DAG, is a path with the longest length; clearly, a DAG can have more
than one CP. Some scheduling algorithms do not take into account the edge weights in
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computing the b-level; to distinguish such definition of b-level from the one described above, we
call it the static b-level or simply static level (sl). Some other DAG scheduling algorithms employ
an attribute called ALAP (As-Late-As-Possible start-time). To compute these attributes, only two
traversals of the DAG are needed. Thus, these attributes can be computed in O(e + v) time. For
example, the t-level’s, b-level’s, and sI’s of the DAG depicted in Figure 1(a) are shown in Figure 3.
Note that the nodes of the CP are marked by an asterisk.

node sl t-level b-level ALAP
*n, 11 0 23 0

n, 8 6 15 8

ns 8 3 14 9

n, 9 3 15 8

Ns 5 3 5 18

N 5 10 10 13

*n, 5 12 1 12

Ng 5 8 10 13

*Ng 1 22 1 22

Figure 3: The static levels (sI’s), t-level’s, b-level’s and ALAP’s of the nodes.

Using different combinations of the above attributes, some algorithms have demonstrated
better performance than the others. For example, let us consider the schedules for the task graph
shown in Figure 1(a) produced by the DCP algorithm [23] and the MCP algorithm [41], which
are shown in Figure 4(a) and Figure 4(b), respectively. Note that the schedule generated by the
DCP algorithm is an optimal schedule (schedule length = 16 time units). The scheduling order of
the MCP algorithm is: ny, n, n,, N3 N5, Ng, Ng, N5, Ng, Which is an increasing ALAP ordering.
However, this order is sub-optimal. On the other hand, the DCP algorithm does not schedule
node following a static topological order, and optimizes the use of available time slots in the
processors by scheduling some more important descendants first. The DCP algorithm is
described in detail in [23].

Let us analyze the schedule’ produced by the DCP algorithm from another perspective: If we
are given a list {ny, n,, n4, Ny N3, Ng, Ng, N, N} and we schedule the nodes on the list one by one
using the start-time minimization strategy, we will get a slightly different schedule with the
same length (shown in Figure5) assuming four processors are available. Another list,
{ny, n, Ny Ng N, Ng, Ng, Ng, NG}, can also result in the same schedule. Thus, we can view the start-
time minimization method as a mapping M:T1 -~ S which maps the set N of topologically
ordered lists to the set S of valid schedules. However, such a mapping is not surjective. That is,
when we are given an optimal schedule, it is not always possible to find a corresponding list
which can lead to the schedule by the start-time minimization strategy.

For example, the optimal schedule generated by the DCP algorithm, shown in Figure 4(a),
cannot be generated by any list using start-time minimization. The reason is that the node ng
does not start at the earliest possible time, the time right after n, finishes. On the other hand,

t. Note that the DCP algorithm assumes the availability of unlimited number of processors [23], albeit it uses
only three.
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Figure 4: The schedules for the example DAG shown in Figure 1(a)
generated by (a) the DCP algorithm (schedule length = 16 time
units); (b) the MCP algorithm (schedule length = 20 time units).

such a mapping is not injective either because distinct lists can be mapped to the same schedule.
The scheduling problem is then reduced to the problem of finding a list which can be mapped to
an optimal schedule. In fact most of the list scheduling algorithms can be analyzed using this
framework. The major differences in these algorithms are: (i) the method of implementing a
different function M (i.e., a different space and time assignment strategy, which may not be start-
time minimization); and (ii) the method of selecting scheduling lists from the set M. Some
algorithms optimize the former while constructing lists by a simple method. Other algorithms,
such as the MCP algorithm, optimize the latter while using the start-time minimization strategy
as the mapping M. A few algorithms, such as the DCP algorithm, optimize both.

4.2 A Genetic Formulation of the Scheduling Problem

The likelihood of the existence of lists leading to optimal schedules using the start-time
minimization technique is very high, albeit it has not been proven that such a list always exists.
Since an optimal schedule is not unique, the list which can lead to an optimal schedule, therefore,
is not unique. We call such lists as the optimal lists. There are a number of members in the set I
which are qualified to be optimal lists. A solution neighborhood can then be defined for genetic
search. Specifically, we can start from an initial list from which we obtain an initial schedule. We
can then systematically modify the ordering within the list in a way such that the nodes are still
in topological order (i.e., the precedence constraints are still satisfied). From the new list we

obtain a new schedule. If the schedule is better, we adopt it; otherwise we test another modified
list.

Based on the above analysis, we give the proposed genetic formulation of the scheduling
problem as follows.
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Figure 5: The schedule generated by the start-time
minimization method (schedule length = 16 time units).

Encoding: We make a valid scheduling list as a chromosome. A valid scheduling list is one in
which the nodes of the DAG are in a topological order. For example, the list
{n4, Ny, Ny N3 N5, Ng, Ng, N5, NG} is a valid chromosome for the DAG shown in Figure 1(a).

Fitness of a Chromosome: Fitness value is defined as: (yw(n)-SL)/yw(n), where the
schedule length SL is determined by using the start-time minimization method. The fitness of a
chromosome is therefore always bounded between 0 and 1. For example, the list used by the
MCP algorithm for the DAG shown in Figure 1(a) has a fitness value of é—g = 0.3333.

Generation of the Initial Population: An initial population is generated from a set of
scheduling lists which are constructed by ALAP ordering, b-level ordering, t-level ordering, sl
ordering and a random topological ordering, etc. These different orderings not only provide the
necessary diversity but also represent a population with a higher fitness than a set of totally
random topological orderings. A whole population is then generated from these orderings by
performing random valid swapping of nodes in the lists.

In the next section we describe the design of the mutation and crossover operators. Since the
selection mechanism is related to the migration process, we will discuss this aspect when we
present the parallel genetic algorithm.

4.3 Genetic Operators

As the standard crossover and mutation operators may violate precedence constraints, we
need to use other well-defined genetic operators. The inversion operator is not considered
because it can obviously generate invalid scheduling lists. We consider three kinds of crossover
operators: the order crossover [16], [33], [40], the partially-mapped crossover (PMX) [16], [33],
and the cycle crossover [16], [33]. By using small counter-examples, we show that the PMX and
cycle crossover operators may also produce invalid lists. Therefore in the proposed algorithm,
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only the order crossover operator is used. We also describe a a mutation operator based on node-
swapping.

Order Crossover Operator: We consider a single-point order crossover operator. That is, given
two parents, we first pass the left segment (i.e., the segment on the left of the crossover point)
from the first parent, called parent 1, to the child. Then we construct the right fragment of the
child by taking the remaining nodes from the other parent, called parent 2, in the same order. An
example of the crossover operator is given in Figure 6(a). Note that the chromosomes shown in
the figure are all valid topological ordering of the DAG in Figure 1(a). The left segment
{n4, n, n,n,} of parent 1 is passed directly to the child. The nodes in the right segment
{n3, ng, Ng, Ng, N5} Of parent 1 are then appended to the child according to their order in parent 2.
This order crossover operator is easy to implement and permits fast processing. The most
important merit is that it never violates the precedence constraints, as dictated by following
theorem.

Theorem 1: The order crossover operator always produces a valid scheduling list from two valid parent
chromosomes.

Proof: Suppose we are given two parent chromosomes {n;,n;,...,n; } and {nj, N, o} Let
the crossover point be chosen at the kth position. Then after applying the order crossover, the
child will be {n;,n;,...,n;,n;, ... njy} for some indices x and y. Obviously the precedence
constraints among any two nodes at or before the kth position will be respected. For a node at or
before the kth position and a node after the kth position, the precedence constraint (if any) will
also be respected because their relative positions are the same as in parent 1. Finally for any two
nodes after the kth position, the precedence constraint (if any) will also be respected because
their relative positions are the same as in parent 2, by definition of the order crossover operator.

(Q.E.D.)

The order crossover operator as defined above has the potential to properly combine the
accurate task orderings of the two parent chromosomes so as to generate a scheduling list which
can lead to a shorter schedule. This is because the “good” portions of a parent chromosome is a
subsequence of the list which is an optimal scheduling ordering of the nodes in the subsequence.
These good portions are essentially the building-blocks of an optimal list, and an order crossover
operation can potentially pass such building-blocks to an offspring chromosome from which a
shorter schedule may be obtained.

PMX Crossover Operator: A single point partially-mapped crossover can be implemented as
follows. First a random crossover point is chosen. Then we consider the segments following the
crossover point in both parents as the partial mapping of the genes to be exchanged in the first
parent to generate the child. To do this, we first take corresponding genes from the two right
segments of both parents, and then locate both these genes in the first parent and exchange them.
Thus a gene in the right segment of the first parent and a gene at the same position in the second
parent will define which genes in the first parent have to be swapped to generate the child. An
example of the crossover operator is given in Figure 6(b). The pairs (ns, n;), (ng Ng), and (Ng, Ns)
are situated at the same locations in both parents (note that the pairs (ng ng) and (ns, ng) are
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parent 1 {Enb Ny, N7, Ny N3, Ng, Ng, Ny, ns}

___________ \ {n1, Nz N7, Ny, N3, NG, Ng, N5, No}
parent2 {ny, Ny Ny N3 N4, N, Ng, N5, N} /

crossover point
(a) An example of the order crossover operator.

v vY vv v
parent1 {M1 Nz N7, N4fNg, Ng, Ng, N, N5}

¢ ¢ ¢ > {n4, Ny, Ng Ny N5, Ng, Ng, N, NG}

parent2 {nj, n, Ny Ng N, Ng, Ng, Ng, NG}

crossover point
(b) An example of the PMX crossover operator.

parent 1 { N1, N2, N7, Ny, NG, N, N, Ng, N5}

l T T T T l l TT \ {ny, N, N, N3 N7, Ng, Ng, Ns, N}
/

parent2 {ny, N, Ny Ng N5, Ng, Ng, Ng, Ng}

(c) An example of the cycle crossover operator.

Mutated
(swapped
n, and n;)

{Ny, N3 N4 N7 N3 Ng NG N5, Ny ) {Ny, Ny Ny, Ny, N, Ng, N, N, No}

(d) An example of the mutation operator.

Figure 6: Examples of the (a) order crossover, (b) PMX
crossover, (c) cycle crossover, and (d) mutation operators.

implicitly handled also). Their corresponding positions in parent 1 are swapped to generate the
child. Then the remaining nodes in parent 1 are copied to the child to finish the crossover.
Unfortunately, unlike the order crossover operator, PMX crossover may produce invalid
scheduling lists. An example of such scenario is shown in Figure 7. As can be seen, in the
resulting chromosome, the positions of n, and n, violate their precedence relationship. This is
also true for n; and ns.

Cycle Crossover Operator: A single point cycle crossover operator can be implemented as
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. ¥FIvvy v

{ny, ny{ny N3, N5}
\ {nl! n41 n2! n5! n3}

{ny, g,y Ng, Ny}

A n .
. crossover point (b)

(@)

{ny, Ny, ny, Ng, N5}
l T l T l \ {ny, ng, ny, Ny, N5}

{ny, N3, N5, Ny, Ny}

(©

Figure 7. (a) A simple task graph; (b) An example of generating an invalid
ordering of the graph by using the PMX crossover operator; () An example of
generating an invalid ordering of the graph by using the cycle crossover operator.

follows. We start at position 1 in parent 1 and copy the gene to location 1 of the child. Then we
examine the gene at position 1 in parent 2. This gene cannot be copied to the child since the
child’s corresponding position has been occupied. We then locate this gene from parent 1 and
suppose it is found in position i. We copy this gene to position i of the child. Similarly the gene at
position i in parent 2 cannot be copied. We again locate this gene from parent 1 and copy it to the
child. This process is repeated until we encounter a gene in parent 2 which has already been
copied to the child from parent 1. This completes one cycle. Another cycle is then initiated at the
earliest position of the child that has not been occupied and the copying is performed from
parent 2 to the child. Thus, in alternate cycles, the child inherits genes from both parents and the
genes are copied at the same locations.

An example of the crossover operator is given in Figure 6(c). As can be seen in the figure, n;
is first copied to the child from parent 1. But the corresponding node in parent 2 is also n; and,
therefore, a cycle is completed. We start over again at position 2 of parent 2. We first copy n,
from parent 2 to the child. Then we find that the node in position 2 of parent 1 is n, so that we
copy n, from parent 2 to position 3 of the child. This time the corresponding node is n; and so
we copy n, from parent 2 to position 5 of the child. Since the node in position 5 of parent 1 is n;,
we copy h; from parent 2 to position 4 of the child. Now we encounter n, in parent 1 which has
already been copied from parent 2 to the child. Thus, the second cycle is completed. The third
cycle starts from parent 1 again and nodes ng and ng are copied to the child at positions 6 and 7,
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respectively. The last cycle starts from parent 2 again and nodes n; and ng are copied to the child
at position 8 and 9, respectively. Unfortunately the cycle crossover operator may also generate
invalid scheduling lists. An example of such situation is shown in Figure 7. As can be seen, after
the crossover, the positions of n, and n, violate their precedence relationship.

Since both the PMX crossover operator and the cycle crossover operator does not guarantee
valid scheduling lists, they are not employed in the proposed algorithm.

Mutation Operator: A valid topological order can be transformed into another topological
order by swapping some nodes. For example, the scheduling list used by the MCP algorithm—
{n4, Ny Ny N3 N5, Ng, Ng, N5, N} —can be transformed into an optimal list
{n4, Ny, Ny Ng N5, NG, Ng, Ng, NG} by Swapping n, and n,. Not every pairs of nodes can be swapped
without violating the precedence constraints. Two nodes are interchangeable if they are not lying
on the same path in the DAG. Using a pre-processing depth-first traversal of the DAG, we can
check whether two nodes are interchangeable in a constant time during the search. This implies
that we can efficiently test whether two randomly selected nodes are interchangeable and if so
swap them and check the new schedule length. Such swapping actually defines a random search
neighborhood. The size of the neighborhood is O(v2) since there are O(CY) pairs of
interchangeable nodes. We define the mutation operator as a swap of two interchangeable nodes
in a given chromosome. This operator captures the major characteristic of mutation, which is to
randomly perturb the chromosome in such a way that a lost genetic feature can be recovered
when the population is becoming homogeneous. An example is given in Figure 6(d) where two
interchangeable nodes n, and n, are randomly chosen and their positions in the list are
swapped.

4.4 Control Parameters

As Tanese [37], [38] has suggested, if the parallel processors executing a parallel genetic
algorithm use heterogeneous control parameters, the diversity of the global population can be
more effectively sustained. To implement this strategy, we use adaptive control parameters as
suggested by Srinivas et al. [35]. The adaptive crossover rate |, is defined as follows:

_ k(= 1)
° (fmax_ favg)
where f,., is the maximum fitness value in the local population, f, is the average fitness value,
f' is the fitness value of the fitter parent for the crossover, and k; is a positive real constant less
than 1.

The adaptive mutation rate . is defined as follows:
— km( fmax — f)

Hm = (fmax_ favg)

where f is the fitness value of the chromosome to be mutated and k,, is a positive real constant
less than 1.
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Using the above adaptive crossover and mutation rate, the best chromosome is protected
from disruption by crossover and mutation. On the other hand, when the population tends to
become more homogeneous, both rates increase because f,,, will be about the same as f,,.
Thus, under such a situation, chromosomes are more likely to be perturbed. This helps to
prevent a pre-mature convergence to a sub-optimal solution. Note that even though the initial
setting of the crossover rate and mutation rate is the same for all the parallel processors, the
adaptive strategy gradually leads to the desired heterogeneity of the parameters among the
processors.

Two other control parameters which are critical to the performance of a GA are the
population size N, and the number of generation N,. Usually N, and N, are fixed for all
problem sizes. However, this is not appropriate because larger problems require more time for
exploration and exploitation. We therefore vary these two parameters linearly according to the
problem size. Specifically, we set N, = k,v and N, = k,v, where k, and k, are real constants.

45 Parallelization

The global population is partitioned into q sub-populations, where g is the number of PPEs.
For efficiency we use a synchronous connected island model, in which PPEs communicate
periodically to exchange the fittest individual and the communication is a synchronous voting
such that the fittest individual is broadcast to all the PPEs. In other words sub-populations
network topology is not considered. The reason is that the communication delay is insensitive to
the distance between the PPEs of the Intel Paragon.

For the migration and selection of chromosomes, we adopt the following strategy. When the
PPEs communicate, only the best chromosome migrates. When the fittest chromosome is
imported, the worst chromosome in the local population is discarded while the fittest
chromosome and the locally best chromosome are protected from the rank-based selection
process. That is, in addition to having a higher expected share of offsprings, they are guaranteed
to be retained in the new generation.

The period of communication for the PPEs is set to be T number of generations, which
follows an exponentially decreasing sequence: initially | Ns |, then (% , %g , and so on. The
rationale is that at the beginning of the search, the diversity of the global population is high. At
such early stages, exploration is more important than exploitation; therefore, the PPEs should
work on the local sub-population independently for a longer period of time. When the search
reaches the later stages, it is likely that the global population converges to a number of different
fittest chromosomes. Thus, exploitation of more promising chromosomes is needed to avoid
unnecessary work on optimizing the locally best chromosomes that may have smaller fitness
values than the globally best chromosomes.

With the above design considerations, the Parallel Genetic Scheduling (PGS) algorithm is
outlined below.
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Parallel Genetic Scheduling (PGS):

(1) Generate a local population with size equal to N,/q by perturbing pre-defined
topological orderings of the DAG (e.g., ALAP ordering, b-level ordering, etc.).

2 i=2

(3) repeat

(4) T =0;

%) repeat

(6) forj=1to N,/q do

@) Using the current crossover and mutation rates, applied the two operators to
randomly chosen chromosomes.

(8) endfor

9 Evaluate the local population.

(10) until ++T = [N,/i7;

(11) Accept the best chromosome from a remote PPE and discard the worst local
chromosome accordingly.

(12) Explicitly protect the best local and remote chromosome and adapt new crossover
and mutation rates.

(13) i =ix2

(14) until the total number of generations elapsed equal to N ;

5 Performance Results

To examine the efficacy of the PGS algorithm, we have implemented it on the Intel Paragon
using the C language and tested it using different suites of task graphs. In the first two
experiments, we aimed at investigating the absolute solution quality of the algorithm by
applying it to two different sets of random task graphs for which the optimal solutions are
known. As no widely accepted benchmark graphs exist for the DAG scheduling problem, we
believe using random graphs with diverse parameters is appropriate for testing the performance
of the algorithm. To compare the PGS algorithm with the existing techniques, we choose two
extreme examples. The first is the DCP algorithm [23] which has been compared to the best
known six heuristic algorithms (DLS [34], MCP [41], MD [41], ETF [21], DSC [42] and EZ [31]),
and is known to be considerably better in terms of performance but has a slightly higher
complexity. The other is the DSC algorithm [42] which is widely known and has been considered
by many studies to be one of the best in terms of time complexity with a reasonable performance.
In all the experiments, we assumed the target processors are fully-connected and homogeneous.

5.1 Workload

The first suite of random task graphs consists of three sets of graphs with different CCRs: 0.1,
1.0, and 10.0. Each set consists of graphs in which the number of nodes vary from 10 to 32 with
increments of 2, and thus, each set contains 12 graphs. The graphs within the same set have the
same value of CCR. The graphs were randomly generated as follows. First the computation cost
of each node in the graph was randomly selected from a uniform distribution with mean equal to
40 (minimum = 2 and maximum = 78). Then beginning from the first node, a random number
indicating the number of children was chosen from a uniform distribution with mean equal to
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110. Thus, the connectivity of the graph increases with the size of the graph. The communication
cost of each edge was also randomly selected from a uniform distribution with mean equal to 40
times the specified value of CCR. Hereafter we call this suite of graphs the type-1 random task
graphs.

To obtain optimal solutions for the task graphs, we applied a parallel A* algorithm to the
graphs. For details of the A* algorithm, the reader is referred to [24]. Since generating optimal
solutions for arbitrarily structured task graphs takes exponential time, it is not feasible to obtain
optimal solutions for large graphs. On the other hand, to investigate the scalability of the PGS
algorithm, it is desirable to test it with larger task graphs for which optimal solutions are known.
To resolve this problem, we employed a different strategy to generate the second suite of random
task graphs. Rather than trying to find out the optimal solutions after the graphs are randomly
generated, we set out to generate task graphs with given optimal schedule lengths and number of
processors used in the optimal schedules.

The method to generate task graphs with known optimal schedules is as follows. Suppose
that the optimal schedule length of a graph and the number of processors used are specified as
SL,,: and p, respectively. Then for each PE i, we randomly generate a number x; from a uniform
distribution with mean Y. The time interval between 0 and SL,, of PE i is then randomly
partitioned into x; sections. Each section represents the execution span of one task. Thus, X;
tasks are “scheduled” to PE i with no idle time slot. In this manner, v tasks are generated so that
every processor has the same schedule length. To generate an edge, two tasks n, and n, are
randomly chosen such that FT(n,) <ST(n,). The edge is made to emerge from n, to n,. As to
the edge weight, there are two cases to consider: (i) the two tasks are scheduled to different
processors; and (ii) the two tasks are scheduled to the same processor. In the first case, the edge
weight is randomly chosen from a uniform distribution with maximum equal to

(ST(n,)—FT(n,)) (the mean is adjusted according to the given CCR value). In the second case,
the edge weight can be an arbitrary positive integer because the edge does not affect the start and
finish times of the tasks which are scheduled to the same processor. We randomly chose the edge
weight for this case according to the given CCR value. Using this method, we generated three
sets of task graphs with three CCRs: 0.1, 1.0, and 10.0. Each set consists of graphs in which the
number of nodes vary from 50 to 500 with increments of 50; thus, each set contains 10 graphs.
The graphs within the same set have the same value of CCR. Hereafter we call this suite of
graphs the type-2 random task graphs.

We also used a suite of regularly structured task graphs which represent a number parallel
numerical algorithms. The suite comprises graphs representing the parallel Gaussian elimination
algorithm [41], the parallel Laplace equation solver [41], and the parallel LU-decomposition
algorithm [25]. As all these algorithms operate on matrices, the sizes of the task graphs vary with
the matrix-sizes N in that v = O(NZ). We used matrix-sizes from 9 to 18 with increments of 1.

5.2 Comparison against Optimal Solutions

Since the performance and efficiency of the PGS algorithm critically depend on the values of
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N, and N, in the first experiment we tested the algorithm using the type-1 random task graphs
with varying Ny and N, . First we fixed N, by setting k, as 20 and varied N, by setting k, as 2,
3, 5, and 10. Then we fixed N, by setting kp as 10 and varied N, by setting kg as 2, 5, 10, and 20.
We used 8 PPEs on the Paragon for all these cases. In all the experiments the initial values of .
and p,, were set to 0.6 and 0.02 respectively. In addition, both k., and k, were also fixed at 0.6
and 0.02.

The percentage deviations from optimal solutions for the three values of CCR were noted
and are shown in Table 3. In the table, the total number of optimal solutions generated and the
average percentage deviations for each CCR are also shown. Note that the average percentage
deviations are calculated by dividing the total deviations by the number of non-optimal cases
only. These average deviations, therefore, indicate more accurately the performance of the PGS
algorithm when it is not able to generate optimal solutions. As can be noticed from the table, the
PGS algorithm generated optimal solutions for over half of all the cases. The effect of k, (hence
N,) was not very significant, though. We can see that the average deviations decrease slightly
with increasing k,. The effect of CCR is in fact more profound in that there are more deviations
with increasing CCR. This is because as the edge weights become larger, there are more
variations in the start-times of nodes and hence, it is more difficult to determine an optimal list.
Finally, we observe that the PGS algorithm generated more optimal solutions for smaller
problems.

Table 2: The percentage deviations from optimal schedule lengths for the

type-1 random task graphs with three CCRs using four values of population-
size constant: k, = 2, 3, 5, and 10; 8 PPEs were used for all the cases.

ky 2 3 5 10
CCR 01 10 100 |01 10 1200 |01 10 100 |01 10 100
10 00 00 00 00 00 00 00 00 00 |00 00 00
12 00 00 00 00 00 00 00 00 00 |00 00 00
14 |00 00 00 00 00 00 00 00 00 |00 00 00
o 16 00 96 120 | 00 96 70 00 96 70 |00 88 70
5 18 00 00 173 | 00 00 89 00 00 89 |00 00 89
s 20 00 00 00 00 00 00 00 00 00 |00 00 00
S 22 33 68 160 | 33 28 160 |00 00 120 |00 00 120
O 24 |43 53 00 23 00 00 23 00 00 |23 00 00
26 00 00 141 | 00 00 141 |00 00 100 |00 00 100
28 00 89 00 00 49 00 00 49 00 |00 49 00
30 00 85 00 00 45 00 00 45 00 |00 45 00
32 68 29 61 28 00 00 28 00 00 |28 00 00
No.ofOpt. |9 6 7 9 8 8 0 9 8 0 9 8
Avg.Dev. |48 70 131 | 28 54 115 |25 63 95 |25 61 95

The results with a fixed value of N, but with varying values of N, are shown in Table 3.
These results indicate that the effect of k, is more significant than that of k,. The number of
optimal solutions generated for the cases with smaller number of generations were notably less
than that of the cases with larger number of generations. The average percentage deviations
were also larger for smaller number of generations. When k, was 10 or higher, the PGS
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Table 3: The percentage deviations from optimal schedule lengths for the type-
1 random task graphs with three CCRs using four values of number-of-
generation constant: k; = 2, 5, 10, and 20; 8 PPEs were used for all the cases.

Ky 2 5 10 20
CCR 01 10 100 |01 10 100 |01 10 1200 |01 10 100
10 00 00 00 00 00 00 00 00 00 |00 00 00
12 00 00 00 00 00 00 00 00 00 |00 00 00
14 00 00 00 00 00 00 00 00 00 |00 00 00
o 16 148 177 149 | 25 166 146 |00 110 91 |00 88 70
5 18 279 82 176 | 210 35 160 |78 00 90 |00 00 89
< 20 00 303 191 | 00 249 00 00 00 00 |00 00 00
s 2 55 154 251 | 40 145 233 |00 00 143 |00 00 120
© 195 00 238 | 119 00 192 |49 00 7.8 23 00 00
26 140 302 201 | 128 205 160 |00 00 133 |00 00 100
28 243 218 114 | 180 124 00 00 65 00 |00 49 00
30 158 265 194 | 122 171 1200 |63 86 33 |00 45 00
32 201 232 190 | 157 141 113 |42 00 17 28 00 00
No.ofOpt. |4 4 3 4 4 4 8 8 5 0 9 8
Avg.Dev. |17.7 217 189 | 122 154 138 |58 65 84 25 61 95

algorithm attained a performance comparable to those shown earlier in Table 3. The effect of
CCR was again respectable. An intuitive observation is that larger N, and N, in general can lead
to better performance but the execution time required will then become larger too. Indeed there
is a trade-off between better performance and higher efficiency.

Based on the results shown in Table 3 and Table 3, in the subsequent experiments k, and k,
were fixed as 5 and 10, respectively. Thatis, N, = 5v and N, = 10v, unless otherwise stated.

In the next experiment we aimed to investigate the effect of the number of PPEs on the
performance of the algorithm. We applied the PGS algorithm to the type-1 random task graphs
on the Paragon using 2, 4, 8, and 16 PPEs. Again the percentage deviations from optimal
solutions were noted. These results are shown in Table 4 and indicate that the PGS algorithm
demonstrated similar performance for 2, 4, and 8 PPEs. When 16 PPEs were used, the
performance degraded by a slightly larger margin. One explanation for this phenomenon is that
using more PPEs implies that the size of a local population is smaller and thus leads to smaller
diversity of the local population. Premature convergence is then more likely to result. The effect
of CCR was again quite considerable in that the average deviations increase with increasing
CCRs.

To examine the effectiveness of parallelization, we observed the execution times of the PGS
algorithm using different number of PPEs. As a reference, we also ran the PGS algorithm using 1
PPE on the Paragon. The average execution times and speedups are shown in Figure 8. As can be
seen from the speedup plot, the PGS algorithm demonstrated a slightly less than linear speedup.
This is because the migration of best chromosomes contributed considerable communication
overhead.
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Table 4: Results of the PGS algorithm compared against optimal
solutions (percentage deviations) for the type-1 random task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 1.0 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 8.0
12 0.0 0.0 0.0 2.3 0.0 0.0 0.0 16.4 0.0 0.0 0.0 5.1
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 9.3
© 16 0.9 0.6 0.6 0.7 9.2 8.1 7.9 17.8 7.6 6.7 6.2 16.3
'(,E, 18 6.2 5.2 5.0 6.0 0.0 0.0 0.0 5.2 8.0 7.2 7.2 1.7
s 20 0.0 0.0 0.0 5.3 0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.3
] 22 0.0 0.0 0.0 4.6 0.0 0.0 0.0 18.0 13.0 121 120 244
o 24 4.0 3.3 2.9 5.1 0.0 0.0 0.0 10.3 6.2 5.4 5.2 12.0
26 6.6 5.3 5.0 14.6 0.0 0.0 0.0 9.4 10.2 103 9.7 325
28 4.7 3.2 3.1 7.2 6.1 5.3 5.1 104 0.0 0.0 0.0 104
30 4.3 2.6 2.2 4.5 6.3 5.3 4.9 11.0 2.3 2.3 2.1 2.3
32 3.3 2.3 21 3.3 0.0 0.0 0.0 13.2 1.2 11 1.0 2.0
No. of Opt. 5 5 5 2 9 9 9 0 5 5 5 0
Avg. Dev. 4.3 3.2 3.0 5.4 7.2 6.2 6.0 11.0 7.0 6.4 6.2 10.8
16
Graph Size | Running Times (secs) 1 .
g R
]
10 4.12 ' '
| B | L]
12 4.64 12 v
14 4.86 o 10 +2 PPEs
16 5.02 3 <4 PPEs
o 8
18 5.32 8 v , , v 8 PPEs
20 5.79 & sl N R .
22 6.03 * 16 PPEs
24 6.34 Al
26 6.89 . N ©
28 7.12 2 b—p—
30 7.63 0
32 .82 10 12 14 16 18 20 22 24 26 28 30 32
(a) Average running times using 1 PPE. Graph Size
(b) Average speedups.

Figure 8: (a) The average running times of the PGS algorithm for the type-1
random task graphs with three CCRs using 1 PPE on the Intel Paragon; (b) the
average speedups of the PGS algorithm for 2, 4, 8, and 16 PPEs.

From the above results we find that the number of generations used critically affects the
performance of the PGS algorithm. In view of this, we ran the algorithm with larger number of
generations to see how far it can approach optimal. We used 8 PPEs on the Paragon and other
parameters remained the same. The results are shown in Figure 11. Note that the results for the

smaller number of generations shown earlier in Table 3 are also included. We notice that when
the number of generations is increased to 40v, the PGS algorithm is almost optimal.

In the next experiment we used the type-2 random task graphs, which are significantly larger

graphs, to examine the performance of the PGS algorithm. Again the percentage deviations from
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Figure 9: The average percentage deviations from the optimal of the
solutions generated by the PGS algorithm for the type-1 random task
graphs with three CCRs using 8 PPEs on the Intel Paragon.

optimal solutions were noted. The results are shown in Table 5. We notice that the percentage
deviations are much larger than that of the type-1 random task graphs. Nonetheless the PGS
algorithm was able to generate optimal solutions for these larger graphs. We also measured the
running times of the algorithm which are shown in Figure 8. The speedup was also slightly less

than linear due to the chromosomes migration process.
Table 5: Results of the PGS algorithm compared against optimal
solutions (percentage deviations) for the type-2 random task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 10 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
50 0.0 124 24 15 6.6 0.0 0.0 0.0 34 172 58 15.2
100 0.0 0.4 9.5 0.0 0.0 0.0 0.0 7.7 0.0 320 0.0 35.8
150 16.7 27 00 0.0 0.0 16.2 201 20.0 109 0.0 116 134
© 200 0.0 0.0 1.4 0.0 2.7 24 231 259 146 266 0.0 231
5 250 0.0 21 6.5 0.0 0.0 245 0.0 0.0 350 0.0 21.0 0.0
s 300 127 0.0 51 15.9 0.0 0.0 0.0 0.0 240 0.0 0.0 12.0
g 350 0.0 0.0 180 0.0 4.5 13.7 6.5 8.9 797 31 0.0 0.0
o 400 0.0 3.2 6.9 17.9 128 136 0.0 10.3 0.0 351 382 14
450 00 0.0 100 1.0 0.0 0.0 0.0 0.0 175 246 160 26
500 0.0 185 33 3.6 0.0 243 0.0 0.0 0.0 0.0 205 377
No. of Opt. | 8 4 1 5 6 4 7 5 3 4 4 2
Avg. Dev. 147 65 7.0 8.0 6.6 158 16.6 146 16.2 231 189 177

As for the type-1 random task graphs, we also tested the PGS algorithm with a larger number
of generations. Again 8 PPEs were used and other parameters remained the same. The results are
shown in Figure 11 indicating that the PGS algorithm is almost optimal when the number of
generations used is 50v .
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(a) Average running times using 1 PPE.
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Figure 10: (a) The average running times of the PGS algorithm for the type-2
random task graphs with three CCRs using 1 PPE on the Intel Paragon; (b) the
average speedups of the PGS algorithm for 2, 4, 8, and 16 PPEs.
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Figure 11: The average percentage deviations from the optimal of the
solutions generated by the PGS algorithm for the type-2 random task
graphs with three CCRs using 8 PPEs on the Intel Paragon.

5.3 Results on Regular Graphs

In the last experiment we aimed to compare the performance of the PGS algorithm with the
DSC [42] and DCP [23] algorithms. We used three sets of regular task graphs representing three
parallel numerical algorithms: Gaussian elimination, LU-decomposition, and Laplace equation

solver. The size of these graphs vary as the input matrix sizes for these numerical algorithms. We
used 10 graphs for each CCR with matrix sizes varied from 9 to 18. The sizes of the 10 graphs
then varied roughly from 30 to 300. It should be noted that these graphs are sparse graphs

compared with the random graphs used in the previous experiments.
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As optimal solutions for these regular graphs are not available, we computed the ratios of the
schedule lengths generated by the PGS algorithm to that of the DSC and DCP algorithm using 2,
4, 8, and 16 PPEs on the Paragon. The results of comparing the PGS algorithm with the DSC
algorithm for the Gaussian elimination graphs are shown in Table 7 which also includes the

Table 6: Ratios of the schedule lengths generated by the PGS algorithm

to that of the DSC algorithm for the Gaussian elimination task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 1.0 10.0

No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16

9 0.60 063 056 0.64 0.57 059 053 055 0.57 057 044 057

10 064 068 068 0.70 055 052 052 052 074 074 0.74 095

11 058 060 057 0.58 066 066 0.72 0.60 081 061 0.62 0.62
Q 12 059 062 062 0.62 055 050 053 050 051 051 059 051
o 13 058 062 062 0.62 061 057 056 057 094 045 080 0.76
214 059 060 057 0.60 063 059 046 047 052 0.70 045 0.52
s 15 062 072 066 0.62 061 061 061 061 055 055 057 054
2 16 051 056 055 0.59 0.67 067 0.67 0.67 040 061 0.68 048

17 053 057 051 053 058 066 0.66 0.58 046 056 0.73 0.73

18 078 069 075 0.73 053 065 0.65 0.65 075 085 0.75 0.93
Avg. Ratio 060 063 061 0.62 060 060 059 057 062 061 0.64 0.66

average ratios. Here the PGS algorithm outperformed the DSC algorithm in all cases. The
improvement of the PGS algorithm over the DSC algorithm declines slightly with increasing
number of PPEs and larger values of CCR.

The results of comparing the PGS algorithm with the DCP algorithm for the Gaussian
elimination task graphs are shown in Table 7. These results reveal that the performance of both
algorithms were roughly the same. Indeed the PGS algorithm generated the same schedule
lengths as that of the DCP algorithm for more than half of the cases.

The results for the LU-decomposition graphs are shown in Table 8 and Table 8. From Table 8,
we can observe that for this type of regular graph, the PGS algorithm again generated much
better schedules compared with that of the DSC algorithm. On the other hand, the PGS
algorithm produced slightly inferior solutions compared to that of the DCP algorithm. An
explanation for this phenomenon is that the LU-decomposition graphs have multiple critical
paths, which make minimization of schedule lengths much more difficult. Nonetheless, the PGS
algorithm outperformed the DCP algorithm with respectable margins for a number of cases.

The results for the Laplace equation solver graphs are shown in Table 10 and Table 10. Again
we find that the PGS algorithm consistently outperformed the DSC algorithm for all but two
cases. On the other hand, the overall performance of the DCP algorithm was slightly better,
which is presumably because all the paths in a Laplace equation solver graph are critical paths.
The average differences in schedule lengths between the two algorithms, however, are within
20%.
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Table 7: Ratios of the schedule lengths generated by the PGS algorithm
to that of the DCP algorithm for the Gaussian elimination task graphs

with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 1.0 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
9 1.00 105 093 107 1.03 107 097 1.00 1.00 1.00 0.77 1.00
10 094 100 100 1.02 106 100 100 1.00 100 100 100 1.29
11 1.00 102 097 100 100 100 108 0091 130 098 100 1.00
@ 12 095 100 100 1.00 1.09 100 1.05 100 1.00 100 116 100
77 13 094 100 099 100 106 1.00 098 100 132 063 112 1.07
Z 14 0.99 100 0.96 1.00 118 112 086 0.88 100 135 087 1.00
I 15 093 109 100 0.93 1.00 1.00 100 1.00 100 1.00 104 0.98
2 16 091 100 099 1.06 099 100 100 1.00 080 122 135 095
17 1.00 108 096 100 0.88 1.00 100 0.88 063 0.76 100 1.00
18 1.05 093 1.02 0.99 0.82 1.00 100 100 100 114 100 124
Avg. Ratio 097 102 098 101 101 102 099 0.97 101 101 103 105
Table 8: Ratios of the schedule lengths generated by the PGS algorithm
to that of the DSC algorithm for the LU-decomposition task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.
CCR 0.1 1.0 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
9 0.67 074 0.68 0.73 0.78 0.71 0.69 0.66 0.77 070 066 0.77
10 056 058 056 0.59 060 063 065 058 065 080 064 0.72
11 059 064 059 0.63 067 078 072 0.72 0.83 0.78 0.70 0.66
@ 12 059 057 058 054 0.76 0.74 0.68 0.68 0.75 061 061 0.60
72 13 0.63 064 065 0.60 057 052 049 0.58 0.60 057 052 0.63
Z 14 079 076 0.79 0.76 054 056 053 051 080 0.73 084 0.73
s 15 058 055 054 055 054 052 060 0.59 0.58 057 058 0.66
2 16 055 053 052 057 066 075 0.76 0.66 082 068 070 0.77
17 076 074 070 0.76 0.63 068 062 0.69 060 062 049 0.59
18 0.74 067 070 0.65 0.71 074 076 0.67 0.69 065 0.63 059
Avg. Ratio 0.65 064 063 0.64 0.65 066 0.65 0.63 0.71 0.67 0.64 0.67

From the results for these three types of regular graphs, we find that the PGS algorithm can
generate much better solutions than the DSC algorithm. Also the results indicate that the
performance of the PGS algorithm is comparable to that of the DCP algorithm. These results
should be interpreted with reference to the running times also. These timing results are shown in
Figure 8. The running times of the DSC and DCP algorithm using 1 PPE on the Paragon are also
shown. Furthermore, the speedups of the PGS algorithm are computed with respect to the DCP
algorithm in order to directly compare the relative efficiency of the two algorithms. We find that
the relative speedups were also moderately less than linear.

According to the results shown above, it appears that the number of generations is the most
significant limiting factor of the performance of the PGS algorithm. We tested the PGS
algorithms for the three types of regular graphs again with k, set to be 20 and 30. We used 8
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Table 9: Ratios of the schedule lengths generated by the PGS algorithm
to that of the DCP algorithm for the LU-decomposition task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 1.0 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
9 1.00 110 1.01 108 110 1.00 098 0.94 118 1.07 100 1.17
10 1.02 105 1.02 107 106 112 115 1.03 101 125 100 112
11 1.00 109 100 1.06 093 108 100 1.00 125 118 1.06 100
@ 12 1.09 105 1.08 1.00 112 109 1.00 100 122 100 100 0.98
77} 13 1.01 103 1.05 0.96 1.09 100 094 112 119 114 104 124
2 14 1.08 104 109 104 107 110 1.04 100 110 1.00 115 1.00
e 15 1.07 102 100 102 105 100 115 114 102 101 102 1.16
2 16 1.05 100 099 109 100 113 115 1.00 122 101 104 114
17 1.09 107 1.00 1.09 105 112 1.02 114 119 123 09 116
18 1.09 100 1.03 0.97 100 1.04 1.07 0.95 117 110 1.08 1.00
Avg. Ratio 1.05 105 1.03 104 105 1.07 105 103 115 110 1.03 110
Table 10: Ratios of the schedule lengths generated by the PGS algorithm
to that of the DSC algorithm for the Laplace equation solver task graphs
with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.
CCR 0.1 1.0 10.0
No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16
9 081 083 070 0.65 086 094 089 0.71 049 060 052 0.72
10 064 056 065 061 095 064 064 081 056 094 076 0.76
11 0.68 081 062 0.68 0.64 064 080 052 0.62 080 0.62 0.92
@ 12 046 050 050 0.53 0.62 052 052 0.75 082 056 057 0.53
(7] 13 0.58 0.67 057 058 099 098 09 0.72 099 076 0.84 0.69
Z 14 055 081 0.72 0.68 0.88 1.01 062 084 060 060 0.65 0.61
S 15 057 069 057 061 0.84 067 074 0.77 084 046 064 049
2 16 0.64 067 070 0.82 0.54 080 0.66 0.60 0.73 089 058 0.67
17 089 074 095 0.86 0.63 061 084 049 0.65 053 052 052
18 0.63 065 073 0.76 0.78 0.87 104 0.89 046 098 098 0.86
Avg. Ratio 0.65 069 0.67 0.68 0.77 077 077 071 0.68 0.71 0.67 0.68

PPEs on the Paragon. Other parameters remained the same. The average schedule length ratios
of PGS to DSC and DCP are depicted by the plot shown in Figure 8. For comparison, the ratios
shown earlier are also included in the plot. Note that in the horizontal axis the ratios of the
algorithm’s running times, rather than the number of generations used, are indicated. When the
ratio of running times approaches 0.5 (i.e., humber of generations is about 30v), the PGS
algorithm outperformed the DCP algorithm for small values of CCR (i.e., 0.1 and 1.0) and
showed almost the same performance when CCR is 10. It should be noted that even though the
number of generations was increased by a factor of 2 and 3, the PGS algorithm was still faster
than the DCP algorithm by a factor of roughly 3 and 1.8 respectively.

From these results we can conclude that the efficiency of the PGS algorithm is much higher
than the DCP algorithm. Thus, the PGS algorithm is a viable choice for scheduling if a parallel
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Table 11: Ratios of the schedule lengths generated by the PGS algorithm
to that of the DCP algorithm for the Laplace equation solver task graphs

with three CCRs using 2, 4, 8, and 16 PPEs on the Intel Paragon.

Running Time Ratios (PGS/DSC)

(a) Average schedule length ratios

of PGS over DSC.
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CCR 0.1 1.0 10.0

No. of PPEs | 2 4 8 16 2 4 8 16 2 4 8 16

9 125 128 1.08 1.00 122 133 125 1.00 094 116 100 1.38

10 119 105 122 113 148 1.00 100 127 085 143 116 1.16

11 1.00 120 091 1.00 1.00 1.00 126 0.82 1.00 129 100 148
@ 12 092 100 1.00 1.05 120 1.00 101 145 156 1.06 1.07 1.00
7] 13 1.00 116 098 1.00 148 146 143 1.08 167 129 142 116
2 14 087 129 114 1.08 122 140 086 1.16 100 100 108 101
IS 15 1.00 120 1.00 1.06 138 110 121 127 159 087 121 093
2 16 1.00 105 109 1.28 100 148 122 111 125 152 100 114

17 123 102 130 118 108 1.05 145 0.84 124 102 100 1.00

18 1.07 110 123 129 1.07 119 142 121 067 141 142 124
Avg. Ratio 105 114 110 111 121 120 121 112 118 120 114 115
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Figure 13: The average ratios of schedule lengths for all the regular task graphs with
three CCRs using 8 PPEs on the Intel Paragon: (a) PGS vs. DSC and (b) PGS vs. DCP.

processing platform is available.

6 Related Work

In most of the previous work on multiprocessor scheduling using a genetic search, SGA with
standard genetic operators is commonly adopted. Furthermore, these algorithms do not exploit
the inherent parallelism in genetic search, and are sequential.

Benten and Sait [5] proposed a genetic algorithm for scheduling a DAG to a limited number
of fully-connected processors with a contention-free communication network. In their scheme,
each solution or schedule is encoded as a chromosome containing v alleles, each of which is an
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Running Times (secs)

Matrix Size | DSC DCP PGS
9 212 5.17 6.17
10 2.16 5.55 6.15
11 3.54 6.73 8.73
12 3.67 7.92 9.92
13 4.89 9.63 11.63
14 5.98 12.43 13.43
15 7.98 16.34 18.34
16 9.67 19.32 20.32
17 11.56 23.89 25.89
18 13.66 28.25 30.25

(a) Average running times using 1 PPE.
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(c) Average speedups of PGS over DCP.

Figure 12: (a) The average running times of the PGS algorithm for all the regular task graphs with
three CCRs using 1 PPE on the Intel Paragon; (b) the average speedups of the PGS algorithm over
the DSC algorithm; (c) the average speedups of the PGS algorithm over the DCP algorithm.

ordered pair of task index and its assigned processor index. With such encoding the design of
genetic operators is straightforward. Standard crossover is used because it always produces
valid schedules as offsprings and is computationally efficient. Mutation is simply a swapping of
the assigned processors between two randomly chosen alleles. For generating an initial
population, Benten and Sait use a technique called “pre-scheduling” in which N, random
permutations of numbers from 1 to v are generated. The number in each random permutation
represents the task index of the task graph. The tasks are then assigned to the PEs uniformly: the
first ‘5’ tasks in a permutation are assigned to PE 0, the next ¥ tasks to PE 1, and so on. In their
simulation study using randomly generated task graphs with a few tenths of nodes, their
algorithm was shown to outperform the ETF algorithm proposed by Hwang et al. [21].
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Hou, Ansari, and Ren [19] also proposed a scheduling algorithm using genetic search in
which each chromosome is a collection of lists, each of which represents the schedule on a
distinct processor. Thus, each chromosome is not a linear structure but is a two-dimensional
structure instead. One dimension is a particular processor index and the other is the ordering of
tasks scheduled on the processor. Using such an encoding scheme poses a restriction on the
schedules being represented: the list of tasks within each processor in a schedule is ordered in
ascending order of their topological height, which is defined as the largest number of edges from
an entry node to the node itself. This restriction also facilitates the design of the crossover
operator. In a crossover, two processors are selected from each of two chromosomes. The list of
tasks on each processor is cut into two parts. Then the two chromosomes exchange the two lower
parts of their task lists correspondingly. It is shown that this crossover mechanism always
produces valid offsprings. However, the height restriction in the encoding may cause the search
to be incapable of obtaining the optimal solution. It is because the optimal solution may not obey
the height ordering restriction at all. Hou et al. then incorporated a heuristic technique to lower
the likelihood of such pathological situation. Mutation is simpler in design. In a mutation, two
randomly chosen tasks with the same height are swapped in the schedule. As to the generation
of the initial population, N, randomly permuted schedules obeying the height ordering
restriction are generated. In their simulation study using randomly generated task graphs with a
few tenths of nodes, their algorithm was shown to produce schedules within 20% from optimal
solutions.

Ahmad and Dhodhi [2] proposed a scheduling algorithm using a variant of genetic
algorithm called simulated evolution. They employ a problem-space neighborhood formulation in
that a chromosome represents a list of task priorities. Since task priorities are dependent on the
input DAG, different set of task priorities represent different problem instances. First, a list of
priorities is obtained from the input DAG. Then the initial population of chromosomes are
generated by randomly perturbing this original list. Standard genetic operators are applied to
these chromosomes to determine the fittest chromosome which is the one based on which a list
scheduling heuristic is applied, the resulting assignment and sequencing gives the shortest
schedule length for the original problem. The genetic search, therefore, operates on the problem-
space instead of the solution-space as is commonly done. The rationale of this approach is that
good solutions of the problem instances in the problem-space neighborhood are expected to be
good solutions for the original problem as well.

7 Conclusions

We have presented a parallel genetic algorithm, called the PGS algorithm, for multiprocessor
DAG scheduling. The major motivation of using a genetic search approach is that the
recombinative nature of a genetic algorithm can potentially determine an optimal scheduling list
leading to an optimal schedule. Using well-defined crossover and mutation operators, the PGS
algorithm judiciously combines good building-blocks of scheduling lists to construct better lists.
Parallelization of the algorithm is based on a novel approach in that the parallel processors
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communicate to exchange the best chromosomes with exponentially decreasing periods. As
such, the parallel processors perform exploration of the solution-space at the early stages and
exploitation at the later stages.

In our experimental studies, we have found that the PGS algorithm generates optimal
solutions for more than half of all the cases in which random task graphs were used. In addition,
the PGS algorithm demonstrates an almost linear speedup and is therefore scalable.

While the DCP algorithm has already been shown to outperform many of the leading
algorithms, the PGS algorithm is even better since it generates solutions with comparable quality
while using significantly less time due to its effective parallelization. The PGS algorithm
outperforms the DSC algorithm in terms of both the solution quality and running time. An extra
advantage of the PGS algorithm is its scalability, and with the use of more parallel processors, the
algorithm can also be used for scheduling large task graphs.

Although the PGS algorithm has shown encouraging performance, further improvements
are possible if we can determine an optimal set of control parameters, including crossover rate,
mutation rate, population size, number of generations, and number of parallel processors used.
However, finding an optimal parameters set for a particular genetic algorithm is hitherto an
open research problem.
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