
Distributed and Parallel Databases, 7, 383–414 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Intensive Data Management in Parallel
Systems: A Survey

M.F. KHAN
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

RAY PAUL
Office of the Under Secretary of Defense, Washington, DC 20301

ISHFAQ AHMED
The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong

ARIF GHAFOOR
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907

Recommended by: P. Valduriez

Abstract. In this paper we identify and discuss issues that are relevant to the design and usage of databases
handling massive amounts of data in parallel environments. The issues that are tackled include the placement of
the data in the memory, file systems, concurrent access to data, effects on query processing, and the implications of
specific machine architectures. Since not all parameters are tractable in rigorous analysis, results of performance
and bench-marking studies are highlighted for several systems.

1. Introduction

Current real-world applications demand database size and processing capabilities beyond
the capacity of the largest and fastest transaction processing systems available today. Some
leading applications include: handling of scientific data from satellites and space missions;
processing the data for the human genome project; handling databases for national admin-
istration e.g. Social Security; handling of multimedia data; utilization of multidatabases
spanning across corporations or other organizations; and collecting data and performing
simulations for studying changes in the global climate.

The advent of affordable parallel computers has provided a hope for handling some of
the problems generated by these and other potentially massive databases. Despite the exis-
tence of the hardware, however, it is far from clear how the power of this breed of parallel
machines can be harnessed to solve the problems at hand. To date, most of the work on
parallel machines has focussed on producing efficient algorithms for the solution of com-
putationally intensive problems. Very little work has coupled this emphasis on solution
of computationally challenging problems with the concomitant, and sometimes contra-
dictory, demands placed by data-intensive applications, such as those found in massive
databases.



384 KHAN ET AL.

Figure 1. Layered semi-dependencies of components of a parallel database system.

In order to tackle the above problems we need a careful evaluation of the following
factors, among others: hardware architecture, file structures and data layout schemes, data
structures, and transaction processing models. Data layout refers to the manner in which data
is distributed in the entire system, including disks, cache memory and processor memories.
Data placement also concerns itself with the anticipated needs of access to different data
objects, and the resulting effects on the communication channels.

Figure 1 lumps together relevant issues and shows a layered organization of parallel
database systems. The organization of the current paper loosely follows the given layered
organization.

Each of the higher levels in the layered organization depends on all the levels below it. The
lowest level dealing with machine architecture issues determines what sort of file structures
and file access methods are possible on a given processor interconnection, memory, and
communication system. File organization influences the kind of data structures that can be
built for manipulating data in these files. Algorithms are entwined with the data structures
implementable on the underlying machine. Algorithm A may perform worse than algorithm
B for given architecture, but algorithm B may give better results than algorithm A on other
machine architectures. Other factors may influence the choice of data structures include the
size of data set, reliability requirements, cost etc. In general, designers assume some kind of
lower level layers when designing higher level layers, such as algorithms for concurrency
control in database transaction processing systems. An example of such dependence is
the design of main-memory systems, which allow the optimization of data-structures and
algorithms to take advantage of the available main-memory and the lack of disk accesses.



A SURVEY OF DATA MANAGEMENT 385

The layered organization is not very rigid: often a machine may have some algorithms built
in the hardware. An example of this is the parallel hardware sorter built in a database system
[17].

Following the layered organization of Figure 1, rest of the paper is arranged as follows.
We discuss machine level issues and architectural influences in the design of databases in
Section 2. This includes discussion of main memory databases, as well as two orthogonal
classifications of database architectures. Shared-everything etc. classification is commu-
nication based, whereas we look at data-flow issues in the section on processor-memory
organization. Data placement issues make up Section 3. This includes discussion of parti-
tioning of data for efficient parallel access. Section 5 discusses different ways of organizing
files, since most of the large databases today are organized as files, techniques of this section
can potentially produce large performance increases with little change in the underlying
hardware. Section 6 summarizes different kinds of access methods for data segments smaller
than files. Different kinds of search structures for concurrent access are also treated in this
section. Section 7 looks at issues and algorithms for parallel query processing. It builds
on top of the organization and access issues treated in earlier sections. Finally, the paper
concludes by sampling a number of research and industry parallel database systems, and
their salient features and innovations in this area.

2. Architectural issues in parallel databases

Von Neumann model of computation has severe limitations since it assumes a uniproces-
sor environment and has a bottleneck for accessing the memory. This has motivated the
development of specific architectures for parallel databases systems.

The architecture of the parallel computer is critical in the selection of data layout schemes
and the kind of algorithms that can be employed to solve database problems. In particular, we
are concerned about the issues of data placement and the performance of parallel algorithms
available with the given data structures.

A number of considerations prevail in the construction of parallel architectures for data-
base processing use. These are described in the following.

A choice between general architectures and special purpose architectures has to be made.
When an architectures is tailored to solve database related-problems, the systems are also
known as database machines. Several database machines have been developed in order
to handle massive amount of data or to have a high transaction processing rates. General
purpose architectures refer to machines which are not specifically designed for any particular
target application, but rather applications are built on top of them, via software and possibly
some add-on hardware. In order to analyze and build parallel database systems, models
can be developed which capture the element of parallelism present in these systems. There
can be various types of parallelization in the database environments, such as inter-query,
intra-query and intra-operation parallelization.

Granularity, which is a measure of the amount of computation in a software process,
is another major design parameter for parallel machines. When the processing nodes are
small in number, typically of the order of ten, with large word sizes and large memories, the
architecture is called coarse-grained. Machines with several thousand processors, each with



386 KHAN ET AL.

small word size, and small memory, are termed as fine-grained. Architectures in-between
are usually referred to as medium-grained.

Scalability of a parallel system determines its performance when the number of processors
used for a given application is increased, or for a fixed number of processors, the problem
size is increased. For very large database applications, scalability measures are an important
factor for determining the suitability of an architecture.

Interconnection topology is another design issue in parallel architectures. In order for
nodes to be able to work together on the same problem, communication is needed between
them. Interconnection refers to the way different classes of computer modules are organized
as a communication network. The modules can be processing node, memory modules, and
I/O processors. Networks can be static or dynamic. Static networks use point-to-point direct
connections which remain fixed during the program execution. Examples of static inter-
connections include linear arrays, rings, trees, meshes, and hypercubes. For a detailed
treatment of how different topologies influence the design of parallel algorithms for those
topologies, see [57]. Static networks are usually employed in distributed-memory message
passing multicomputers while dynamic networks are usually used in shared-memory multi-
processors. In database applications, it is important to analyze the patterns of communication
and then choose an interconnection network accordingly.

Memory Sharing refers to the way the programmer views the memory of the system.
A shared memory system provides a single address space and a single coherent memory.
A nonshared memory system, which employs distributed memory, can be viewed as a
collection of processor memory pairs where communication is done using explicit message-
passing. Shared-memory system can employ either centralized memory or a distributed
memory. Examples of distributed shared memory include the DASH and KSR systems
[9] and Cray T3D. Since the access to the memory (read/write) can be the major factor
affecting the performance of a parallel database, this is an important consideration for
database applications.

Control mechanisms are important architectural components, because they determine the
timing and synchronization of execution of instructions of the programs.

Systems with implicit synchronization of instructions for the execution of operations are
known as SIMD (Single Instruction Multiple Data). SIMD systems provide a single control
for all the processors which execute the same instruction with different data. Examples of
SIMD computers include CM-2, MasPar MP-1 nd MP-2, and DAP610.

Parallel processors that can execute different instructions at the same time are called
MIMD (Multiple instructions Multiple Data). MIMD computers lack a global control unit,
with each processor-memory pair executing instructions independently of each other. Syn-
chronization is done explicitly by the programmer by using message-passing or semaphores,
etc. Examples of MIMD computers include Thinking Machines CM-5, Intel Paragon, KSR-
1, nCube, etc. Parallel database systems have been developed on both SIMD and MIMD
architectures [35].

Mapping of tasks and data within a machine greatly impacts the performance of the
machine [1, 2, 15]. Mapping deals with the distribution of different tasks generated by an
algorithm among the nodes of the system.

I/O Capabilities is another crucial factor for parallel processors. Current disks are very
slow as compared to the CPU and the main memory. One proposed solution is to keep



A SURVEY OF DATA MANAGEMENT 387

the entire database in the main memory [58]. However, this is a very expensive solution
and precludes its use for all but the smallest databases. Also the trend has been that CPU
and main memory bandwidth has been increasing much faster than disk memory banwidth.
Another solution is parallelization of I/O has been proposed as the solution to this problem
[49, 70]. This can be achieved using disk arrays where the data is not placed on just a
few high density disks. Rather, it is distributed over a large number of disks. This allows
parallel access to different segments of data, thus increasing the effective bandwidth of I/O
[101]. In order to alleviate the burden of I/O from the main processors, the use of special I/O
processors is a common practice in parallel processors. For example, the Intel Paragon [46],
which is an MIMD machine based on a 2D mesh topology, has arrays of I/O processors on
the right and left edges of the mesh. Similarly, the Thinking Machines CM-5 [88] which is
also an MIMD machine provides dedicated I/O processor. The number of I/O processors
can be scaled with increasing number of processing nodes.

2.1. Main memory databases

As noted above, high cost of stable main memory1 restricts memory resident systems to
relatively small databases. Research is being undertaken in this area despite this fact, because
the main memory bandwidths are increasing rapidly, as is the cost coming down [27, 53].
This trend promises wider application of main memory systems in the future. The high speed
of data access in main memory databases allows some time-critical or real-time DBMS
applications to run, which would not be possible on other architectures. A main memory
transaction processing system require far fewer I/O operations than disk-based systems.
The reason for this is that the only I/O performed in main memory transaction processing
systems is to maintain the durability of the transactions. Whatever I/O operations remain to
be performed show an order of magnitude increase in speed. This also decreases the context
switching between different transaction threads running in parallel. As a result, cache flushes
are reduced, producing a further increase in performance. Experiments establishing these
results are given in [75].

2.2. Shared-everything architectures

In shared-everything architectures, all processors in the system have direct access to the
main memory as well as all the disks. Thus the memory and the disks can be regarded as
global or having single address space for all the processors in the machine.

The communication between the processors of a shared-nothing architecture may be
through some fast interconnection network or through a single or multiple buses. The inter-
connection network or the bus can have considerable contention since all reads and writes to
data objects must pass through them. This can cause a bottleneck for the I/O and inter-process
communication in the system [69]. For this reason shared-everything systems tend to have a
relatively small number of powerful processing nodes, in contrast with the shared-nothing
systems (discussed below), which can have tens of thousands of nodes. The small number of
nodes help control the proliferation of messages to manageable levels, thus avoiding clog-
ging the communications channel. This is one reason why shared-nothing memory architec-
tures tend to be favored in the recent systems, although [10] demonstrates efficient database



388 KHAN ET AL.

management systems using shared-everything architectures. In this study, the authors inves-
tigate the issues involved in using multiprocessors for transaction processing. A simulation
model to study the behavior of shared-everything and shared-nothing is developed to study
the effects of data contention and resource contention in both of these architectures. The
effects of intra-query parallelism on both types of architectures under different operating
conditions are quantified. The results of this simulation study show that shared-everything
designs are able to provide efficient database systems under a variety of conditions.

The main benefit of shared-everything architectures is that programming them has many
features that are similar to programming conventional, extant systems. This is because both
shared-everything, and conventional uniprocessor systems usually employ a single data
directory,2 and a single global lock table for synchronization of data accesses. As a conse-
quence of this, adapting existing database systems to the shared-everything architectures is
usually simpler than other architectures e.g. non-shared memory [105]. This is a pragmatic
advantage of shared-everything architectures.

The main problem in a shared-everything system with a centralized memory is that there
can be contention on the memory. This can be overcome by providing memory access
pipelining. If the shared memory is distributed, then a cache coherent mechanism must be
provided for a consistent memory state.

Another persistent problem with shared-everything architectures is that they are difficult
to scale up. Interference among the processors makes it difficult to increase the number
of processors in such systems much beyond 32. With all the memory resources shared, it
is required to have the bandwidth of the interconnection network greater than combined
bandwidth of all the processors in the system. As the number of processors in the system
increases, having such bandwidth of the interconnection network becomes more and more
difficult, because of current technological constraints. One approach to address this problem
is to have large private caches associated with the processors. It is shown in [87], however,
that handling of these caches, which involves operations such as loading and flushing these
caches, degrades the system performance considerably.

2.3. Shared-nothing architectures

In shared-nothing memory architectures, each processor has its main memory, and possibly
a cache memory, as shown in figure 2. In addition, each processor may have its own
disk. Thus each node may contain a local database. The nodes have direct access to a fast
interconnection network for communication with other nodes. Each processor acts as server
for the data contained in the local memory and disks attached to the processor. Many of
the recent parallel databases use shared-nothing architectures. These include Bubba [18],
Teradata, GAMMA [24], Tandem Nonstop SQL [86], and MEDUSA [102].

Advantages of shared-nothing architectures include exploitation of parallelism, thus in-
creasing throughput.3 Since the data in memories is local rather than global, interference
among the processors is also minimal. The interconnection network is loaded less because
only queries and their results are transmitted across it. On the other hand, shared-everything
architectures necessitate moving of entire relations and data dictionaries in order to process
queries. Since congestion on the interconnection network is low in shared-nothing systems,



A SURVEY OF DATA MANAGEMENT 389

Figure 2. A schematic representation of shared-nothing architectures.

they can be scaled up more easily. Indeed, commercial systems have been developed with
thousands of processors and having the shared-nothing architecture underlying the system.
Such systems achieve near-linear speedup and can scaleup on a variety of transaction loads
and operating conditions [27].

Fragmentation of data across the nodes allows maximal parallelism when a complex
query is broken down into smaller queries. These smaller queries can be handled over the
entire system, using appropriate parallel algorithms, as shown in studies such as [86].

The other advantage of these architectures is scalability [86]. Since the nodes don’t have
strong coupling among them, scaling up the system by adding more nodes is like adding
more modules. Another factor which helps the scaling of shared-nothing architectures is the
uniformity of such systems. Scaling and extensibility also imply that a large range of sizes
of databases can be handled by the same hardware system with very easy modifications,
if at all. Such systems are quite suitable for handling massive amounts of data, including
multimedia data.

The main problem in a shared-nothing system is communication overhead which is
mainly due to message latencies. This problem is solved using special purpose processors
called hardware routers. The routers can not only reduce the message latencies but also
relieve the main processor from performing message-passing.

2.4. Shared-disk architectures

In shared-disk architectures, each node has direct access to all the disks [65]. A shared-disk
architecture is depicted in figure 3. In addition, each node also has a private memory bank of
its own. Often, shared-disk architectures are treated as a variant of shared-all architectures.
Harder et al. present the advantages for using shared disk architectures. It is noted that



390 KHAN ET AL.

Figure 3. A schematic representation of shared-disk architectures.

in dealing with complex and large objects, partitioning of objects has negative effects on
performance. The management of data and load-balancing problems are simpler to manage,
because there are fewer data clusters. A common memory is used for buffer management,
synchronization, and logging/recovery.

In practice, parallel machines also come in varieties where the nodes may be non-uniform.
Later in the paper, we look at one such architecture in which a few dedicated I/O nodes
have disks attached to them. Each I/O node controls a channel to some disks. The remaining
nodes consist of just memory-processor pairs.

3. Data placement at the physical level

The distribution of data in memory is of concern in databases with large processing and data
requirements. When the distribution of data over the disks or processors in not “even”, it is
said to have data skew. Significant amount of data skew in a system can overload certain
processors, and reduce overall performance. One of the techniques used to control data
skew in a system is the fragmentation of data. Fragmentation refers to the partitioning of
the database into small blocks known as fragments, and spreading these out for efficient
access.

To get maximal concurrency, data should be divided across many nodes of the parallel
system. An incident advantage of such fragmentation of data is load-balancing of the system,
i.e. the some nodes are not forced to become computational bottlenecks. This fragmentation
of can be horizontal across relations, or vertical across attributes. Both types can be used to
increase parallelism and load-balancing in the database. Horizontal fragmentation is very
often referred to as declustering.

Horizontal fragmentation refers to the partitioning of a relation along its tuples. Thus,
each fragment includes a subset of the tuples in the relation. In vertical fragmentation,



A SURVEY OF DATA MANAGEMENT 391

partitioning is carried out along the attributes of a relation. Each fragment contains a subset
of the attributes of the relation, and the primary key of the relation.

3.1. Clustered vs. declustered data

To avoid system thrashing, data needs to be placed in such a manner that processing as-
sociated with the data is done, as much as possible, in the vicinity of the data. However,
inter-query parallelization involves communication overheads, and a balance between the
two has to be found for optimal performance [103].

Some parallel database systems apply a hash function to the relations and distribute
the horizontal fragments across all the disks in a uniform manner. This is known as full
declustering, and is used in GAMMA and NonStop SQL, among others. In such a system,
exact match queries can be handled by a single disk node, and all other queries can proceed
in parallel. Performance studies have been done for comparing fully declustered systems
with systems where each relation is clustered on a single disk [61, 86]. The results indicate
that declustering performs better under a wide range of condition. Another interesting result
shows linear increase in performance in such systems, with the increase of the number nodes,
up to 32 nodes. Full studies have yet to performed on much larger systems.

On the other hand, full declustering may cause problems in case of join operations. For
example, it has been calculated that a binary join for a 1K-node machine could produce
about 10K messages! The study in [86] also shows poor results for fully declustered systems
in case of complex queries with joins. As a result, strategies with variable level of clustering
are being sought.

In [21] one such scheme is presented, where the number of nodes across which a relation
is declustered is determined by such parameters as the size of the relation and the expected
frequency of access. The scheme is also dynamic, since the data may be reorganized as the
contents and access patterns change.

Reduction of data-skew by application of hierarchical hashing schemes is proposed in
[98]. The algorithm adds an extra scheduling phase to the previously proposed algorithms
using hash and join phases. Hash partitions with largest skew elements are identified and
split. After that each split portion is assigned to an optimal number of processors. This study
shows that the performance of this algorithm is better than conventional algorithms, and
performs better even when the amount of data skew is low.

3.2. Round-robin distribution of data

This is one of the simplest methods of data placement. Successive tuples in the database
are placed on successive disks or fragments. The performance is excellent for the class
of queries which necessitate sequential scanning of all the tuples in the relation. Queries
which need associate access to data tend to run inefficiently on data distributed in round-
robin fashion. One example of a query needing associative access is to retrieve all tuples
with a given value for a certain field. Since such queries are very common in database usage,
round-robin partitioning of data exacts a price in terms of performance.



392 KHAN ET AL.

3.3. Value-range partitioning of data

Clustering of tuples according to values in some fields can be useful in certain applications.
For example, related tuples can be pre-fetched into cache memory in the expectation of
their use in the near future. Thus bibliographic databases would do well by storing abstract
information on the same pages as those of author information etc.

Value-range partitioning is a method of achieving this physical proximity of related data.
Data with similar attributes is placed on the same disks or fragments. For example in an
electronic phone book similar or identical last names are placed close to each other in
physical memory. This can increase the efficiency of many kinds of database queries by
pre-fetching of data, and in some cases obviates the need to search the entire database for
certain kinds of tuples.

3.4. Data management in main memory

All the above schemes can be utilized in data placement in main-memory databases. How-
ever, there are few or no disk accesses, and the data accesses are several orders of magnitude
faster than disk-based systems, and improvements in performance tend to be small. Often,
there are inherent restrictions on the manner in which data can be placed physically in the
main-memory. For this reason, most main-memory systems tend to be content with the
simplest possible scheme for data placement.

4. Data organizations for parallel databases

Data structures which have been proposed for and employed in efficient access of massive
data in parallel databases include linked lists, graph structures, Fibonacci heaps, and hash
tables. The structures given below also depend on the efficiency of file access at some level.
In a subsequent section, we also look at the effect of file structures upon the efficiency of
data access. We look at some modifications of the simple file systems to increase efficiency
of access.

Often a particular system will employ more than one of the above. For example, the
nodes of a B-tree may point to text files on the disk. Hence a few attributes of the file which
are used extensively in selection, sorting and processing of data are kept in the nodes of
an efficient search structure (a B-tree), and actual data content is kept in plain, sequential
files. Factors affecting the choice of the mix of data structures include the size of data sets,
the difficulty of implementation, the effects of efficiency of the employed data structures in
the overall system etc. We discuss some of these factors later in the paper, in the context of
parallel machine architectures.

4.1. Concurrent operations on linked lists

Simplest of these are arrays of values and linked lists. Sorted arrays have O(log n) time for
searching, deleting as well as inserting elements. Linked lists exhibit O(1) insert time, and



A SURVEY OF DATA MANAGEMENT 393

O(n) time for search and delete. In particular, we discuss skip lists [71], which generalize
the idea of lists, including algorithms for concurrent access.

A simple linked list requires examining, in the mean case, half of its nodes when searching
for an element. Skip lists improve on this by providing a mean case performance similar to
that of binary search in sorted arrays.

If a sorted list has pointers to every other element in the list, one need examine only
�n/2� + 1 elements. Having pointers for every 2i th node to 2i nodes ahead implies only
�log n� comparisons, and a double number of pointers. We get fast searching behavior, but
insertions and updates are a problem.

Level of a node is the number of forward pointers in it. Skip lists assign each node a
random level. A nodes i th forward pointer used to point to 2i−1 nodes ahead; now it is made to
point to next node of level i or higher. This gives log n expected case performance, although
the worst case performance is still bad i.e. O(n). However, worst case performance happens
very rarely, and no input sequence consistently produces the worst case. This behavior is
similar to the thoroughly studied performance of quicksort by [79].

Advantages of using skip lists over B-trees include the following. Random balancing
is easier than explicit balancing in B-trees. Skip lists are more space-efficient, requiring
about 1.3 pointers per node in the average case. Skip lists require to keep less book-keeping
information in each node. Finally, algorithms for search, delete, update etc. in skip lists are
simpler than analogous algorithms for B-trees.

Disadvantages of skip lists as compared to B-trees include their relative infancy. B-trees,
on the other hand, are thoroughly studied, tested and mature data structures. Hence there
is an advantage in using widely available prefabricated software libraries built for B-trees.
Skip lists have yet to gain general acceptance.

We study concurrent operations on linked lists in order to develop a concurrent framework
for skip lists. Concurrent algorithms for searching have been written for unbalanced and
balanced trees. The usual mechanism to enforce non-interference between different threads
of execution has been the use of locks. Concurrent algorithms for rebalancing or deletion
from B-trees are generally very complicated.

Concurrent updating of sorted linked lists can be performed in the following manner. The
factors that must be met in any of the concurrency algorithms are the following: integrity
of data structures; deadlock avoidance; and serializable schedules.

The simulations done with implementations of skip lists show almost linear speedup with
the increase in the number of concurrent threads of execution. The number of locks blocked
is proportional to the number of locks held, which is proportional to the ratio of concurrent
writers to the elements in the data structure.

With these results, it seems that skip lists provide efficient concurrent algorithms for use
in parallel databases. The algorithms tend to be simpler than the corresponding ones using
B-trees.

4.2. Graph structures for parallel access

Trees are rooted graphs, and include B-trees, 2–3 trees and other balanced tree schemes.
With suitable balancing techniques, we can have �(log n) for search, insert and delete.



394 KHAN ET AL.

Extensive work on concurrent access to trees is reported in [7, 8, 32, 33, 36, 54–56, 74,
77].

It is desirable that independent processes access nodes of trees in a manner such that the
data in a database, i.e. the contents of the tree nodes, remain in a consistent state throughout.
Concurrent access algorithms for B-trees are given in [8, 55, 56, 77]; for AVL trees in [31];
for 2–3 trees in [32]; for binary search trees in [41, 54]. The different algorithms given
cover a wide range of underlying processor and communication architectures, use different
methods for actual implementation of the tree data structure, and use different definitions
of concurrency control and consistency. They also often use different assumptions about
the placement of data and type and distribution of workload [104]. Hence the performance
figures derived analytically, or by simulation are not comparable for all of them. We provide
some salient features of a few tree algorithms for concurrent access of data.

The primary operations of interest implemented by the algorithms are search and insert.
Three algorithms are given in [8] for concurrent B-tree access. The approaches can be
classified as conservative, optimistic, and a mix of both. In the conservative approach,
nodes of the tree are allowed two kinds of locks: the read-lock and the exclusive-lock. A
given node can obtain locks which are compatible with the locks that it obtained previously.
Incompatible locks are delayed until the node in question releases the previous, conflicting
locks. Read-locks do not conflict with each other, but exclusive locks conflict with read-
locks, and other exclusive-locks. Hence reads can occur concurrently, but inserts exclude
all other operations at the same node.

In the optimistic algorithm of [8], insert operations obtain read-locks on all of the internal
nodes of the tree which lie on the path for the ultimate insert leaf-node, and a single exclusive-
lock on the leaf-node where the data is to be inserted. The additional problem that this poses
is that splits may occur on internal nodes, and they should be handled by special detection and
recovery mechanisms. If a situation is detected where the leaf nodes are full, necessitating a
split of the parent node to perform the insert, then the current process may cause a deadlock
since a split also needs an exclusive-lock on the node. The solution proposed is to abandon
the current process and re-insert, using the strictly conservative algorithm.

In the mixed algorithm, a third kind of lock, the write-lock is also used. The write-lock
is compatible with the read-locks, but not with exclusive-locks. Furthermore, a write-lock
may be converted into a exclusive-lock on request. Using write-locks on the chain of descent
of an inserting process allows other inserting processes to descend simultaneously on the
same chain.

Sibling tries have been proposed as a concurrent dynamic search structure [68]. Sibling
tries support the regular operations on data, such as search, update, delete, and insert. Their
advantage over B-trees is that the searches can begin at any node in the tree, and not just
at the root node, as is the case in B-trees. Hence it may be very useful in highly concurrent
shared memory systems, where the data, if organized as a tree, causes bottlenecks at the
root node, and the nodes near the root. A further advantage is that many alternate routes
are provided for each data point. The storage of the structure is proportional to the number
of data items in the database, and independent of the number of processes that access the
database concurrently.

Although theoretical bounds for such operations as search, insert etc. of nodes are better
than tree algorithms, Fibonacci heaps are still mainly of theoretical interest, and very few



A SURVEY OF DATA MANAGEMENT 395

studies have considered the problems of concurrent access to Fibonacci heap nodes. Relaxed
heaps [29] may be a better alternative to Fibonacci heaps in the context of parallel accesses
to data.

4.3. Parallel hashing

Hashing is widely used in the organization of data, and often presents the most efficient
solutions in practice for the storage and access of data. Hash tables practically provide O(1)

search and insert times. Worst case times can be as bad as O(n), but this happens rarely in
practice.

Since the data in parallel systems is mapped over many processor/memory pairs, an
efficient scheme of distribution of data over the nodes of the entire system is required.
Another criterion for efficient access is that the structure should allow parallel accesses to
data while maintaining consistency. A table or array structure are very suitable for multi-
entry data structures, since there are multiple points in the data structure through which
access is guaranteed, rather than a single point. Examples of single-entry data structures are
different kinds of trees for concurrent access, where all searches must start at the root node
of the tree. This means that the root is single-entry for this particular search tree. A table
where all the nodes are directly accessible is known as a complete multi-entry structure.
As an example, a hash table which resolves collisions by chaining them to the same bucket
is not a complete multi-entry structure, but a multi-entry structure. This is so because all
the nodes on the hash chains after the header node are not directly accessible. A hash
table with linear probing provides a complete multi-entry data structure but the number of
entries in the table is limited by the table size. This highlights the fact that we can obtain
some gain in the level of concurrency by imposing a limit on the number of entries that
are handled. In parallel systems, it is highly desirable to implement complete multi-entry
data structures in order to avoid potential bottlenecks at highly used entry points for data
access.

In the implementation of hash tables, it is required to implement the operations of in-
serting, deleting, and searching keys. Usually the hash table is stored in a manner that
makes the distribution of data even over the entire system. If possible, each data element
is associated with a single processor. Linear probing is used for resolving collisions, since
this reduces communication costs in the system. The performance of the hash table should
take into account the variance in the type of load that a system may be subjected to, as well
as the communication overheads. These factors make the performance analysis of parallel
hash systems much harder than conventional systems. Simple analysis of parallel hashed
data systems is provided in [99]. The simulation study in [99] shows that performance of a
hash table with linear probing when the hash table is fully loaded is much worse than the
performance of the hash table with 80% load when the only operation considered is insert.
Search also has performance similar to insert. They also perform analysis and simulation
of performance of a sorted array, and conclude that the average time complexity of three
major operations insert, delete, and search, all favor the sorted array, as well as the actual
results of the simulations. On the other hand, hash tables with load factors less than 80%
tend to perform better than sorted arrays, both in complexity analysis and in the simulation
studies.



396 KHAN ET AL.

5. File manipulation strategies

It is desirable to provide fast access and high bandwidth between the data stored on disks
and the main memories associated with the processors. Files can be allocated as either
fixed blocks, where all blocks are of the same size (e.g. UNIX), or extent based systems,
where allocation of data is as a few large and variable chunks of disk space. Fixed block
systems have the disadvantage of discontiguous allocation of data on disk, and an excessive
amount of book-keeping data. Extent based systems may thus provide higher performance.
Performance studies which indicate the superiority of certain allocation policies are re-
ported in [80]. In particular, striping across disks with contiguous allocation showed 250%
improvement over policies without disk striping and contiguous allocation.

5.1. Associative access to data

If the nature of data is non-static, as is the case when large number of updates are performed,
or the nature of the system is unknown, provision should be made for even distribution of
data (load-balancing) over the entire system via data reorganization. This load-balancing
should not entail recompiling of the programs running on the system. This can be done by
having associative access to the data in question.

A global index is kept indicating the placement of relations on the nodes. The index
structure can be either B-tree based, or hash based. B-trees take more space, but range
queries are more efficient. The global index is replicated on each node, so this may cause
problems in scaling, because of consequent overhead [48].

As an example, we discuss a specific application platform for the use of associative access,
namely the Connection Machine’s CM-2. A variety of very large database applications have
been attempted on the CM-2, which gives us an idea about massively parallel architectures.
In general, there are no specialized I/O nodes. There are a large number of processor nodes
(e.g. 216 nodes). Data is stored in a distributed manner over the processors and thus can be
operated upon in parallel at each node. Document retrieval, parsing and searching large text
databases, and using the database as an associative memory are among the applications that
have been studied in [93].

Algorithms are given where a single CM-2 is able to support 2000 simultaneous users
doing searching and browsing 6 GB of free text database. Authors give empirical calculations
establishing this result, without any performance studies. This reduces the reliability of the
deduced figures, but the figures may still provide order-of-magnitude estimates of actual
performance figures. A key improvement that is intended after this system is to add high
speed multiple disk mass storage units to the system.

5.2. Partitioned signature files

Signature files are useful for associative retrieval on formatted on unformatted data files
[34]. The major advantages of signature files over some other structures such as grid files or
multi-dimensional hash structures are that the associative searches may be conducted over a



A SURVEY OF DATA MANAGEMENT 397

large number of dimensions and this number may even vary for different records within the
same file. Auxiliary files, called signature files, contain database record abstractions called
signatures. Extensions to signature files in order to increase the performance of signature
file query processing are provided in [40]. Each data object can be considered to consist of
many object descriptors. Object descriptors are partitions of the object. A word signature is
obtained by hashing an object descriptor into a fixed-length bit vector. Then the signature
for the object S is obtained by superimposing the signatures for the all the object descriptors
for this object. To search a word in an object, a signature W of the word is obtained. Then
the only objects that may have this word satisfy the following property:

{Si ∨ (Si ∧ W ) = W }

Partitioned signature files promise to be able to handle large amounts of data, be supported
by parallel computer architectures, have moderate immunity from data skew, offer fault-
tolerance to a limited degree, and support intra-query parallelism.

5.3. Clustered surrogate files

Clustered surrogate files [20] are used as an indexing scheme through a special data word,
called the concatenated code word, or CCW for short. These CCW’s constitute a surrogate
file, which is small in size and simple to maintain through a small number of core opera-
tions. Considerable savings of time may be realized by performing related operations on
the CCW surrogate files before performing them on the actual data files, which are often
very large. Since the structure of surrogate files is compact and regular, mapping these
files to different parallel architectures is not very complex. Further improvements in the
CCW surrogate files may be obtained by clustering together of different CCW surrogate
files. Then, a searching a subset of a surrogate file is often sufficient for a relational oper-
ation. [20] also develops parallel relational operations on clustered CCW surrogate files.
These operations are useful in efficient organization and access to data in parallel database
systems.

6. Parallel query processing

Parallel query processing is an essential part of constructing any parallel database system,
and can account for important performance improvements. In this section we look at work
in parallel algorithms for database query processing. Parallelization of query processing
provides opportunities for inter-query parallelism, intra-query parallelism, as well as intra-
operation parallelism.

In inter-query parallelism, different queries are executed in parallel on different pro-
cessors. Intra-query parallelism involves the parallel execution of different sub-operations
within the same query. Intra-operation parallelism refers to the even more fine-grained par-
allelism, where single operations within queries are distributed over more than one processor
for concurrent execution.



398 KHAN ET AL.

We assume that the operations to be performed on partitioned data in a parallel database
consist of the basic relational algebra operators, or their derivatives. These include selection,
projection, union, set difference, cartesian product, intersection and various kinds of join
operations performed on the database relations. Researchers have generally concentrated
on select and join operations, since these are basic and heavily used primitives in database
query processing.

Divide and conquer strategy is applied to break up operations with a large number of
tuples into smaller chunks, assigning these chunks to different processors, and process-
ing the chunks in parallel. Finally, some processing may be needed to combine the sub-
results at different nodes to obtain the desired answer. The optimal breakup of larger tasks
and the assignment of sub-tasks to different nodes depends on the nature of the query,
the actual placement of data, and such factors as the communication overheads, limits
of processor memories, other pending processing in the database etc. Thus, for example,
computation on data is performed at or near the nodes which may hold the object data.
This wisdom, borrowed from experience in distributed databases, is appropriate where
the amounts of data are very large, and moving them around would incur undesirable
overheads.

Nodes may be thought of as having streams of inputs, a processing engine for the incident
streams of data, and resultant outgoing stream or streams of processed data and answers. For
example if a query on relation A requires all tuples with an attribute satisfying a property,
the relation A could be processed at two nodes, and the results combined. This may reduce
the processing time by almost half in some cases, as compared with single node operation.

The above example also highlights the need for efficient merge operators in a parallel
environment, so sub-results may be efficiently combined. Other such operators include sort
and scan.

6.1. Parallel joins

Join is derived from the cartesian product of two or more relations. The most general form
of join is called the θ -join. Given relations A and B, their join is represented as

R ��F B

where F is a formula known as the join predicate. Study of joins in relational databases
is important, since joins are often the most expensive portions of most query processing
involving computation. Hence performance gains here due to better algorithms and data
handling techniques will ultimately reflect in the overall performance of the transaction
processing system. It is for this reason that considerable research is being undertaken in an
effort to improve the performance of parallel joins.

Conventionally, joins between relations A and B are performed by sorting A and B on
the join attribute, and then merging the sorted relations to identify the target tuples. This
procedure allows for many opportunities for parallelization.

In parallel systems, the sorting phase may be distributed over nodes such that there is
relatively low amount of data skew and computational load is also spread over the nodes.
Without such load-balancing, the speedup achieved is limited due to under-utilization of
the resources, and extra overheads, such as intermediate disk saves etc.



A SURVEY OF DATA MANAGEMENT 399

Figure 4. Example of parallel hash join.

An algorithm for more general kinds of than an equijoin has been proposed in [11].
To perform a join of relations A and B, their cartesian product is formed in parallel. All
clusters of B are sent to all the nodes having clusters of A, joins are performed at all the
A-nodes. The output from all the A-nodes is combined to give the final result. Since the
entire relation B is copied at each of the A-nodes, we desire to have it as the smaller of
the two. The actual performance also depends on the kind of communication network, and
the algorithms employed at each node to perform the joins.

Another approach to performing the joins is the hash-join. In the join of relations A
and B, the following steps are involved: (i) hash-partitioning A and B on the join attribute;
(ii) performing join operations on each of pairs of partitions of A and B; and finally (iii)
combining of the results. Figure 4 shows an example of two relations being joined in parallel.
Compared with the sort-merge algorithm, it is required to partition both relations A and B.
Also, distribution over nodes may not be good when the hash-partitions are very uneven.
Variations of hash-partition algorithm are given in [25]. Studies such as [78] have shown
that, overall, hash-join algorithms perform better than other join algorithms.

Algorithm for performing hash join for relations R and S is given below [67]. Relations
R and S are fragmented into R1, . . . , Rm and S1, . . . , Sn . Result fragments are denoted
T1, . . . , Tn .

begin
for i in (1..m) do

Ri j = apply hash function to Ri , j in (1..n)

for j in (1..n) do
send Ri j to node storing Sj

endfor
endfor



400 KHAN ET AL.

for j in (1..n) do
R j = UNION(Ri j ), i in (1..m)

Tj = JOIN(R j , Sj )

endfor

end

It can be observed that the above algorithm for parallel hash join proceeds in two stages.
In the first stage, the tuples of R with a particular hash value are sent only to those S
fragments with tuples having the same hash value. In the second stage, the S fragments are
joined with the R sub-fragments that are received at this particular S node.

An algorithm to increase the amount of parallelism in the hash-join algorithm by using
pipelining is proposed in [95]. The hash-table for both relations A and B is formed. Whenever
a tuple is produced from either relation, it is hashed to find the hash-key. Tuples in the other
relation with the corresponding hash-key are compared with the new tuple. Any matching
tuples are sent to the output stream. If one of the relations is exhausted, the tuples from the
other relation are no longer inserted in the hash-table. This is so because only the first hash
table is used in processing the join from now on i.e. it becomes like the non-pipelined version
of the hash-join algorithm. Besides pipelining this algorithm also offers the advantage of
being symmetric with respect to its operands. This eliminates the need to compare and order
the operands before inputting them to the hash-join algorithm.

Most algorithms to select the best strategy in performing joins involving more than one
relation first form an intermediate representation, called the join-tree. Optimizations are
performed on the tree before feeding the tree-nodes to the join algorithms. This is done
so in GAMMA [24], PRISMA [5, 95] and other parallel database systems. One may not
always have the choice to select the shape of the tree, and the edges may have different
costs, affecting the tree that is ultimately selected for performing the joins. GAMMA prefers
linear trees with minimal total processing costs; [12] chooses to minimize the processing
time on the longest path in the tree. The PRISMA database system combines the choice of
tree with pipelining hash-join and distributing expensive operations over more processor
nodes.

Algorithms have been proposed that perform joins relatively well even in the presence
of data skew. One such algorithm is described in [98]. The output of the sort phase of
the sort-merge algorithm is preprocessed before the join/merge phase. The largest skew
elements are identified and are assigned to an optimal number of processors. This helps in
load-balancing for the join phase. The algorithm is also reported to be robust with respect
to data skew and the number of processors.

7. Case studies in parallel database systems

In this section we look at some past parallel database systems which have been developed
in research and industrial environments. We discuss a number of distinctive features in
different systems.



A SURVEY OF DATA MANAGEMENT 401

7.1. Case studies of memory resident systems

7.1.1. Integrated database processor (IDP). The IDP system was developed in Japan
and is described in [89]. It is a main memory database machine. IDP processing is based
on pipeline parallelism, rather than parallelism through multiple processors. Vectorization
methods are used by which data in the RDMS internal pointer structures are dynamically
rearranged into the vector form and processed using a pipelined vector processor. A 10-
fold increase in speed is reported after the design changes of memory access methods and
pipelining. The large factor of improvement underscores the importance of data organization
and access methods in database processing.

7.2. Case studies in shared-everything systems

7.2.1. Processing on hypercube architectures. Join operations are an important part of
database processing. Join processing on hypercube architectures is the key to implementing
query engines on such architectures. For this reason, research has been undertaken on
distribution of data on the disks, load balancing, as well as performance analysis of actual
systems.

Implementation and performance of the join algorithm for relational databases on an
nCube computer system is studied in [6]. Tuple balancing is performed to obtain roughly
even data distribution across parallel paths. This is achieved by nodes repeatedly exchang-
ing tuple count information among themselves, and a node with larger number of tuples
migrating data to one with lesser number. Relation compaction for saving disk space, and
relation replication to allow quick recovery in case of failures, are also performed.

7.2.2. Teradata database machines. Teradata was a pioneer in producing several parallel
database machines. The early models included DBC/1012 and P-20. The DBC/1012 was an
MIMD machine based on shared-nothing architecture. P-90 used disk-arrays with multiple
processor modules, providing fault tolerance and greater performance.

DBC/1012 utilized a broadcast interconnection network called the Ynet. This network had
a bandwidth of 6 Mbits/s. The network did sort/merge operations on data, thus aiding in the
performance improvement. Uses were connected to the DBC/1012 via InterFace Processor
module boards (IFP’s). An IFP was made up of a CPU, a channel interface controller, and a
couple of high-speed Ynet interfaces, providing a degree of fault tolerance. Each IFP could
handle up to 120 user sessions at a given time.

The data was distributed among Access Module Processors (AMP’s) by using hashing.
The primary index of the RDBMS was used as the key for this hashing. Normalization could
also be applied to logical schema of the RDBMS to handle data skew. Future plans called
for decrease in the level of granularity for hashing to enable further parallelism in disks
attached to AMPs. Intra-query parallelism was supported by distributing queries among the
AMPs. The different query plans could then be executed concurrently in the AMPs.

DBC/1012 uses hierarchical storage of data, including RAM, magnetic disk, optical disk,
and external optical drive levels for data access and storage.



402 KHAN ET AL.

Future plans for DBC/1012 and P-90 computers included efficient designs to handle
multimedia data, such as voice and image. It was expected that the linearly scalable database
architectures could meet the challenge of massive amounts of data processing needed by
such multimedia information services.

7.2.3. The Intel Concurrent File System (CFS). Intel’s Concurrent File System (CFS)
(figure 5) is of special interest since some performance measurements for it have been
reported in the literature [14]. The techniques used in the CFS to increase I/O performance
include the following. Large files are declustered over more than one disk. Some nodes
are dedicated to I/O. These special I/O nodes have additional high-speed cache memories,
permitting the caching and pre-fetching of files.

Some of the ideas such as those described in Section 5 on file organizations above, have
been applied in the Intel Concurrent File System (CFS). CFS allows several read/write

Figure 5. The intel concurrent file system.



A SURVEY OF DATA MANAGEMENT 403

operations in the same file to be performed in parallel. In CFS, all the disks of the system
are treated as a single logical disk. This allows an application to access a large database from
more than one client at the same time. Declustering is used to access file blocks. Primary
advantage of this is that distribution of data over disks allows simultaneous transfer from
them when data is required by independent concurrent processes. CFS has inbuilt high
performance read and write calls for both synchronous operation, as in the UNIX operating
system, as well as asynchronous operation, where I/O and data can proceed simultaneously.

CFS has been tested since about 1988. It reportedly achieves high data transfer rates
from multiple I/O nodes, for very large file applications. Maximum sustained aggregate
rate, max SAR, is a measure of the rate of transfer of data obtained by summing the data
rates of all the individual processors. The method used to measure the rate of transfer of data
in CFS is max SAR. The CFS study shows scalable high performance in CFS file system
implemented on an Intel iPSC/2. Files are distributed evenly among disks. The factors that
are tuned for maximal performance are: block size (this affects the efficiency of message
passing); cache size at each I/O node; allocation of operations between compute nodes and
I/O nodes to maximize concurrency of operations and minimize the overhead.

7.3. Case studies in shared-nothing systems

7.3.1. Bubba parallel database system. The goal of the Bubba project [13] was to provide
high performance data access to large amounts of shared data. To this end, the system’s
desirable qualities include scalability, inexpensiveness, availability and ease of use. Based
on the current limitations on bus technology, and desire for modular scalability, Bubba
chose a “shared nothing” architecture.

Design issues are driven by the database requirements. Thus large amounts of data dictate
processing of data wherever it may be located, in order to minimize data movement; multiple
transaction processing loads dictate a need for a powerful programming language and full
environment for run-time management of concurrent programs. High availability dictates
fault tolerance through redundancy and recovery mechanisms.

The Bubba system consists of three kinds of nodes: the Interface Processors (IP), Intelli-
gent Repositories (IR), and checkpoint-and-log IR’s (CIR). Most processing is done in the
IR’s and IP’s provide communication with the outside, and CIR’s are used in recovery.

IR’s may consist of more than a single processor. However, Bubba is designed to have
small IR’s so that the units of expandability are cheap, and also the failure of a single IR
does not have large influence on the system. Another reason for keeping the IR’s small is
the simpler design within the IR’s.

Two copies of data are kept online at all times, and a third copy is kept in the CIR’s.
Whenever faults or failures are detected in IR’s, the contents of the faulted IR are recreated
immediately. In order to facilitate this process, extra IP’s, IR’s and CIR’s are kept accessible
at all times.

In order to minimize data movement, data is placed statically, and programs are migrated
to data rather than vice-versa. However, the data placement is reorganized periodically in
order to improve overall performance. This reorganization is done transparently to the user
processes.



404 KHAN ET AL.

Figure 6. The PRISMA database architecture.

7.3.2. The PRISMA parallel database system. One of the research systems based on a
shared-nothing architecture is PRISMA [5, 95] (figure 6). PRISMA runs on a multiproces-
sor system consisting of 100 nodes. Half of these nodes have their own disks. The nodes
are connected to each other by communication processors. Each communication processor
connects a node to 4 other nodes in the system, thus providing a relatively high bandwidth
system. The database performs most of its functions in the main memory, and disks are used
only for backups and recovery after failures. It consists of the components performing SQL
and PRISMAlog parsing (i.e. interpreting database command languages), query optimiza-
tion, transaction management, concurrency control, maintaining a data dictionary, as well as
managers to control fragmentation and allocation of data objects. The kinds of parallelism
employed include multi-tasking, pipelining, and task-spreading. Multi-tasking is used to
breakup queries into sub-tasks, and then executing those sub-tasks in parallel whenever
data dependence and data availability requirements allow it. More details about the parallel
object-oriented language used, the hardware communication, and performance studies for
this experimental main-memory, shared-nothing database system are given in [5].



A SURVEY OF DATA MANAGEMENT 405

7.3.3. The Connection Machine. The Connection Machine’s CM-2 is a data parallel
architecture. It has a total primary storage of 512 MB (composed of 256 Kbit chips), and
2 GB of memory (with 1 Mbit chips). Given a clock rate of 7 MHz, the data can be
transferred to secondary storage at a rate of 45 GB/s. The primary storage has 64k ports,
with a 1-bit processor for each port. The storage per processor is 8 KB, making a total of
512 MB of storage. The CM-2 model can also be equipped with hardware for accelerating
floating point processing. This hardware allows 32 Connection Machine processors to share
a floating point unit. The floating point unit consists of a single chip floating point multiplier
and adder, with a few memory registers. It has been estimated that the peak performance
achievable with a Connection Machine configured as such is in the vicinity of 2 Gegaflops/s.

The Connection Machine’s memory is mapped into the memory of the host computer. The
program to be executed, consisting of instructions, resides in the host computer. Instructions
to be applied to the variables in the Connection Machine are sent to the micro-controller.
The micro-controller decodes and executes the instructions for the Connection Machine.

The Connection Machine is also equipped with a hardware router, which selects the
shortest path between the source and the destination of the message. Often, this routing can
also be taken over by the application program, by using primitives built in the programming
language.

When handling large amounts of data on the Connection Machine, we need to make
some assumptions about the computational model in order to make the analysis simpler and
manageable. Thus it is assumed that any given time of processing, the system consists of a
collection of processors, each with its own physical memory. As far as possible, calculations
are performed within a single processor. Inter-processor communication is needed, since
very often the calculation may not be performed entirely at a single node. This involves
cross-processor memory fetch operations. Such a fetch is performed asynchronously, and
the second processor does not have knowledge about it. As an example, if the fetch is to a
very large read-only table, this operation must be partitioned across processors in order to fit
in memory. When processor pi needs access to the table, it can compute in which processor
p the data resides, and the local address of this data. The 2nd processor is identified via the
first processor, and without the knowledge of the second processor. If a processor knows
has information that a particular data element it has will be needed by another processor
p j , then processor pi can immediately write this data to processor p j . The data transfer is
again asynchronous, and the second processor is unaware of this transfer. The only thing
is that one of the data locations of processor p j may have changed. One of the techniques
used by the expecting processor to know the arrival of new data item is to set the memory
to a special unlikely or impossible value, and then poll to find out if the value has changed.
Exclusive access to data is assured by an atomic read-write command.

Methods for efficient utilization of processors for exhaustive tree searches, suitable for
large parallel databases, are given in [36]. In SIMD Connection Machines, this is achieved
by avoiding interprocess communication for computational purposes. Interprocess com-
munication is, however, used for load balancing purposes. Because of the new dimensions
introduced by communication costs in massively parallel machines, we see that mapping the
problem to the specific architecture can pay off. An example of such pay-off is the mapping
of the exhaustive tree search problem on the massively parallel SIMD Connection Machine.



406 KHAN ET AL.

Although a single problem cannot be measure of the difficulties involved in other search
problems on such machines, it does give an indication of the excellent potential present in
such machines for processing massive databases or complex queries requiring the search
of large tree structures.

7.3.4. Gamma parallel database system. The design of the Gamma database machine
and the techniques employed in its implementation are presented in [27]. Gamma is a
relational database machine currently operating on an Intel iPSC2 hypercube with 32 pro-
cessors and 32 disk drives. Gamma employs three key technical ideas which enable the
architecture to be scaled to hundreds of processors. First all relations are horizontally par-
titioned across multiple disk drives enabling relations to be scanned in parallel. Second
parallel algorithms based on hashing are used to implement the complex relational oper-
ators such as join and aggregate functions. Third dataflow scheduling techniques are used
to coordinate multi-operator queries. By using these techniques it is possible to control the
execution of very complex queries with minimal coordination. The design of the Gamma
software and a thorough performance evaluation of the iPSCs hypercube version of Gamma
is presented in [26]. The speedup results for selection and join queries are reported to be
almost linear. This means that doubling the number of processors almost halves the re-
sponse time. Scaleup, in which both hardware and work load are increased proportionally,
is also investigated. The results show that the response time remains roughly constant with
scaleup.

7.4. The GOLDRUSH megaSERVER

The GOLDRUSH system [94], developed by ICL, is a distributed store parallel processor
system with upto 64 nodes. Objectives in the design of this parallel database server include
robustness against failure of processors and disks, and the ability to manage the parallel
machine as a single, centralized system. GOLDRUSH nodes consist of communications
elements, processing elements, and management elements. Processing elements have two
SCSI-2 connections, allowing upto 30 disks to be connected. Communications elements
have a couple of FDDI connections. The PEs can each connect to about 50 GB of data
storage. Most of the components in the system can be upgraded when better components
become available. This allows the system to ‘evolve’ over time.

Data is mirrored in order to provide high availability. Disk crashes are transparent because
processing can continue from a mirror. The data lock manager is also distributed, and lock
information is mirrored in several PE. Hence there is robustness against element or process
failure.

GOLDRUSH uses named sets of Elements for system management applications, includ-
ing operations, capacity, configuration, and problems. Furthermore, there is provision for
sets of disks and volumes. Management of sets of resources rather than particular pieces of
hardware etc. is useful in providing failure transparency. For example, if an element fails,
an alternative element replaces it internally, but the processes referring to the named set are
oblivious to this change.



A SURVEY OF DATA MANAGEMENT 407

8. Commercial parallel database systems

Many major database vendors have developed versions of their products which employ
parallel software and hardware for performance improvements. The performance bench-
marks for specific parallel systems have been reported by the vendors. For example, recent
results of a benchmark for a parallel version of Oracle DBMS running on a Sun E4000
server revealed that over 3000 concurrent users and a sustained processing load of over
700 processes a minute is achiveable. This is a vast performance improvement over single
server systems.

Informix has developed parallel versions of its products which run on popular loosely-
coupled symmetric multiprocessor (SMP) and massively parallel processor (MPP) systems
running the UNIX operating system, including the following MPP platforms: Hitachi, IBM,
ICL, NCR, Pyramid and Unisys, and the following clustered SMP platforms: Bull, Data
General, Digital, HP, NCR, NEC, Sun, SGI and Sequent.

Informix’s OnLine XPS is multithreaded database server designed to exploit the capabil-
ities of loosely coupled or shared-nothing computing including clusters of SMP and MPP
to deliver database scalability, manageability, and performance. OnLine XPS is optimized
to support large-scale database environments for on-line transaction processing (OLTP),
data warehousing, and other very large database (VLDB) applications. And OnLine XPS
includes enhanced parallel SQL operations, high-availability capabilities, enterprise repli-
cation. OnLine XPS offers the ability to perform hash joins for performing join operations
without indices on the join columns.

OnLine XPS takes a shared-nothing approach to managing data to reduce network I/O.
Each node runs its own instance of the database including logging, recovery, and buffer
management operations. Such an instance is called a co-server. Each co-server owns a set
of disks and the partitions of the database that reside on these disks. Co-server may cooperate
among them by exchanging subtasks for load distribution. Additional SMP nodes may also
be added to scale up the database.

Data partitioning provides the basis for parallel execution of all SQL operations by
partitioning large tables and indexes. Scans, joins, and sorts are distributed and executed
across multiple CPUs and disks in parallel. Data partitioning minimizes I/O bottlenecks
by allowing balanced I/O operations across all nodes and disks within a system. Control
partitioning minimizes locking, logging, and schedule bottlenecks. Control is partitioned by
utilizing function-shipping algorithms, data partitioning, and advanced query optimization
within OnLine XPS. Requests are only sent to the node where the data resides. Each node
manages the logging, recovery, locking, and buffer management for the database objects
that it owns.

Queries are broken down into subqueries and executed in parallel (vertical parallelism
or intraserver). These subqueries can be further broken down into subtasks to be executed
in parallel on multiple co-servers (horizontal parallelism or interserver). The results of a
particular scan can then be pipelined to a join subtask before the scans have been completed.
Additionally, the results of the join can themselves be pipelined to other subtasks before
the join is completed. Intraserver communications between subtasks that are located on
the same SMP node take place via efficient shared-memory pointer passing. Interserver



408 KHAN ET AL.

communications between subtasks on different nodes are achieved using networked mes-
sages across a high-speed interconnect.

HP’s Enterprise Parallel Server (EPS) has one GB/second high-speed fibre channel based
system to system communication. EPS supernodes provide intraserver communication be-
tween subtasks that reside on the same SMP node via efficient shared memory pointer
passing. The following benchmark results were reported on Informix XPS running on HP’s
Enterprise Parallel Server. A 100 GB database (350 GB total disk) was tested on an HP
EPS20 cluster, using fibre channel interconnect technology, and nodes with four PA-RISC
7200 (100 Mhz) processors. The database was partitioned across eight Fast/Wide SCSI-2
disks on each node. Data was fragmented across disks using fragmentation techniques in-
ternal to XPS. No LVM disk striping was used. Doubling the number of nodes as well as the
size of the database indicated database scalability of 95%. Doubling the number of nodes,
but keeping the database size constant indicated a database speedup of 94%. In both cases,
data load rates were found to be in excess of 2.2 GB/h/CPU, and thus a one node system
with a total of four CPUs sustained a load rate of 8.8 GB/h. Thus the system demonstrated
almost linear scalability in this test.

Sybase parallel databases (Sybase MPP) run on SMP, SMP cluster, and MPP platforms.
They deploy multiple SQL Servers that work in unison to process queries, transactions,
inserts, updates, and deletes in parallel, as well as parallel load, create index, backup and
recovery. Sybase MPP has a message-based, shared-nothing architecture.

Sybase SQL Server 11 has achieved the following TPC-C benchmark results recorded
for a mid-range UNIX-based symmetric multiprocessing (SMP) system, running on Digital
Equipment Corporation’s 64-bit AlphaServer 4100 5/400 system. SQL Server 11 attained
7,598 transactions per minute (tpmC) TPC-C benchmark on DEC Unix with four 400 MHz
CPUs and 3 GB of memory. The configuration for this benchmark used the following Sybase
features and modules: Logical Memory Manager, named caches, Data Slices, Soft Affinity,
64-bit support and fully symmetric networking. Sybase SQL Server 11 also achieved 14,739
transactions per minute (tpmC) running the TPC-C benchmark on HP’s K460 system.
Another benchmark test for Sybase SQL Server 11 achieved 18,438 transactions per minute
(tpmC) on Sun Microsystems’ Ultra Enterprise 6000 server utilizing 20 processors with the
Solaris 2.5.1 operating environment.

Another recent parallel data server is described in [100].
We may expect continuous in the performance of such parallel systems. As such systems

gain greater currency, competetion among vendors, reliable third party benchmarking, and
employment of state of the art technology and economies of scale will further enhance the
performance levels of parallel database systems.

9. Conclusions

It is clear from the foregoing sections that there are a large number of factors that war-
rant careful attention when designing parallel database systems for very large amounts of
data. Among them are: the design of the physical machine architecture, data placement
algorithms, efficient data structures and file manipulation strategies and parallel query pro-
cessing methods.



A SURVEY OF DATA MANAGEMENT 409

Design of machine architectures incorporates the design of processors, memories, disks,
and the interconnection networks. Architectural decisions affect the amount of different
kinds of parallelism that can be obtained in shared-everything, shared-nothing or shared-
disk systems. Shared-everything systems provide advantages of easier management since
their programming is simple and adaptation of existing databases is relatively easier.
However, the design of the interconnection network can affect the interprocessor com-
munication times. Shared-nothing systems provide the benefits of scalability and lower
communication costs. Potential for bottlenecks is also reduced in shared-nothing sys-
tems.

Selection of algorithms for database operations such as sorting, performing joins, projec-
tions etc. is critical in the performance of the system. Efficient algorithms are required
for concurrent access to data structures such as lists, trees, heaps and hashing tables.
Such data structures and file systems require deadlock-free serializability through lock-
ing or some other schemes in order to have prevent the corruption of data along with its
availability. These file and data structures can then be utilized in parallelization of query
processing, including inter-query parallelism, intra-query parallelism, and intra-operation
parallelism.

One of the main issues in designing data partitioning and placement strategies is avoiding
the data skew since significant amount of data skew in a system can cause inefficient
utilization of processors and disks. Data fragmentation can be done using either horizontal or
vertical fragmentation of the database relations. For maximal efficiency, distribution of data
for load balancing has to be carefully weighed against the increased costs of communication
and data recombination. In addition, combination of disk or tape striping large files across
disks and contiguous allocation of selected data can provide major improvements over
systems without data striping and contiguous allocation.

Further issues that need to be considered include the effects of operations such as
reload, unload, and reorganization of data; heterogeneity issues; performance measure-
ments for a mix of complex query work loads, and the relative advantages of paral-
lel synchronous pipelining versus parallel asynchronous pipelining in the processing of
database queries; data-specific effects such as those in multimedia data etc. These are
open areas of research and it may be some time before definitive opinions are reached on
them.

Notes

1. “Stable main memory” in the current context implies large enough main memory in the system so that the
entire database can be loaded from the disk into the memory.

2. “Data directory” consists of meta-data about the data in the database e.g. access permissions for different data,
alias names, sizes, locations etc.

3. “Throughput” in this context is generally measured in terms of transactions per second.

References

1. I. Ahmad and A. Ghafoor, “Semi distributed load balancing for massively parallel multicomputer systems,”
IEEE Transactions on Software Engineering, vol. 17, no. 10, 987–1006, October 1991.



410 KHAN ET AL.

2. I. Ahmad, A. Ghafoor, and G. Fox, “Hierarchical scheduling of dynamic parallel computations on hypercube
multicomputers,” to appear in Journal of Parallel and Distributed Computing.

3. I. Ahmad, A. Ghafoor, and K. Mehrotra, “A decentralized task scheduling algorithm and its performance
modeling for computer networks,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, Dallas, Texas, December 1991.

4. W. Alexander and G. Copeland, “Process and dataflow control in distributed data-intensive systems,” in
Proceedings of the 1988 SIGMOD Conference, Chicago, June 1988.

5. P. Apers, B. Hertzberger, B. Hulshof, H. Oerlemas, and M. Kersten, “PRISMA, a platform for experiments
with parallelism,” Parallel Database Systems, Pierre America (Ed.), Springer-Verlag, 1990.

6. C.K. Baru, O. Frieder, D. Kandlur, and M. Segal, “Join on a cube: Analysis, simulation and implementa-
tion,” Database Machines and Knowledge Base Machines, M. Kitsuregawa and H. Tanaka (Eds.), Kluwer,
1987.

7. F. Bastani, I. Iyengar, and I. Yen, “Concurrent maintance of data structures in a distributed environment,”
The Computer Journal, 1988.

8. R. Bayer and M. Schkoinick, “Concurrency of operations on B-Trees,” Acta Informatica, vol. 9, no. 1,
pp. 1–21, 1977.

9. G. Bell, “Ultracomputers, a teraflop before its time,” Communication of the ACM, pp. 27–47, August 1992.
10. A. Bhide and M. Stonebraker, “A performance comparison of two architectures for fast transaction pro-

cessing,” in Proceedings of the Fourth International Conference on Data Engineering, Los Angeles, CA,
1988.

11. D. Bitton and J. Gray, “Disk shadowing,” in Proceedings of the Fourteenth International Conference on Very
Large Data Bases, Los Angeles, Calif., August 1988.

12. P. Bodorik and J.S. Riordon, “Heuristic algorithms for distributed query processing,” in Proceedings of the
First International Symposium on Databases in Parallel and Distributed Systems, Austin, TX, December
1988.

13. H. Boral and D. DeWitt, “Database machines: An idea whose time has passed? A critique of the future of
database machines,” in Proceedings of the 3rd International Workshop on Database Machines, August 1985.

14. R. Bordawekar, J. del Rosario, and A. Choudhary, “Design and evaluation of primitives for parallel I/O,” in
Proceedings of the Supercomputing ’93 Conference, Portland, OR, November 1993.

15. N. Bowen, C. Nikolaou, and A. Ghafoor, “On the assignment problem of arbitrary process systems to
heterogeneous distributed computing systems,” IEEE Transactions on Computers, vol. 41, no. 3, pp. 257–
273, March 1992.

16. A. Borr, “Robustness to crash in a distributed database: A non-shared memory multi-processor ap-
proach,” in Proceedings of the 10th International Conference on Very Large Data Bases, Singapore, August
1984.

17. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Valduriez,
“Prototyping bubba: A highly parallel database system,” in IEEE Transactions on Knowledge and Data
Engineering, vol. 2, no. 1, March 1990.

18. J.C. Browne, A.G. Dale, C. Leung, and R. Jenevein, “Parallel multi-stage I/O architecture with self-managing
disk cache for database management applications,” in Proceedings of Database Machines: Fourth Interna-
tional Workshop, Bahamas, March 1985.

19. S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems, McGraw-Hill, 1984.
20. S.M. Chung, “Parallel relational operations based on clustered surrogate files,” in Proceedings of the

Third Symposium on the Frontiers of Massively Parallel Computation, College Park, MD, October
1990.

21. G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data placement in Bubba,” in Proceedings of
ACM-SIGMOD International Conference on Management of Data, Chicago, May 1988.

22. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw Hill, 1990.
23. E. DeBenedictis and J.M. Rosario, “Scalable I/O,” nCUBE Technical Report, nCube-TR001-911015, October

15, 1991.
24. D. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna, “GAMMA—A high

performance dataflow database machine,” in Proceedings of the 12th International Conference on Very Large
Databases, Kyoto, Japan, August 1986.



A SURVEY OF DATA MANAGEMENT 411

25. D. DeWitt and R. Gerber, “Multi processor hash-based join algorithms,” in Proceedings of the 11th Interna-
tional Conference on Very Large Databases, Stockholm, Sweden, August 1985.

26. D. DeWitt, et al., “The GAMMA database machine project,” IEEE Transactions on Knowledge and Data
Engineering, vol. 2, no. 1, pp. 44–62, March 1990.

27. D. DeWitt and J. Gray, “Parallel database systems: The future of high performance database systems,”
Communications of the ACM, June 1992.

28. D. Dias, B. Iyer, J. Robinson, and P. Yu, “Integrated concurrency-coherency controls for multisystem data
sharing,” in Proceedings of the IEEE Transactions on Software Engineering, vol. 15, no. 4, April 1989.

29. J. Driscoll, H. Gabow, R. Sharairman, and R. Tarjan, “Relaxed heaps: An alternative to fibonacci heaps
with applications to parallel computation,” Communications of the ACM, vol. 31, no. 11, pp. 1343–1354,
November 1988.

30. N. Duppel, “Modeling and optimization of complex database queries in a shared-nothing system,” in Pro-
ceedings of the Third IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, December
1991.

31. C.S. Ellis, “Concurrency in linear hashing,” ACM Transactions on Database Systems, vol. 12, no. 2, pp. 195–
217, June 1987.

32. C.S. Ellis, “Concurrent search and insertion in AVL Trees,” in IEEE Transactions on Software Engineering,
vol. C-29, no. 9, September 1980.

33. C.S. Ellis, “Concurrent search and insertion in 2–3 trees,” Acta Information, vol. 14, 1980.
34. C. Faloutsos and S. Christodoulakis, “Description and performance analysis of signature file methods for

office filing,” ACM Transactions on Office Information Systems, vol. 5, no. 3, July 1987.
35. O. Frieder, “Multiprocessor algorithms for relational-database operators on hypercube systems,” IEEE Com-

puter, pp. 13–28, Nov. 1990.
36. R. Frye and J. Myczkowski, “Exhaustive search of unstructured trees on the connection machine,” submitted

to Journal of Parallel and Distributed Computing.
37. J. Fu and T. Kameda, “Concurrency control for nested transactions accessing B-Trees,” in Proceedings of

the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 1989.
38. H. Garcia-Molina, R. Abbot, C. Clifton, C. Staelin, and K. Salem, “Data management with massive memory:

A summary,” in Parallel Database Systems, Pierre America (Ed.), Springer-Verlag, 1990.
39. S. Ghandeharizadeh and D.J. Dewitt, “Hybrid-range partitioning strategy: A new declustering strategy for

multiprocessor database machines,” in Proceedings of the Sixth International Conference on Data Engineer-
ing, February 1990.

40. F. Grandi, P. Tiberio, and P. Zezula, “Frame-sliced partioned parallel signature files,” in Proceedings 15th
Annual International ACM SIGIR Conference, June 1992.

41. E. Haq and S. Zheng, “Parallel algorithms for balancing threaded binary trees,” in Proceedings of the Eight
Annual International Phoenix Conference on Computers and Communications, Scottsdale, AZ, March 1989.

42. T. Harder, H. Schoning, and A. Sikeler, “Parallelism in processing queries on complex objects,” in Proceedings
of the International Symposium on Databases in Parallel and Distributed Systems, Austin, TX, October
1988.

43. D.W. Hills and L.G. Steele Jr., “Data parallel algorithms,” Communications of the ACM, vol. 29, no. 12,
pp. 1170–1183, 1986.

44. K.A. Hua and C. Lee, “Handling data skew in multiprocessor database computers using partition tuning,”
in Proceedings of the Seventeenth International Conference on Very Large Data Bases, Barcelona, Spain,
September 1991.

45. Y.-N. Huang and J.-P. Cheiney, “An effective algorithm for parallelizing hash joins in the presence of data
skew,” in Proceedings of the Seventh International Conference on Data Engineering, Kobe, Japan, April
1991.

46. K. Hwang, Advanced Computer Architecture, Parallelism, Scalability, Programmability, McGraw Hill,
1993.

47. Intel, Paragon XP/S Product Overview Supercomputer Systems Division, Intel Corporation, Beaverton, OR,
1991.

48. S. Khoshafian and P. Valduriez, “Parallel query processing of complex objects,” in Proceedings of the Fourth
International Conference on Data Engineering, Los Angeles, CA, February 1988.



412 KHAN ET AL.

49. M. Kim, “Synchronized disk interleaving,” IEEE Transactions on Computers, vol. C-35, no. 11, November
1986.

50. M. Kitsuregawa, W. Yang, and S. Fushimi, “Evaluation of 18-stage pipeline hardware sorter,” in Proceedings
of the Third International Conference on Data Engineering, February 1987.

51. Y. Kiyoki, T. Kurosawa, K. Kato, and T. Masuda, “The software architecture of a parallel processing sys-
tem for advanced database applications,” in Proceedings of the Seventh International Conference on Data
Engineering, Kobe, Japan, April 1991.

52. D. Kotz and C. Ellis, “Caching and writeback policies in parallel file systems,” in Proceedings of the Third
IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, December 1991.

53. M.H. Kryder, “Data storage in 2000—trends in data storage technologies,” IEEE Transactions on Magnetics,
vol. 25, no. 6, November 1989.

54. H. Kung and P. Lehman, “Concurrent manipulation of binary search trees,” ACM Transaction on Database
Systems, vol. 5, no. 3, September 1980.

55. Y.-S. Kwong and D. Wood, “A new method for concurrency in B-Trees,” IEEE Transactions on Software
Engineering, vol. 8, no. 3, May 1982.

56. P. Lehman and S. Yao, “Efficient locking for concurrent operations on B-Trees,” ACM Transactions on
Database Systems, vol. 6, no. 4, December 1981.

57. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan
Kaufmann Publishers, 1992.

58. M.D.P. Leland and W.D. Roome, “The silicon database machine,” in The Proceedings of the 4th International
Workshop on Database Machines, Bahamas, March 1985.

59. K. Li and J.F. Naughton, “Multiprocessor main memory transaction processing,” in Proceedings of the
International Symposium on Databases in Parallel and Distributed Systems, Austin, TX, 1988.

60. W. Litwin, “Linear hashing: A new tool for file and table addressing,” in Proceedings of the 6th International
Conference on Very Large Data Bases, pp. 212–223, 1980.

61. M. Livny, S. Khoshafian, and H. Boral, “Multi-disk management,” in Proceedings of the ACM SIGMETRICS
Conference on the Measurement and Modeling of Computer Systems, pp. 69–77, Banff, Canada, 1987.

62. D. Lomet and B. Salzberg, “Access method concurrency with recovery,” in Proceedings of the ACM SIGMOD
Conference, pp. 351–360, 1992.

63. D. Lomet and B. Salzberg, “Access methods for multiversion data,” in Proceedings of the ACM SIGMOD
Conference, pp. 315–324, May 1989.

64. R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos, and H. Young, “Adding intra-transaction parallelism to an
existing DBMS: Early experience,” IEEE Data Engineering Newsletter, vol. 12, no. 1, March 1989.

65. C. Mohan and I. Narang, “Efficient locking and caching of data in multi-system shared disks transaction
environment,” IBM Research Report RJ 8301, 1991.

66. T. Ohmori, M. Kitsuregawa, and H. Tanaka, “Scheduling batch transactions on shared-nothing parallel
database machines: Effects of concurrency and parallelism,” in Proceedings of the Seventh International
Conference on Data Engineering, Kobe, Japan, April 1991.

67. M. Ozsu and P. Valduriez, “Principles of distributed database systems,” Prentice-Hall, 1991.
68. J. Parker, “Concurrent search structure,” Journal of Parallel and Distributed Computing, vol. 7, no. 2, pp. 256–

278, October 1989.
69. J.H. Patel, “Performance of processor-memory interconnections for multiprocessors,” IEEE Transactions on

Computers, vol. C-30, no. 10, pp. 771–780, October 1981.
70. D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays of inexpensive disks (RAID),” in

Proceedings of the ACM SIGMOD Conference, pp. 109–116, Chicago, June 1988.
71. W. Pugh, “Skip lists. A probabilistic alternative to balanced trees,” Communications of the ACM, vol. 33,

no. 6, pp. 668–676, June 1990.
72. J.P. Richardson, H. Lu, and K. Mikkiilineni, “Design and evaluation of parallel pipelined join algorithms,”

in Proceedings of the ACM SIGMOD Conference, San Francisco, CA, June 1987.
73. J.R. Rose and L.G. Steele Jr., “C*: An extended C language for data parallel programming,” Technical Report

PL87-5, Thinking Machines Corporation, April 1987.
74. Y. Sagiv, “Concurrent operations on B*-trees with overtaking,” Journal of Computer and System Sciences,

vol. 33, no. 2, pp. 275–296, 1986.



A SURVEY OF DATA MANAGEMENT 413

75. K. Salem and H. Garcia-Molina, “System M: A transaction processing testbed for memory resident data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 1, pp. 161–172, March 1990.

76. B. Salzberg, “Concurrency in grid files,” Information Systems Journal, vol. 11, no. 3, pp. 235–244,
1986.

77. B. Samadi, “B-Trees in a system with multiple users,” Information Processing Letters, vol. 5, no. 4, pp.
107–112, 1976.

78. D.A. Schneider and D.J. DeWitt, “A performance evaluation of four join algorithms in a shared-nothing
multiprocessor environment,” in Proceedings of the ACM SIGMOD Conference, Portland, OR, June
1989.

79. R. Sedgewick, Algorithms, Addison-Wesley Publishing Company: Reading, MA, 1983.
80. M. Seltzer and M. Stonebraker, “Read Optimized file system designs: A performance evaluation,” in Pro-

ceedings of the IEEE 7th International Conference on Data Engineering, 1991.
81. S. Seshadri and F.J. Naughton, “Sampling issues in parallel database systems,” in Advances in Database

Technology-EDBT’92, Vienna, Austria, March 1992.
82. D. Shasha and N. Goodman, “Concurrent search structure algorithms,” ACM Transactions on Database

Systems, vol. 13, no. 1, pp. 53–90, March 1988.
83. H.J. Siegel, Interconnection Networks for Large-Scale Parallel Processing: Theory and Case Studies, 2nd

ed., McGraw-Hill: New York, 1989.
84. C. Stanfill and B. Kahle, “Parallel free text search on the connection machine,” Communications of the ACM,

vol. 29, no. 12, December 1986.
85. M. Stonebraker, “The case for shared-nothing,” Database Engineering, vol. 9, no. 1, 1986.
86. The Tandem Database Group, “A benchmark of nonstop SQL on the debit credit transaction,” in Proceedings

of the ACM SIGMOD Conference, Chicago, 1988.
87. S. Thakkar and M. Sweiger, “Performance of an OLTP application on symmetry multiprocessor system,” in

Proceedings of the Seventeenth International Symposium on Computer Architecture, Seattle, Washington,
May 1990.

88. Thinking Machine Corporation, The CM-5 Technical Summary, Cambridge, MA, 1991.
89. S. Torii, K. Kojima, S. Yoshizumi, A. Sakata, Y. Takamoto, S. Kawabe, and M. Takahashi, “Relational

database system architecture based on a vector processing method,” Information Sciences, vol. 48, no. 2, pp.
135–155, July 1989.

90. P. Valduriez, “Parallel database systems: Open problems and new issues,” in Distributed and Parallel
Databases, vol. 1, pp. 137–165, 1993.

91. C. Walton and A. Dale, “Data skew and the scalibility of parallel joins,” in Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, Dallas, Texas, December 1991.

92. C. Walton, A. Dale, and R. Jenevein, “A taxonomy and performance model of data skew effects in parallel
join,” in Proceedings of the Seventeenth International Conference on Very Large Data Bases, Barcelona,
Spain, September 1991.

93. D. Waltz, “Applications of the connection machine,” Computer, vol. 10, no. 1, pp. 85–97, January 1987.
94. P. Watson and G. Catlow, “The architecture of the ICL GOLDRUSH MegaSERVER,” in Advances in

Databases, BNCOD 13, C. Goble and J. Keane (Eds.), Springer, 1995, pp. 249–262.
95. A. Wilschut and P. Apers, “Pipelining in query execution,” in Proceedings of the PARBASE-90 Conference,

Miami, FL, March 1990.
96. A. Wilschut, P. Apers, and J. Flokstra, “Parallel query execution in PRISMA/DB,” in Parallel Database

Systems, Pierre America (Ed.), Springer-Verlag, 1990.
97. V. Winters, “Parallelism for high performance query processing,” in Advances in Database Technology-

EDBT’92, Vienna, Austria, March 1992.
98. J. Wolf, D. Dias, and J. Turek, “An effective algorithm for parallelizing hash joins in the presence of data

skew,” Proceedings IEEE 7th International Conference on Data Engineering, 1991.
99. I. Yen, D. Leu, and F. Bastani, “Hash table and sorted array: A case study of multi-entry data structures in

massively parallel systems,” in Proceedings of the Third Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 1990.

100. J. Annen and M. Okumura, “Parallel data warehouse server,” Fujitsu, vol. 50, no. 3, pp. 135–139, Fujitsu,
Japan, 1999.



414 KHAN ET AL.

101. R. Brave, M. Kallahalla, P.J. Varman, and J. ScottVitter, “Competitive parallel disk prefetching and buffer
management,” in Proceedings of the Fifth Workshop on I/O in Parallel and Distributed Systems, pp. 47–56,
1997.

102. G.M. Bryan, W.E. Moore, B.J. Curry, K.W. Lodge, and J. Geyer, “The MEDUSA project: autonomous data
management in a shared-nothing parallel database machine,” in Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, p. 507, 1994.

103. G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka, “A cost-effective, high-bandwidth storage architecture,” ACM SIGPLAN Notices (ACM
Special Interest Group on Programming Languages), vol. 33, no. 11, pp. 92–103, November 1998.

104. M. Oguchi and M. Kitsuregawa, “Dynamic remote memory acquistion for parallel data mining on ATM-
connencted PC cluster,” in Proceedings of the 1999 International Conference on Supercomputing, pp. 246–
252, 1999.

105. T. Stricker, J. Stichnoth, D. O’Hallaron, S. Hinrichs, and T. Gross, “Decoupling synchronization and data
transfer in message passing systems of parallel computers,” in Proceedings of the 9th ACM International
Conference on Supercomputing, pp. 1–10, 1995.


