
872 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

On Exploiting Task Duplication in
Parallel Program Scheduling

Ishfaq Ahmad, Member, IEEE, and Yu-Kwong Kwok, Member, IEEE

Abstract—One of the main obstacles in obtaining high performance from message-passing multicomputer systems is the inevitable
communication overhead which is incurred when tasks executing on different processors exchange data. Given a task graph,
duplication-based scheduling can mitigate this overhead by allocating some of the tasks redundantly on more than one processor. In
this paper, we focus on the problem of using duplication in static scheduling of task graphs on parallel and distributed systems. We
discuss five previously proposed algorithms and examine their merits and demerits. We describe some of the essential principles for
exploiting duplication in a more useful manner and, based on these principles, propose an algorithm which outperforms the previous
algorithms. The proposed algorithm generates optimal solutions for a number of task graphs. The algorithm assumes an unbounded
number of processors. For scheduling on a bounded number of processors, we propose a second algorithm which controls the
degree of duplication according to the number of available processors. The proposed algorithms are analytically and experimentally
evaluated and are also compared with the previous algorithms.

Index Terms—Algorithms, distributed systems, multiprocessors, duplication-based scheduling, parallel scheduling, task graphs.

——————————���F���——————————

1 INTRODUCTION

ESPITE great advances in multicomputer architecture
design, interprocessor communication remains a noto-

riously unavoidable overhead in the execution of parallel
programs. This overhead is incurred when tasks of the par-
allel program assigned to different processors exchange
data. Since the communication cost between tasks assigned
to the same processor is considered to be negligible, task
duplication is one way of reducing the interprocessor
communication overhead. Using this approach, some of the
more critical tasks of a parallel program are duplicated on
more than one processor. This can potentially reduce the
start times of waiting tasks and eventually improve the
overall completion time of the entire program. Duplication-
based scheduling can be useful for systems, such as net-
works of workstations, that have high communication la-
tencies and low bandwidths. With task duplication, consid-
erable improvements in speedups have been reported [14].

For duplication-based scheduling, the structure of a par-
allel program and the timings of individual tasks and
communication costs must be available (see [18], [23] for
techniques to generate such information). Therefore,
scheduling can be performed statically at compile-time. A
parallel program represented by a directed acyclic graph
(DAG) contains v nodes n n nv1 2, , ,K< A and e directed

edges, each of which is denoted by n ni j,4 9 . A node in the

parallel program graph represents a task which, in turn, is

a set of instructions that must be executed sequentially in
the same processor (we assume no preemption). Associated

with each node is the computation cost of a node ni, denoted

by w(ni). The directed edges in the parallel program graph
correspond to the communication messages as well as
precedence constraints among the tasks. Associated with
each edge is the communication cost of the edge, denoted by

c n ni j,4 9 . The source node of an edge is called the parent

node, while the destination node is called the child node. A
node without a parent is called an entry node, while a node
without a child is called an exit node. The communication-to-
computation-ratio (CCR) of a parallel program is defined as its
average communication cost divided by its average computa-
tion cost on a given system. A node cannot start execution be-
fore it gathers all of the messages from its parent nodes. If

node ni is scheduled to processor P, ST(ni, P) and FT(ni, P) de-

note the start time and finish time of ni on processor P, respec-

tively. It should be noted that FT(ni, P) = ST(ni, P) + w(ni). After
all nodes have been scheduled, the schedule length is defined
as max ,i iFT n P2 7= B across all processors. The objective of a

scheduling algorithm is minimize the schedule length such
that the precedence constraints are preserved.

Scheduling of task graphs onto multiprocessors is
known to be an NP-complete problem in most cases [6],
[11], [14], [17], leading to solutions based on heuristics [9],
[10], [16], [21]. The complexity and quality of a heuristic
largely depend on the task graph structure and the target
machine model. The conventional heuristic used in de-
signing scheduling algorithms is called list scheduling,
which is a two-step approach. In the first step, priorities are
assigned to nodes and the node with the highest priority is
chosen for scheduling. In the second step, the best possible
processor, that is, the one which allows the earliest start time,

1045-9219/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� I. Ahmad is with the Department of Computer Science, The Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong.
E-mail: iahmad@cs.ust.hk.

•� Y.-K. Kwok is with the Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Pokfulam Road, Hong Kong.
�E-mail: ykwok@eee.hku.hk.

Manuscript received 16 Feb. 1996; revised 1 Apr. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100122.

D

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 873

is selected to accommodate this node. Numerous methods
for assigning priorities to nodes and selecting the most suit-
able processor have been proposed [7], [8], [13], [19], [22].

Even with an efficient scheduling algorithm, it may hap-
pen that some processors are idle during different time slots
because some nodes must wait for data from nodes as-
signed to other processors. If these idle time slots are util-
ized effectively by identifying and redundantly allocating
the critical nodes, the completion time of the parallel pro-
gram can be further reduced. Consider, for instance, a sim-
ple task graph shown in Fig. 1a. An optimal schedule with-
out duplication is shown in Fig. 1b (PE denotes a process-
ing element). As can be seen, PE 1 is idle from time 0 to
time 4 since node n3 is waiting for the output data from n1.
If n1 is duplicated to this idle time period of PE 1, the
schedule length can be reduced to the minimum, as shown
in Fig. 1c. There are two issues to be addressed for design-
ing an effective task duplication technique:

•� Which node(s) to duplicate? This concerns the selection
of the ancestor nodes for duplication so that the finish
time of a descendent node can be minimized.

•� Where to duplicate the node(s)? This concerns locating a
proper time slot on a processor to duplicate the an-
cestor nodes.

One might argue that task duplication requires more
memory. However, even if all ancestors (starting from an
entry node) of a node are duplicated, the sum of the
computation costs of the duplicated nodes does not ex-
ceed the critical path1 length, which is the maximum
memory requirement per processor without duplication.
Thus, duplication has the potential to considerably reduce
the schedule length by efficiently utilizing the processors,
provided an efficient scheduling algorithm is available.
Using duplication, however, makes the scheduling problem

1. A critical path of a task is a set of nodes and edges, forming a path
from an entry node to an exit node, of which the sum of computation cost
and communication cost is the maximum; there can be more than one criti-
cal path in a task graph.

more complex since the scheduling algorithm should not
only observe the precedence constraints but also select im-
portant ancestor nodes for duplication and identify idle
time slots to accommodate them.

This paper is organized as follows. In Section 2, we de-
scribe the related work in duplication-based scheduling
through a discussion of the characteristics of five previ-
ously proposed algorithms. This discussion motivates the
need for a more effective algorithm. In Section 3, we pres-
ent the design principles of our approach, followed by a
description of our proposed algorithms and some of their
properties. In Section 4, we present some illustrative ex-
amples to demonstrate the operation of all the algorithms.
In Section 5, we include the performance results and com-
parisons with other algorithms. We provide concluding
remarks in the last section, and include proofs of theorems
in the Appendix.

2 RELATED WORK

Using duplication in static scheduling is a relatively unex-
plored research topic and only a few such algorithms have
been suggested in the literature. The main difference in the
reported algorithms lies in their strategies to select nodes
for duplication. To reduce the start times of nodes, some
algorithms duplicate only the parent nodes, while some
algorithms attempt to duplicate ancestor nodes from higher
levels as well. In the following, we discuss five duplication-
based scheduling algorithms (Table 1 includes some of the
characteristics of these algorithms).

2.1 The DSH Algorithm
The DSH (Duplication Scheduling Heuristic) algorithm [12]
uses the static level (defined as the largest sum of computa-
tion costs along a path from the node to an exit node) as the
priority for each node. The algorithm considers each node
in descending order of their priorities. In examining the
suitability of a processor for a node, the algorithm first

 (a) (b) (c)

Fig. 1. (a) A simple task graph, (b) a schedule without duplication, (c) a schedule with duplication.

874 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

determines the start time of that node on the processor
without duplication of any ancestor, and then considers the
duplication time slot (the idle time period from the finish
time of the last scheduled node on the processor and the
start time of the node currently under consideration). If a
suitable processor is found, the algorithm attempts to du-
plicate the parents of the node into the duplication time
slot until either the slot is used up or the start time of the
node does not improve further. This process is repeated
for other processors and the node is scheduled to the
processor that gives the smallest start time. The DSH algo-
rithm calculates the priorities of nodes based on static lev-
els which may not accurately capture the relative impor-
tance of nodes because dynamically changing communi-
cation costs (during the scheduling steps) among nodes
are not taken into account. Furthermore, duplication may
not always be very effective since the algorithm considers
only one idle time slot on a processor.

2.2 The PY Algorithm
The PY algorithm (named after Papadimitriou and Yanna-
kakis) [17] uses an attribute called the e-value to approxi-
mate the absolute achievable lower bound of the start time
of a node. This attribute is computed recursively beginning
from the entry nodes to the exit nodes. After computing the
e-values, the algorithm inserts each node into a cluster in
which a group of parents are duplicated such that the data
arrival times from these ancestors are larger than the e-value
of the node. It has been shown that the schedule length
generated by the algorithm is within a factor of two from
the optimal. The algorithm clusters nodes in a subgraph for
duplication by using a node inclusion inequality which
checks the message arrival times against the lower bound
values of the candidate node under consideration. This can
potentially leave out the nodes which are more important
for reducing the start time of the given node, and this may
lead to a poor schedule.

2.3 The LWB Algorithm
We call the algorithm proposed in [5] the LWB (Lower
Bound) algorithm based on its main procedure. The algo-
rithm first determines the lower bound start time (denoted
by lwb) for each node and then identifies a set of critical
edges in the DAG. A critical edge is one in which a parent’s
message available time for the child is greater than the
lower bound start time of the child. Thus, the parent and
child have to be scheduled to the same processor in order

to reduce the start time of the child. Based on this idea, the
LWB algorithm schedules every path of critical edges to a
distinct processor. Since these paths may share ancestors,
duplication is employed. It should be noted that the lwb
value of a node is different from the e-value used in the PY
algorithm in that the lwb value is computed by consider-
ing a single path from an entry node, while the e-value is
computed by taking the whole subgraph reaching the
node into account. The algorithm considers only those
ancestors which are on a single path. When a node has
more than one heavily communicated parent, this tech-
nique does not minimize the start time of the node (which
can be done by duplicating more than one parents on a proc-
essor). Nevertheless, as is shown in [5], the LWB algorithm
can generate optimal schedules for task graphs in which
node weights are strictly larger than any edge weight.

2.4 The BTDH Algorithm
The BTDH (Bottom-Up Top-Down Duplication Heuristic)
algorithm [4] is essentially an extension of the DSH algo-
rithm described above. The major improvement brought by
the BTDH algorithm over the DSH algorithm is that the
former keeps on duplicating ancestors of a node even when
the duplication time slot is filled up and the start time of
the node under consideration temporarily increases. This
strategy is based on the intuition that the start time may
eventually be reduced by duplicating all the necessary an-
cestors. As the BTDH algorithm also uses static level for pri-
ority assignment, it may not always accurately capture the
relative importance of nodes.

2.5 The LCTD Algorithm
The LCTD (Linear Clustering with Task Duplication) algo-
rithm [20] first iteratively clusters nodes into larger nodes.
At each iteration, nodes on the longest path are clustered
and removed from the task graph. This operation is re-
peated until all nodes in the graph are removed. After
performing the clustering step, the LCTD algorithm iden-
tifies those edges among clusters that determine the over-
all completion time. The algorithm then attempts to dupli-
cate the parents corresponding to these edges to reduce
the start times of some nodes in the clusters. Linear clus-
tering may not always accurately identify the nodes that
should be scheduled to the same processor. In addition, in
the context of duplication based scheduling, linear clus-
tering prematurely constrains the number of processors
used. This constraint can be detrimental because the start

TABLE 1
SOME DUPLICATION-BASED SCHEDULING ALGORITHMS AND THEIR CHARACTERISTICS

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 875

times of some critical nodes may possibly be significantly
reduced by using a new processor in which its ancestors
are duplicated.

3 THE PROPOSED APPROACH

In this section, we discuss some of the basic principles used
in the proposed approach, followed by a description of our
algorithms. The first algorithm assumes unbounded num-
ber of processors while the second algorithm takes the
number of processors as an input parameter.

The assumptions in our approach are the same as
those in the other algorithms mentioned earlier: We as-
sume that the processor network is fully connected and
each processor has a dedicated communication hardware
so that communication and computation can take place
simultaneously.

3.1 Assigning Priorities to Nodes
An accurate determination of important nodes for duplica-
tion is the key to obtaining a short schedule. If relatively less
important nodes are scheduled or duplicated, the early time
slots in the processors are occupied. Consequently, the more
important nodes are not scheduled to start earlier. The most
important nodes are the nodes on the critical path (CP). This
is because a CP is the longest path of the task graph and,
therefore, the finish times of the CP nodes (CPNs) determine
the final schedule length. Thus, CPNs should be examined
for scheduling or duplication as early as possible. However,
not all CPNs can be examined without considering their par-
ent nodes because of precedence constraints. In order to for-
mulate a scheduling order in which all the CPNs can be
scheduled as early as possible while preserving precedence
constraints, we classify the nodes of a task graph into three
categories using the following definition.

DEFINITION 1. In a connected graph, an In-Branch Node (IBN)
is a node which is not a CPN and from which there is a
path reaching a Critical Path Node (CPN). An Out-
Branch Node (OBN) is a node which is neither a CPN nor
an IBN.

The relative importance of these nodes is in the follow-
ing order: CPNs, IBNs, and OBNs. The IBNs are also im-
portant because timely scheduling of these nodes can help
reducing the start times of the CPNs. The OBNs are rela-
tively less important because they usually do not affect the
schedule length. Based on this classification, we construct a list
of nodes in decreasing importance so that the CPNs are ex-
amined for scheduling before the other nodes without violat-
ing the precedence constraints. This list of nodes is called the
CPN-Dominant list and is built in the following manner:

Construction of the CPN-Dominant list:

1)� Initially, the list is empty. Make the entry CPN be
the first node in the list. Set Position to 2. Let nx be
the next CPN.

Repeat

2)� If nx has all its parent nodes in the list then
3)� Put nx at Position in the list and increment Position.
4)� else

5)� Let ny be the parent node of nx which is not in
the sequence and has the largest b-level.2 Ties
are broken by choosing the parent with a
smaller t-level. If ny has all its parent nodes in
the sequence, put ny at Position in the sequence
and increment Position. Otherwise, recursively
include all the ancestor nodes of ny in the se-
quence so that the nodes with a larger value of
b-level are considered first.

6)� Repeat the above step until all the parent nodes of
nx are in the list. Then, put nx at Position in the list.

7)� endif
8)� Make nx to be the next CPN.

Until all the CPNs are in the list.

9)� Append all the OBNs to the sequence in a decreas-
ing order of b-level.

The CPN-Dominant sequence does not violate the prece-
dence constraints since all of the IBNs reaching a CPN are
always before that CPN in the sequence. In addition, the
OBNs are appended to the sequence in a topological order so
that a parent OBN is always before a child OBN.

3.2 The Task Duplication Technique
Locating a proper time slot to accommodate a duplicated
node is also very important since duplicating a node in an
improper time slot may not reduce the start time of a node.
Some previously proposed algorithms consider only the last
idle time slot on a processor but ignore other idle time slots
that may give more reduction in the schedule length.

The start time of a node (call it a candidate node) is de-
termined by the data arrival time from its parent nodes. The
parent node from which the data arrives at the latest time is
called a Very Important Parent (VIP) of the candidate node.
Rule I below can be used to determine the VIP of a node.

Rule I. The Very Important Parent (VIP) of a node ny is a parent

node nx such that the value of FT n MINP n c n nx x x y, ,2 73 8 4 9+

is the largest among all the ny’s parent nodes. This value is

called the data arrival time (DAT) of ny.

To accommodate this VIP, a proper time slot on a processor
must be found. Our approach is to scan through the whole
time span of the processor to find the earliest time slot that is
large enough to accommodate the selected parent node pro-
vided the precedence constraints are not violated. Rule II be-
low governs the selection of a suitable idle time slot.

Rule II. A node ny can be scheduled to a processor P, on which a

set of k nodes n n nP P
k
P

1 2, , ,K> C have been scheduled, if there

exists some value of i such that:

ST n P FT n P DAT n P w ni
P

i
P

y y+ − ≥1, , , ,4 9 4 9 4 9J L 4 9MAX

where i = 0, 1, ¤, k; ST n Pk
P
+ = ∞1,4 9 , and FT n PP

0 0,4 9 = .

2. The b-level of a node is the length (sum of the computation and com-
munication costs) of the longest path from this node to an exit node. The
t-level of a node is the length of the longest path from an entry node to
this node (excluding the cost of this node).

876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

The earliest start time of ny on P is then given by:

MAX FT n P DAT n Pj
P

y, , ,4 9 4 9J L
with j being the smallest value of i satisfying the inequality.

Minimization of the start time of a candidate node, in
turn, requires the minimization of the start time of its du-
plicated VIP. This requires the duplication process to be
applied recursively to the VIP to minimize its start time. Be-
low is an outline of the procedure for performing the recur-
sive duplication process.

Minimize_start_time(node, P):

1)�Determine the earliest start time (EST) of node on
processor P using Rule II.

2)� If EST is undefined, then quit because node cannot be
scheduled on P.

3)�Find out the VIP of node using Rule I.
4)�Minimize the start time of this VIP by recursively

calling Minimize_start_time(VIP, P).
5)�Compute the new EST of node. If the new EST does not

improve, then undo all the duplication just performed
in Step 4, schedule node to P, and quit; otherwise, find
out the new VIP of node and repeat from Step 4.

The procedure Minimize_start_time minimizes the start
time of a candidate node by recursively duplicating the
ancestor nodes beginning from its VIP. After exploring the
ancestor nodes reachable from this VIP, the procedure at-
tempts to further reduce the start time of the candidate
node by considering if there is another parent node of the
candidate node (the new VIP) that is constraining the start
time of the candidate node. The duplication process is ap-
plied if such a new VIP exists. Indeed, the duplication proc-
ess terminates when there is no more VIP or the VIP is al-
ready on the same processor.

3.3 The Proposed Algorithm
Using the procedures discussed above, the proposed algo-
rithm, called the Critical Path Fast Duplication (CPFD) al-
gorithm, is formalized below.

The Critical Path Fast Duplication Algorithm:

1)�Determine a CP. Ties are broken by selecting the one
with a larger sum of computation costs. Construct the
CPN-Dominant sequence.

Repeat

2)�Let candidate be the first unscheduled CPN in the
CPN-Dominant sequence.

3)�Let P_SET be a set of processors, including all the
processors holding candidate’s parent nodes, and an
empty processor.

4)� For each processor P in P_SET, call Minimize_start_time
(candidate, P) and record the EST of candidate on P.

5)�Schedule candidate to the processor P’ that gives the
smallest value of EST.

Until all the CPNs in CPN-Dominant sequence are
scheduled.

6)�Repeat the process from Step 2 to Step 5 for each OBN
in the CPN-Dominant sequence.

The scheduling of the IBNs reaching a CPN is implicitly
handled by the duplication process in the procedure Mini-
mize_start_time. If an IBN is found to be unscheduled dur-
ing the minimization of the start time of a CPN, the start
time of the IBN can always be minimized by scheduling it
to an empty processor.

The time complexity of the CPFD algorithm is deter-
mined as follows. The dominant part of the algorithm is the
loop from Step 2 to Step 5. This loop executes O(v) times as
there are O(v) CPNs in a task graph. In each iteration of the
loop, there are O(v) calls to the procedure Minimize_start_time
because there are O(v) processors in P_SET. The time com-
plexity of Minimize_start_time is O(e) since the procedure
traverses O(e) edges in the task graph. Thus, the overall

time complexity is O ev24 9 .
3.4 Properties of the CPFD Algorithm
In this section, we examine the theoretical performance of the
CPFD algorithm for three types of graph structures: the out-
tree task graphs, the in-tree task graphs, and the fork-join task
graphs (see Fig. 2). First, we briefly characterize the in-tree task
graph, the out-tree task graph, and the fork-join task graph.

•� An out-tree task graph is a connected graph in which
every node has only one parent node. This task graph
represents a number of divide-and-conquer algo-
rithms as the flow of control in these algorithms is
usually in a top-down fashion.

•� An in-tree task graph is a connected graph in which
every node has only one child node. An in-tree task

 (a) (b) (c)

Fig. 2. (a) An in-tree task graph, (b) and out-tree task graph, (c) a fork-join task graph.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 877

graph can represent some divide-and-conquer algo-
rithms in which the flow of control is in a bottom-up
fashion.

•� A fork-join task graph is a hybrid of an in-tree task
graph and an out-tree task graph. It has a root node
(with depth 0) which spawns a number of children
nodes. The output edges of the children nodes con-
nect to either an intermediate node that spawns an-
other set of children nodes or an exit node.

In the following, the notion of optimal solution implies the
best solution that can be realized with duplication. Obviously,
the best schedule length with duplication must be shorter than
or equal to the best schedule length without duplication.

THEOREM 1. The CPFD algorithm generates optimal schedules
for out-tree task graphs.

PROOF. Refer to the Appendix. o

Theorem 1 reveals that duplication may also be useful
for task graphs having nodes with more children nodes
than parent nodes, even though the task graphs are not out-
tree graphs. In other words, given a task graph with more
OBNs than IBNs, the algorithm can accurately identify im-
portant tasks for duplication.

THEOREM 2. The CPFD algorithm generates optimal schedules
for any unit-height in-tree task graphs.

PROOF. Refer to the Appendix. o

The result in Theorem 2 may be achieved with or with-
out task duplication in that the optimal schedule length of
the in-tree shown in Fig. 17a can be obtained (see the Ap-
pendix) even if we do not apply duplication to the entry
nodes. Unfortunately, the result of Theorem 2 cannot be
generalized to in-tree task graphs with arbitrary heights.
However, we expect that the CPFD algorithm generates
near optimal schedules for in-tree task graphs because it
recursively traces upward in the task graph and selects the
most important parent to duplicate.

THEOREM 3. The CPFD algorithm generates optimal schedules
for any fork-join task graphs.

PROOF. Refer to the Appendix. o

It should be noted that achieving the results in Theorem 3
requires duplicating the root node n0 (see the Appendix) on
every processors.

If a task graph has relatively small communication costs
(such that all communication costs are strictly less than any
computation cost in the task graph), the CPFD algorithm can
generate optimal schedule regardless of the graph structure.

3.5 Algorithm for Bounded Number of Processors
In this section, we present our second algorithm, called the
Economical CPFD (CPFD) algorithm, that considers the
availability of a bounded number of processors. Before de-
scribing the algorithm, we make some observations on the
CPFD algorithm. During the scheduling process, it can be
noted that some OBNs can be packed into a processor al-
ready in use instead of using a new processor. Indeed, the
start times of some OBNs can be delayed without affecting
the schedule length. Thus, we may modify the procedure
for scheduling an OBN as follows:

1)�Without using any task duplication, schedule the
OBN to a processor which is already in use. The OBN
is scheduled to start at the earliest start time provided
the schedule length does not increase.

2)� If none of the processors already used can do the
above, schedule the OBN to an empty new processor
with duplication so that it can start execution as early
as possible. If there is no new processor available,
schedule the OBN to a processor already used such
that the increase in schedule length is the minimum.

If an OBN is forced to schedule to a processor already
used, the start times of its descendants may be delayed and
the schedule length will in turn be increased. Thus, we
should also check whether the scheduling of the OBN will
cause such an increase in schedule length by future sched-
uling of its descendants. To simplify the procedure we can
check only the most important descendant (the one with
the largest sum of communication cost and computation
cost). The ECPFD algorithm is described below.

The ECPFD Algorithm:

1)�Determine a CP. Ties are broken by selecting the one
with a larger sum of computation costs. Construct the
CPN-Dominant sequence.

Repeat

2)�Let candidate be the first unscheduled CPN in the
CPN-Dominant sequence.

3)�Let P_SET be a set of processors including all the
processors holding candidate’s parent nodes and an
empty processor, if any.

4)� For each processor P in P_SET, call Minimize_start_time
(candidate, P) and record the EST of candidate on P.

5)�Schedule candidate to the processor P� that gives the
smallest value of EST.

Until all the CPNs in CPN-Dominant sequence are
scheduled.

Repeat

6)�Let candidate be the first unscheduled OPN in the
CPN-Dominant sequence.

7)�Let P_SET be the set of processors already in use.
8)�Determine the critical_child of candidate, which is the

child node that has the largest communication.
9)�For each processor P in P_SET:

a)�Call Minimize_start_time(candidate, P)
b)�Call Minimize_start_time(critical_child, P)
c)�Record the sum of the ESTs of candidate and criti-

cal_child on P.
10)� Schedule candidate to the processor P� that gives the

smallest sum of ESTs. If no such P� exists and there is an
empty processor Q, schedule candidate to Q with dupli-
cation by calling Minimize_start_time(candidate, Q); oth-
erwise, schedule candidate to a processor in P_SET such
that the increase in schedule length is the minimum.

Until all the OBNs in the CPN-Dominant sequence are
scheduled.

The ECPFD algorithm shares with the CPFD algorithm
the basic duplication technique for scheduling CPNs. How-
ever, there are also some important differences between

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

the two algorithms: The first difference is that since the
ECPFD algorithm works with a limited number of proc-
essors, some of the CPNs may not be scheduled to start
at the earliest possible times if no empty processor is
available. The second difference is the way the ECPFD
algorithm handles OBNs. Initially, the ECPFD algorithm
does not apply any duplication to schedule the OBNs. If
none of processors already in use can accommodate an
OBN without increasing the intermediate schedule length,
the ECPFD algorithm resorts to duplication of that OBN
using a new processor. If no new processor is available, the
algorithm chooses the processor that can accommodate the
OBN with the smallest increase in schedule length. To avoid
scheduling an OBN to a processor that cannot accommo-
date a heavily communicated child node of the OBN, the
ECPFD algorithm uses the look-ahead scheduling strategy
to select the most suitable processor. As the dominant part
of the algorithm is still the loop of scheduling the CPNs,
the time complexity of the ECPFD algorithm is O(pev),
where p is the number of processors.

4 SCHEDULING EXAMPLES

In this section, we first use an example task graph (see
Fig. 3a) to illustrate the effectiveness of the proposed algo-
rithms. For comparison, the schedules generated by the
other five algorithms are also shown.

For the graph shown in Fig. 3a, the static levels of
nodes and the CPN-Dominant Sequence (denoted by
CPN-DS) are shown in Fig. 3b. The CPNs in the task
graphs are marked by an asterisk. A schedule without task
duplication is shown in Fig. 3c. Communication edges are

not shown in the schedule for clarity. As can be seen, the
node n3 needs to wait for the data from node n1, resulting
in an idle time period of three units in processor PE 1.
Similarly, the node n7 needs to wait for the data from n3.
Thus, if n3 can start earlier on PE 1 by duplicating n1, then
n7 can also start earlier and the schedule length can be
reduced.

The schedule generated by the LWB algorithm is shown
in Fig. 4, which also includes a scheduling trace. The
schedule length is one time-unit shorter compared to the
schedule without duplication. However, the number of
processors used increases from 2 to 5. Obviously, the du-
plication employed by the LWB algorithm for this task
graph is not effective. This is because the algorithm at-
tempts to duplicate only ancestor nodes on the same path
despite that the start time of a candidate node can be fur-
ther reduced by duplicating the ancestor nodes on the
other paths. For instance, the start time of the node n7 can
be considerably reduced if the nodes n2 and n3 are also
duplicated to PE 4.

The schedule generated by the LCTD algorithm and the
scheduling trace are shown in Fig. 5. The schedule length is
shorter than that of the LWB algorithm and the utilization
of processors is also much better. This is because the LCTD
algorithm considers every ancestor nodes reaching a node
for duplication.

The DSH and BTDH algorithms generate the same
schedule, which is shown in Fig. 6. Although the schedule
length is the same as that of the LCTD algorithm, the
scheduling order of most nodes is different. This is because
the LCTD algorithm assigns all the nodes on a critical path
to the same processor at once, while the DSH and BTDH

(a) (b) (c)

Fig. 3. (a) A simple task graph, (b) static levels of the nodes, (c) a schedule without using task duplication (schedule length = 26).

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 879

algorithms examine the nodes for scheduling in a de-
scending order of static levels.

The schedule generated by the PY algorithm is shown in
Fig. 7. The schedule length is much longer than that of the
previous three algorithms. It should be noted that the
schedule length is even longer than the schedule without
duplication shown earlier.

The schedule generated by the CPFD algorithm is shown
in Fig. 8a. The schedule length is 20, which is optimal. The
scheduling steps are also shown in Fig. 8b. Note that this task
graph does not contain any OBN. The order of scheduling
depicted in the table follows the order in the CPN-Dominant
sequence. The nodes duplicated at each step are also shown
in the last column of the table. At the first step, the first CPN,

 (a) (b)

Fig. 4. (a) The schedule generated by the LWB algorithm (schedule length = 25), (b) the lower bound values computed by the LWB algorithm.

 (a) (b)

Fig. 5. (a) The schedule generated by the LCTD algorithm (schedule length = 22), (b) a scheduling trace of the LCTD algorithm.

880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

n1, is selected for scheduling. At the second step, the second
CPN (n7) is selected for scheduling, but its parent nodes n2
and n3 are unscheduled. Thus, the procedure Mini-
mize_start_time is recursively applied to them. Next, the pro-
cedure returns to schedule n7. Then, the last CPN (n9) is ex-
amined. As most of the ancestor nodes of n9 are not sched-
uled, the duplication procedure is also recursively applied to
them. Finally, when n9 is scheduled, only the necessary nodes

(n1, n2, and n7) are duplicated. Unlike the other algorithms,
the CPFD algorithm does not duplicate the node n3 when
trying to minimize the start time of n7.

The schedule generated by the ECPFD algorithm is
shown in Fig. 8c. The algorithm is given only two proces-
sors but still generates a reasonably good schedule. The
schedule length generated is about 5 percent longer than
those of the other algorithms.

 (a) (b)

Fig. 6. (a) The schedule generated by the DSH and BTDH algorithms (schedule length = 22), (b) a scheduling trace of the DSH and BTDH algorithms.

 (a) (b)

Fig. 7. (a) The schedule generated by the PY algorithm (schedule length = 27), (b) the e-values computed by the PY algorithms.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 881

5 PERFORMANCE AND COMPARISON

We implemented the proposed algorithms as well as the
four3 previously reported algorithms on a SUN SPARC Sta-
tion 2 using suites of regular and irregular task graphs. The
regular graphs represent four parallel applications: the
parallel Gaussian elimination [23], the mean value analysis [3],
the Laplace equation solver [23], and the LU-decomposition
[15]. The irregular graphs include the in-tree, out-tree, fork-
join, and completely random task graphs [3].

In each graph, the computation costs of the individual
nodes were randomly selected from a uniform distribu-
tion with the mean equal to the chosen average computa-
tion cost. Similarly, the communication costs of the edges
were randomly selected from a uniform distribution with
the mean equal to the average communication cost. The
regular graphs were generated according to their prede-
fined structures. The irregular task graphs were generated
in the following manner: Given the number of nodes v, we
randomly generated the height (the number of levels) of
the graph from a uniform distribution with mean v . At
each level, we randomly generated the number of nodes
from the same uniform distribution with mean v . The
nodes at a level were then randomly connected to nodes at
a higher level.

Within each type of graph, we used seven values of CCR:
0.1, 0.5, 1, 1.5, 2, 5, and 10. For each of these values, we gen-
erated 10 different graphs of various sizes. For irregular
graphs, the number of nodes varied from 50 to 500 with in-
crements of 50. On the other hand, the regular graphs are
characterized by the size of their input data matrix. If N is the

3. We thank Michael Palis for providing us the implementation of the PY
algorithm.

size of the matrix, the number of nodes is roughly equal to
N2. The size of the matrix was varied from 15 to 24. Thus, for
each type of graph structure, 70 graphs were generated, with
the total number of graphs corresponding to 560 (eight graph
types, seven CCRs, 10 graph sizes).

The performance comparison of the CPFD, LWB, LCTD,
DSH, BTDH, and PY algorithm was done in a number of
ways. First, the schedules lengths produced by these algo-
rithms were compared with each other by varying graph
sizes, graph types, and various values of CCR. Second, we
compared the number of times each algorithm produced
the best solution. Third, we observed the percentage deg-
radation in performance of an algorithm compared to the
best solution. Fourth, a global comparison (each algorithm
was compared against the rest of the algorithms) was
done. The running times and the number of processors
used by each algorithm were also noted. Finally, the effec-
tiveness of the ECPFD algorithm was tested by comparing
its performance with that of the CPFD algorithm.

5.1 Comparison of Schedule Lengths
For the first comparison, we present the normalized sched-
ule lengths (NSLs) produced by the six algorithms. An NSL
was obtained by dividing the output schedule length by the
sum of computation costs on the critical-path.

Table 2 shows the average NSLs produced by each algo-
rithm for each graph type (averaged over seven values of
CCR and 10 graph sizes). The right most column shows the
average taken across all graph types (average of 560
graphs). These numbers clearly indicate that the CPFD al-
gorithm produces the shortest average schedule length not
only across all graphs types but also for each type of graph.
The performance of CPFD is followed by that of the BTDH

 (a) (b) (c)

Fig. 8. (a) The schedule generated by the CPFD algorithm (schedule length = 20), (b) the scheduling steps of the CPFD algorithm (a node is
scheduled to the processor on which the start time is marked by an asterisk and entry with “N.C.” indicates the processor is not considered),
(c) the schedule genereated by the ECPFD algorithm given only two processors (schedule length = 23.).

882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

algorithm. There is a little difference between the perform-
ance of DSH and BTDH. The LWB algorithm exhibits large
variations in its performance. It performs well for LU-
decomposition and out-trees but does not perform well on
other graphs. Based on this comparison, these algorithm are
ranked in the following order: CPFD, BTDH, DSH, LCTD,
PY, and LWB.

Fig. 9a shows the NSLs (averaged over all graph sizes
and graph types) of each algorithm against various values
of CCR. From this figure, we can observe that all algo-
rithm are very sensitive to the value of CCR. This is be-
cause a larger value of CCR can have more impact (posi-
tive or negative) on the schedule lengths. A large value of
CCR thus tests the capabilities of an algorithm more
robustly, and we can also notice that the differences be-
tween the performance of various algorithms become more

significant with larger value of CCR. The relative per-
formance of these algorithms is, however, consistent with
our earlier conclusion.

Fig. 9b and Fig. 9c show the NSLs yielded by each
algorithm against various graph types (averaged across
graph types and CCRs) for regular and irregular
graphs, respectively. CPFD is again consistently better
than all of the other algorithms. The size of the graph,
both for regular and irregular types, has no bearing on
this observation.

Fig. 10 contains six Kiviat graphs, each of which
shows the number of cases in which an algorithm gener-
ated the best solution and the number of cases the per-
centage degradation in schedule length from the best
solution is within a certain range. That is, for each test
case, we compared the schedule length produced by an

TABLE 2
COMPARISON OF AVERAGE NSLS FOR VARIOUS GRAPH TYPES

 (a) (b)

(c)

Fig. 9. Average NSL of the six algorithms for various CCRs of all graphs for various sizes of regular graphs and random graphs.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 883

algorithm with the best solution out of all the algorithms
and measured the amount of degradation. As such, each
Kiviat graph has five polar axes: the number of best so-
lutions generated by the algorithm (0 percent) degrada-
tion), the number of cases when the degradation is less
than or equal to 5 percent, the number of cases when the
degradation is between 5 to 10 percent, one indicates the
number of cases when the degradation is between 10 to
20 percent, and the number of cases when the degrada-
tion is more than 20 percent. The full scale of each axis is
560, which is the total number of test cases.

Clearly, if the shaded region in a Kiviat graph closely
surrounds the 0 percent-axis, the corresponding algorithm
generates the best solutions in most of the cases. Fig. 10
indicates that the CPFD algorithm is the only algorithm
with such a consistent performance. Indeed, the CPFD
algorithm produced the best solutions 551 times out of
560 trials. On the other hand, out of nine cases in which
the CPFD algorithm failed to produce the best solution,
its performance degradation is less than 5 percent in
seven cases and is more than 20 percent in one case only.
In contrast, the performance degradation of the other

Fig. 10. Kiviat graphs showing the performance of the six algorithms in terms of the number of best schedule lengths generated and the number
of cases in which the schedule length percentage degradations from the best solutions are within various ranges for all the task graphs.

884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

algorithms can be seen in all ranges. The performance
degradation of the LCTD and PY algorithms in the range
of 20 percent or higher is more frequent compared to the
rest of the algorithms. The performance of the BTDH and
DSH algorithm is better than the LWB, LCTD, and PY
algorithms. The LWB algorithm, as noted earlier, exhibits
large fluctuations in performance.

Next, we show the number of best solutions and the
number of cases with nonzero percentage degradations of
each algorithm across all the graph types and across all
values of CCR in Table 3 and Table 4, respectively. From
Table 3, we can see that the CPFD algorithm could not pro-
duce the best solution two times for Laplace solver graphs,
two times for in-tree graphs, and five times for random
graphs. The performance of other algorithms varies consid-
erably for different graph types. From Table 4, we observe
that the LWB and LCTD algorithms perform well only with
low values of CCR. The other algorithms appear to be in-
sensitive to the value of CCR.

Fig. 11 and Fig. 12 depict the Kiviat graphs showing
the average percentage degradations from the best solu-
tions across all the graph types and values of CCR, re-
spectively. In these graphs, the full scale of each axis rep-
resents a degradation of 85 percent. It should be noted
that a smaller shaded region implies a better perform-
ance. The CPFD algorithm is thus the best algorithm in

that its Kiviat graph has the smallest shaded region and its
overall performance degradation from the best solutions is
only 1 percent. Another observation from Fig. 11 is that the
LWB, BTDH, and CPFD algorithms generate the best solu-
tions for all the out-tree task graphs. Fig. 12 reveals that the
LWB, LCTD, and PY algorithms are sensitive to CCR in that
their performance degrades as CCR increases.

5.2 A Global Comparison
In the global one-to-one comparison among the six algo-
rithms, we observe the number of times (out of 560 trials)
an algorithm yielded a better, worse, or the same schedule
length compared to each of the other five algorithms. This
comparison is shown in Fig. 13. A box in this figure com-
pares one of the algorithms on the left with one of the algo-
rithms on the top. A box has three numbers indicating the
number of times the algorithm on the left performed better
(>), worse (<), or the same (=) compared to the algorithm
on the top. For instance, the CPFD algorithm compared
with the PY algorithm yielded better solutions 533 times,
worse solutions two times, and the same solution 25 times.

An algorithm’s performance compared to the rest of
the five algorithms combined is shown in the box on the
right side. The CPFD outperformed all other algorithms
in 1,975 cases, but was outperformed in 14 cases only.
Using this figure, while we can observe the performance

TABLE 3
COMPARISON OF THE NUMBER OF BEST SCHEDULE LENGTHS GENERATED AND THE NUMBER OF CASES IN WHICH THE PERCENTAGE

DEGRADATIONS FROM THE BEST SCHEDULE LENGTHS ARE WITHIN CERTAIN INTERVALS FOR VARIOUS GRAPH TYPES

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 885

of any algorithm, we can also observe that the differ-
ences between the performance of other algorithms are
not as large as the difference between the performance of
CFPD algorithm and the rest of the algorithms. This in-
dicates that the performance improvement of the CPFD
algorithm is not marginal.

5.3 Number of Processors Used
All six algorithms described above work under the as-
sumption of the availability of unbounded number of
processors, but each algorithm has its own philosophy of
utilizing processors. We measured the number of proces-
sors used by each algorithm for different graph sizes.
These numbers are plotted in Fig. 14a and Fig. 14b for
regular and irregular graphs, respectively. The differences
among these numbers for various algorithms are large.
The LWB algorithm, for instance, uses a very large num-
ber of processors while the DSH algorithms uses fewer
processors.

5.4 Comparison of Running Times
Here we include the measured running times of all algo-
rithms running on a SUN SPARC workstation. These
times are plotted in Fig. 15a and Fig. 15b for regular and
irregular graphs, respectively. The complexities of these

algorithms mentioned earlier concur with the measured
timings. The LWB and PY algorithms are faster than the
rest of the algorithms. The timings of the CPFD algo-
rithm are slightly larger than those of the LCTD algo-
rithm. However, since the main objective of our algo-
rithm is minimization of the schedule length and the
scheduling is done off-line, a slightly longer time in gen-
erating a considerably improved solution should be ac-
ceptable. The time to schedule a very large graph (4.3 sec-
onds for 500 node task graph) is still reasonable. The
timings of the BTDH and DSH are also similar, with the
former being slightly slower than the latter.

5.5 Comparison Using Previous Benchmarks
We also applied the six algorithms to a number of example
task graphs used by various researchers. The results sum-
marized in Table 5 indicate that only the CPFD algorithm
generated the shortest schedules for all the graphs. These
results also indicate that despite the very small sizes of the
example graphs, the performance of all the five previously
reported algorithms varied significantly.

5.6 The Performance of the ECPFD Algorithm
Finding a suitable processor for duplication under the
assumption of the availability of unbounded number of

TABLE 4
COMPARISON OF THE NUMBER OF BEST SCHEDULE LENGTHS GENERATED AND THE NUMBER OF CASES IN WHICH THE PERCENTAGE

DEGRADATIONS FROM THE BEST SCHEDULE LENGTHS ARE WITHIN CERTAIN INTERVALS FOR VARIOUS CCRS

886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

processors is easier for generating shorter solutions. On the
other hand, unlimited number of processors may not al-
ways be true. While in our study, the CPFD algorithm is
more comprehensively evaluated, the ECPFD algorithm
working under the assumption of a bounded number of
processors is more efficient and useful. In this section, we
compare the ECPFD algorithm with the CPFD algorithm
and show that by using considerably less number of proc-
essors, the ECPFD algorithm generates solutions which are
close to the CPFD algorithm. The comparison was done by

first measuring the number of processors used by CPFD
and then giving only 50 percent of this number to ECPFD
as the input.

Fig. 16 shows the comparison of the schedule lengths
generated by the CPFD and ECPFD algorithms against
various parameters (graph type, CCR, and graph size for
regular and irregular graphs). The schedule lengths gen-
erated by the ECPFD algorithm are only marginally
longer compared to those generated by the CPFD algo-
rithm. The magnitude of this difference is between 1.5 to

Fig. 11. Kiviat graphs showing the average percentage degradations from the best schedule lengths of the six algorithms for various types of task graphs.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 887

5 percent for regular graphs and 5 to 11 percent for irregu-
lar graphs. This difference, we believe, is acceptable given
that ECPFD used only 50 percent processors. The results
using even smaller number of processors are also found to
be useful but are not reported here due to lack of space.

6 CONCLUSIONS

In this paper, we have discussed the problem of using du-
plication in scheduling parallel programs represented by

directed tasks graphs with arbitrary computation and
communication costs. We have analyzed and evaluated five
previously proposed algorithms and outlined some princi-
ples for generating better solutions using duplication. The
technique used in our proposed algorithms is to systemati-
cally decompose the task graph into CPN, IBN, and OBN
bindings. These bindings help in identifying the relative
importance of nodes and then enable them to start at their
earliest possible start times according. In our experimental
study, the CPFD algorithm consistently outperforms all of

Fig. 12. Kiviat graphs showing the average percentage degradations from the best schedule lengths of the six algorithms for various CCRs.

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

the previous algorithms. The ECPFD algorithm controls the
degree of duplication according to the number of available
processors. The quality of solution produced by CPFD is
slightly better than ECPFD. However, ECPFD is more effi-
cient as it uses fewer number of processors.

APPENDIX

PROOF OF THEOREM 1. It suffices to prove the statement: The
CPFD algorithm schedules every node of an out-tree
to start at its absolute earliest start time, which equals

Fig. 13. A global comparison of the six scheduling algorithms in terms of better, worse, and equal performance.

 (a) (b)

Fig. 14. The average number of processors used by the six scheduling algorithms for (a) regular task graphs of various matrix dimensions and
(b) irregular task graphs of various sizes.

 (a) (b)

Fig. 15. The running time of the six scheduling algorithms on a SPARC Station 2 for (a) regular task graphs of various matrix dimensions and
(b) irregular task graphs of various sizes.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 889

to the sum of computation costs from the root to the
parent of the node. We prove this by induction on the
depth of a node. For the root node, the statement obvi-
ously holds. For a node nx at depth k, be it a CPN or an
OBN (note that there is no IBN in an out-tree), the
CPFD algorithm will recursively consider its ancestors
before considering to schedule it. By the induction as-
sumption, nx’s only parent is scheduled to start at the

earliest time, which is the sum of computation costs
from the root up to the parent of nx’s parent. Since nx
has only one parent, the start time minimization proce-
dure of the CPFD algorithm will lead to scheduling nx
to the same processor as its parent. Thus, nx also starts
at the absolute earliest time. The theorem is proved. o

PROOF OF THEOREM 2. Consider an in-tree graph with height
one as shown in Fig. 17a. Suppose that:

TABLE 5
SCHEDULE LENGTHS GENERATED BY THE SIX ALGORITHMS FOR SOME EXAMPLE TASK GRAPHS

 (a) (b)

 (c) (d)

Fig. 16. Comparisons of average NSLs of CPFD against ECPFD (with 50 percent used by ECPFD) for various (a) graphs types, (b) CCRs,
(c) matrix dimensions of regular graphs, (d) sizes of irregular graphs.

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

w n c n n w n c n n w n c n nx x k k x1 1 2 22 7 2 7 2 7 2 7 2 7 2 7+ ≥ + ≥ ≥ +, , , .K

We will prove that the CPFD algorithm generates an
optimal schedule whose length is equal to

max , , ,w n w n c n n w ni j j x
i

j

x2 7 4 9 4 9 2 7+ +
=

+
%
&K
'K

(
)K
*K

+∑ 1 1
1

where

w n w n c n ni j j x
i

j

2 7 4 9 4 9≤ +
=
∑ ,

1

and

w n w n c n ni j j x
i

j

2 7 4 9 4 9> ++ +
=

+

∑ 1 1
1

1

, .

According to the CPFD algorithm, all the entry
nodes are scheduled to an empty processor so that
they start at time 0. When nx is examined for
scheduling, the node n1 will be considered for du-
plication because it is the first VIP. After duplicat-
ing n1, the start time of nx will improve because the
communication from n1 is zeroed. The start time is
now constrained by the data from n2. Thus, n2 be-
comes the new VIP and is also duplicated. This
process is repeated until the VIP nj+1 is considered.
At that point, the start time of nx will increase if nj+1
is duplicated so that no more VIP will be dupli-
cated and the schedule length will be the one stated
above. This schedule length is optimal because the
node nx cannot start any earlier. o

PROOF OF THEOREM 3. We first define the notion of a lobe
for a fork-join task graph. A lobe consists of a fork
node, its children, and the join node. Thus, for ex-
ample, in Fig. 2c, the nodes n n n n n1 2 3 4 5, , , ,< A con-

stitute the first lobe and the nodes n n n n5 6 7 8, , ,< A
constitute the second. To prove the theorem, it suf-
fices to prove that the CPFD algorithm schedules
all the nodes in a fork-join to start at the absolute
earliest start time. We prove this by induction on
the number of lobes. Consider the case when there
is only one lobe, as shown in Fig. 17b. Let us as-
sume that the following holds:

w n c n n w n c n n w n c n nx x k k x1 1 2 22 7 2 7 2 7 2 7 2 7 2 7+ ≥ + ≥ ≥ +, , , .K

We will prove that the CPFD algorithm generates an
optimal schedule whose length is equal to:

w n w n w n c n n w ni j j x
i

j

x0 1 1
1

2 7 2 7 4 9 4 9 2 7+ +
%
&K
'K

(
)K
*K

++ +
=
∑max , , ,

where

w n w n c n ni j j x
i

j

2 7 4 9 4 9≤ +
=
∑ ,

1

and

w n w n c n ni j j x
i

j

2 7 4 9 4 9> ++ +
=

+

∑ 1 1
1

1

, .

According to the CPFD algorithm, the entry
node n0 is scheduled to an empty processor so that
it starts at time 0. Then, all of its children nodes
will be scheduled to distinct processors so that all
of them can start when n0 finishes. When nx is ex-
amined for scheduling, the node n1 will be consid-
ered for duplication because it is the first VIP. As
the procedure Minimize_start_time is recursively
applied to it, the node n0 will also be duplicated.
After duplicating n1 and n0, the start time of nx will
improve because the communication from n1 is ze-
roed. The start time is now constrained by the data
from n2. Thus, n2 becomes the new VIP and is also
duplicated. This process will repeat until the VIP
nj+1 is considered. At that point, the start time of nx
will increase if nj+1 is duplicated so that no more
VIP will be duplicated and the schedule length will
be the one stated above. This schedule length is
optimal because the node nx cannot start any ear-
lier. Thus, the theorem holds for the case of a unit-
lobe fork- join. Suppose the fork-join task graph has
k lobes as shown in Fig. 18. Let us assume that the
following holds:

w n c n n w n c n ns s z t t z2 7 2 7 2 7 2 7+ ≥ ≥ +, , .K

By the induction assumption, the node ny and all its
ancestors will be scheduled to start at the absolute
earliest start times. When the nodes ns to nt are con-
sidered, the start time minimization procedure of
the algorithm will duplicate ny together with its an-
cestors, which have been duplicated on the same
processor as ny when ny is scheduled for the first

 (a) (b)

Fig. 17. (a) An in-tree graph with height equal to one, (b) a unit-lobe fork-join graph.

AHMAD AND KWOK: ON EXPLOITING TASK DUPLICATION IN PARALLEL PROGRAM SCHEDULING 891

time, so that ny and, in turn, ns, can start at the ear-
liest time. Since ny cannot start any earlier, the
nodes ns to nt are also scheduled to start at the ab-
solute earliest times. Note that each of the nodes ns
to nt will be scheduled using a distinct processor
with the same set of ancestors duplicated because,
otherwise, the start time of ny will not be minimum.
Call this set of ancestors the set A. When nz is con-
sidered for scheduling, ns will be examined for du-
plication first as it is the VIP. As the procedure
Minimize_start_time is recursively applied to ns, all
nodes in A will also be duplicated. Using similar
argument as in the case of a single lobe fork-join,
the parents of nz will be duplicated up to a point
when the cumulative computation costs is greater
than the communication time from the next parent.
In this way the start time of nz is also the absolute
minimum. Thus, the theorem is proved. o

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their helpful comments. Preliminary versions of por-
tions of this paper were presented at the 1994 Interna-
tional Conference on Parallel Processing and the Sixth
IEEE Symposium on Parallel and Distributed Processing.
This research was supported by a grant from the Hong
Kong Research Grants Council under contract number
HKUST 734/96E.

REFERENCES

[1]� A. Al-Maasarani, “Priority-Based Scheduling and Evaluation
of Precedence Graphs With Communication Times,” MS the-
sis, King Fahd Univ. of Petroleum and Minerals, Saudi Arabia,
1993.

[2]� M.A. Al-Mouhamed, “Lower Bound on the Number of Processors
and Time for Scheduling Precedence Graphs With Communica-
tion Costs,” IEEE Trans. Software Eng., vol. 16, no. 12, pp. 1,390-
1,401, Dec. 1990.

[3]� V.A.F. Almeida, I.M. Vasconcelos, J.N.C. Arabe, and D.A. Menasce,
“Using Random Task Graphs to Investigate the Potential Benefits of
Heterogeneity in Parallel Systems,” Proc. Supercomputing ’92, pp. 683-
691, Nov. 1992.

[4]� Y.C. Chung and S. Ranka, “Application and Performance Analy-
sis of a Compile-Time Optimization Approach for List Scheduling
Algorithms on Distributed-Memory Multiprocessors,” Proc.
Supercomputing ’92, pp. 512-521, Nov. 1992.

[5]� J.Y. Colin and P. Chretienne, “C.P.M. Scheduling With Small
Computation Delays and Task Duplication,” Operations Research,
pp. 680-684, 1991.

[6]� M.R. Garey and D.S. Johnson, Computers and Intractability, A
Guide to the Theory of NP-Completeness. W.H. Freeman and Co.,
1979.

[7]� A. Gerasoulis and T. Yang, “A Comparison of Clustering Heu-
ristics for Scheduling DAGs on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, no. 4, pp. 276-291, Dec.
1992.

[8]� R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnoy Kan,
“Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey,” Annals of Discrete Mathematics, no. 5,
pp. 287-326, 1979.

[9]� D.S. Hochbaum and D.B. Shmoys, “Using Dual Approximation
Algorithms for Scheduling Problems: Theoretical and Practical
Results,” J. ACM, vol. 34, no. 1, pp. 144-162, Jan. 1987.

[10]� J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, “Scheduling
Precedence Graphs in Systems With Interprocessor Communica-
tion Times,” SIAM J. Computing, vol. 18, no. 2, pp. 244-257, Apr.
1989.

[11]� H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing,” IEEE Trans. Comput-
ers, vol. 33, no. 11, pp. 1,023-1,029, Nov. 1984.

[12]� B. Kruatrachue and T.G. Lewis, “Grain Size Determination for
Parallel Processing,” IEEE Software, pp. 23-32, Jan. 1988.

[13]� Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs onto Multi-
processors,” IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 5,
pp. 506-521, May 1996.

[14]� T.G. Lewis and H. El-Rewini, Introduction to Parallel Computing.
New York: Prentice Hall, 1992.

[15]� R.E. Lord, J.S. Kowalik, and S.P. Kumar, “Solving Linear Alge-
braic Equations on an MIMD Computer,” J. ACM, vol. 30, no. 1,
pp. 103-117, Jan. 1983.

[16]� C. McCreary and H. Gill, “Automatic Determination of Grain Size
for Efficient Parallel Processing,” Comm. ACM, vol. 32, pp. 1,073-
1,078, Sept. 1989.

[17]� C. Papadimitriou and M. Yannakakis, “Toward an Architecture
Independent Analysis of Parallel Algorithms,” SIAM J. Comput-
ing, vol. 19, pp. 322-328, 1990.

[18]� C.D. Polychronopoulos and D.J. Kuck, “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers,”
IEEE Trans. Computers, vol. 36, no. 12, pp. 1,425-1,439, Dec.
1987.

[19]� H. El-Rewini and T.G. Lewis, “Scheduling Parallel Programs onto
Arbitrary Target Machines,” J. Parallel and Distributed Computing,
vol. 9, no. 2, pp. 138-153, June 1990.

[20]� B. Shirazi, H. Chen, and J. Marquis, “Comparative Study of Task
Duplication Static Scheduling versus Clustering and Non-
Clustering Techniques,” Concurrency: Practice and Experience, vol. 7,
no. 5, pp. 371-390, Aug. 1995.

[21]� B. Shirazi, M. Wang, and G. Pathak, “Analysis and Evaluation of
Heuristic Methods for Static Scheduling,” J. Parallel and Distrib-
uted Computing, vol. 10, pp. 222-232, 1990.

[22]� G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architec-
tures,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,
pp. 75-87, Feb. 1993.

[23]� M.-Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, no. 3, pp. 330-343, July 1990.

[24]� T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

Fig. 18. A k-lobe fork-join graph.

892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

Ishfaq Ahmad received a BSc degree in electri-
cal engineering from the University of Engineer-
ing and Technology, Lahore, Pakistan, in 1985.
He received his MS degree in computer engi-
neering and PhD degree in computer science,
both from Syracuse University, in 1987 and
1992, respectively. Currently, he is an associate
professor in the Department of Computer Sci-
ence at the Hong Kong University of Science
and Technology. His research interests are in the
areas of parallel programming tools, scheduling

and mapping algorithms for scalable architectures, video technology, and
interactive multimedia systems. He has published extensively in these
areas. He has received numerous research and teaching awards, in-
cluding the Best Student Paper Award at Supercomputing ’90 and
Supercomputing ’91, and the Teaching Excellence Award by the
School of Engineering at the Hong Kong University of Science and
Technology. Dr. Ahmad has served on the committees of various
international conferences, has been a guest editor for two special
issues of Concurrency: Practice and Experience related to resource
management, and is co-guest-editing a forthcoming special issue of
the Journal of Parallel and Distributed Computing on the topic of
software support for distributed computing. He also serves on the
editorial board of Cluster Computing. He is a member of the IEEE
and the IEEE Computer Society.

Yu-Kwong Kwok received his BSc degree in
computer engineering from the University of
Hong Kong in 1991, and the MPhil and PhD
degrees in computer science from the Hong
Kong University of Science and Technology in
1994 and 1997, respectively. Currently, he is an
assistant professor in the Department of Electri-
cal and Electronic Engineering at the University
of Hong Kong. Before joining the University of
Hong Kong, he was a visiting scholar in the Par-
allel Processing Laboratory of the School of Elec-

trical and Computer Engineering at Purdue University for one year. His
research interests include software support for parallel and distributed
processing, heterogeneous computing, and multimedia systems. He is a
member of the IEEE, the IEEE Computer Society, and the ACM.

