
Journal of Supercomputing, 14, 233–255 (1999)
© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Efficient Parallel Algorithm for Computing the
Gaussian Convolution of Multi-dimensional Image
Data
HOI-MAN YIP, ISHFAQ AHMAD AND TING-CHUEN PONG �hmyip,iahmad,tcpong�@cs.ust.hk

Department of Computer Science, The Hong Kong University of Science and Technology, Hong Kong

(Received September 4, 1997; final version accepted July 29, 1998.)

Abstract. In this paper, we propose a parallel convolution algorithm for estimating the partial deriva-
tives of 2D and 3D images on distributed-memory MIMD architectures. Exploiting the separable char-
acteristics of the Gaussian filter, the proposed algorithm consists of multiple phases such that each phase
corresponds to a separated filter. Furthermore, it exploits both the task and data parallelism, and reduces
communication through data redistribution. We have implemented the proposed algorithm on the Intel
Paragon and obtained a substantial speedup using more than 100 processors. The performance of the
algorithm is also evaluated analytically. The analytical results confirming with the experimental results
indicate that the proposed algorithm scales very well with the problem size and number of processors.
We have also applied our algorithm to the design and implementation of an efficient parallel scheme
for the 3D surface tracking process. Although our focus is on 3D image data, the algorithm is also ap-
plicable to 2D image data, and can be useful for a myriad of important applications including medical
imaging, magnetic resonance imaging, ultrasonic imagery, scientific visualization, and image sequence
analysis.

Keywords: image processing, Gaussian filter, parallel algorithms

1. Introduction

Image processing and computer vision technologies are required in a variety of
applications in many areas of science and engineering. However, due to the limita-
tion of the current state-of-the-art technology, conventional image processing and
computer vision systems have predominantly focused on the processing of 2D im-
ages. The need for 3D images is now widely felt in fields such as medical imaging
[4, 8], image sequence analysis [21], and scientific visualization [15]. In medical imag-
ing field, for instance, a 3D image is a sequence of slices from tomographic tech-
niques such as computed tomography (CT), magnetic resonance imaging (MRI), nu-
clear medicine imagery (NMI), and ultrasonic imagery. Other 3D images are also
prevalent in seismic imaging, numerical simulation experiments, and atmospheric
sciences.

Since the size and computational requirements of the image data, particularly
3D data, are usually huge for a single-processor system such as a general-purpose
workstation, efforts have been directed towards using parallel or distributed archi-

234 yip, ahmad and pong

tectures. Most previous efforts have concentrated on the parallelization of visualiza-
tion aspects. However, in scientific visualization and other applications of empirical
data interpretation, image analysis operators for the transformation and enhance-
ment of the raw data are required. With these operators, the salient features em-
bedded in the data can become discernible and quantifiable and thus provide useful
information for decision making. For both 2D and 3D imaging systems, the par-
tial derivatives of the image are essential elements in the image analysis process
[21, 18].

The estimation of partial derivatives is very sensitive to noise which may usu-
ally be introduced into the raw images during the image formation process. Hence
it is critical to filter out the noise of the raw images for the success of the whole
system. Among many other noise suppression methods, the Gaussian based smooth-
ing method, also called Laplacian of Gaussian (LoG), is the most commonly used
method, because of its well localized property in both spatial and frequency do-
mains.

The convolution operations are computationally intensive for a large filter on a
fine resolution image. Dykes et al. [9] showed that a major problem with a sequential
convolution is the heavy demand for memory accesses. Because of the fundamental
nature of the convolution operation, much attention has been devoted to the de-
velopment of efficient fine-grained multicomputer parallel algorithms [6, 23] as well
as the development of special-purpose hardware [1, 17, 7, 16, 10, 14]. Alternatively,
convolutions can also be computed with the aid of Fourier Transforms. Parallel al-
gorithms based on this method have been proposed in [25]. However, the overhead
of Fourier Transformation is too high and is not practical for large images.

The problem of surface reconstruction is to track the surface of objects in the 3D
data volume by means of connected-component search and to generate triangular
facets for rendering. Fuchs et al. [11] reduced the problem of surface reconstruc-
tion from planar contours to finding a minimum cost cycle in a directed toroidal
graph. Talele et al. [28] developed a parallel algorithm based on the shortest-path
on a BBN TC2000 parallel computer, a shared-memory machine. More recently,
Lorensen and Cline [19] proposed an algorithm called Marching Cubes that gener-
ates polygonal representations of the anatomy directly from the segmented volume
data. Hansen and Hinker [13] designed a SIMD version of Marching Cubes for
fine-grain massively parallel surface extraction. The algorithm of Marching Cubes
has also been parallelized by Yoo and Chen [31] on a special-purpose parallel mul-
ticomputer for computer graphics called Pixel-Planes 5 [12].

In most studies of parallel surface reconstruction [24, 28], a master-slave parallel
computational model is employed where the master node initiates, controls and
schedules the tasks on slave nodes. This model has a limited scalability because the
master node becomes the bottleneck for large computation, and, therefore, cannot
be implemented on a large number of processors.

Another important issue to be considered for parallel implementation is load
balancing. Zhang and Deng [32] indicated that the straight-forward uniform data
partitioning method is the most effective because the additional overheads intro-
duced from the static and dynamic scheduling methods cost more than the savings
from balancing the computation.

an efficient parallel algorithm 235

Our objective is to develop a parallel algorithm for the Gaussian convolution on
distributed memory MIMD parallel architectures such as the Intel Paragon. The
proposed algorithm, which exploits the separable characteristics of the Gaussian fil-
ters, is a multi-phase algorithm in which each phase corresponds to a particular
separated filter. The communication overhead is minimized by the data redistribu-
tion processes between every two phases. The proposed convolution algorithm has
been applied to design and implementation of an efficient two-level parallel scheme
for the 3D surface tracking process using the 3D image. In our two-level parallel
strategy, we use a combination of task and data parallelism. For the task paral-
lelism, the tasks are distributed across various groups of processors. For the data
parallelism, within each group, data is partitioned across sub-meshes of processors.
Although our focus is on 3D image data, the parallel convolution algorithm is also
applicable to 2D image data.

The rest of this paper is organized as follows. Section 2 shows how Gaussian
filter and differential operator can be combined into a single operator. The paral-
lel algorithm of the Gaussian convolution is presented in Section 3. In Section 4,
we study the performance of the parallel algorithm analytically. The parallel sur-
face building algorithm is presented in Section 5. The experimental performance
of the algorithm is given in Section 6, and the last section provides concluding
remarks.

2. Gaussian convolution

The estimation of partial derivatives of an image is sensitive to noise. Hence some
kind of noise suppression operations is required to improve the quality of the es-
timation. Previous strategies on noise suppression include simple averaging, sur-
face fitting, non-linear filtering and Gaussian smoothing. Among these methods,
the Gaussian has a number of desirable properties which make it the most com-
monly used smoothing filter. For examples, Gaussian filter is the only low-pass filter
that has good localization property in both spatial and frequency domains, and is
decomposable and rotationally invariant. In fact, the two most popular edge de-
tectors, Marr-Hildreth operator [20] and Canny operator [5], are designed based
on Gaussian smoothing. Moreover, Gaussian filter is closely related to the tech-
nique of multi-resolution or multi-scale processing [30] because it can be employed
to create images with resolution from coarse to fine. However, it should be no-
ticed that Gaussian smoothing may cause displacement of the feature locations [3].
Fortunately, Ulupinar and Medioni [29] have suggested a solution for refining the
feature locations.

Basically, the Gaussian filter smoothes the image by removing fine structures that
are smaller than the window size of the filter. These fine structures are usually the
noise on the image. The filter is a digital version of the following Gaussian function:

G�x� = 1√
2πσ

exp
(
− x2

2σ2

)
: [1]

236 yip, ahmad and pong

Here σ is the standard deviation. The 2D Gaussian filter is a digital version of the
product of two 1D Gaussian:

G�x; y� = G�x�G�y� [2]

= 1
2πσ2 exp

(
−x

2 + y2

2σ2

)
: [3]

The 3D filter can be determined similarly. The parameter, σ , determines the sup-
port of the filter. We can set the parameter σ to control the resolution of the
smoothed image.

Theoretically, the support of the Gaussian filters is infinity. In discrete realization,
Sotak and Boyer [27] show that a support of 4w, where w = 2

√
2σ , is most appro-

priate. A support smaller than 4w may cause distortion of the filter in the frequency
domain. A support larger than 4w results in increased computational burden with
only negligible improvement in the filter performance.

The discussion below shows how the Gaussian filter and the differential opera-
tor can be combined. We will focus on 2D case in the following derivation. The
derivation for 3D follows naturally.

The smoothed version, J�x; y�, of the continuous image, I�x; y�, is given by

J�x; y� = G�x; y� ⊗ I�x; y� [4]

where ⊗ denotes convolution. Hence the partial derivative of J is

∂p+q

∂xp∂yq
J�x; y� =

[
∂p+q

∂xp∂yq
G�x; y�

]
⊗ I�x; y�: [5]

Therefore, in the discrete domain, any Ixpyq can be estimated by convolving the
image with the digital version of a corresponding Gaussian derivative, which can be
derived analytically, as follows

Jxpyq�i; j� = Gxpyq�i; j� ⊗ I�i; j� [6]

=
m/2∑

a=−m/2

m/2∑
b=−m/2

Gxpyq�a; b�I�i− a; j − b�; [7]

where m is the width of the 2D Gaussian filter.
Since the Gaussian filter is decomposable [22], that is

G�x; y� = G�x� ⊗G�y�; [8]

the partial derivative of Gaussian is also decomposable and is given by

∂p+q

∂xp∂yq
G�x; y� = ∂p

∂xp
G�x� ⊗ ∂q

∂yq
G�y�: [9]

an efficient parallel algorithm 237

Denote �∂p/∂xp�G�x� by Gp
x . From Equation 5 we have

Jxpyq =
(
Gp
x ⊗Gq

y

)⊗ I�x; y� [10]

= Gp
x ⊗

(
Gq
y ⊗ I�x; y�

)
: [11]

Although the results given by Equation 5 and Equation 11 are the same, there is
a significant difference in the number of operations (multiplication) for convolving
with the original and separated filters. Suppose the filter size is m × m and the
image size is nx × ny . The number of multiplications in Equation 5 is m2nxny while
it is only 2mnxny in Equation 11. The reduction in number of multiplications is by
a factor of m which can be very significant for large σ .

The above derivation leads naturally to 3D image. The partial derivative of the
smoothed 3D image is given by

∂p+q+r

∂xp∂yq∂zr
J�x; y; z� =

[
∂p+q+r

∂xp∂yq∂zr
G�x; y; z�

]
⊗ I�x; y; z�: [12]

If separated filters are applied, the above equation becomes

Jxpyqzr = Gp
x ⊗

(
Gq
y ⊗

(
Gr
z ⊗ I�x; y; z�

))
: [13]

The saving in computation is even more for the 3D case. Suppose the filter size is
m×m×m and the image volume size is nx × ny × nz. The number of multiplica-
tions in the separated convolution is reduced from m3nxnynz to 3mnxnynz.

The implementation of Equations 11 and Equation 13 on serial computers is
not difficult. For Equation 11, we first perform 1D convolution of each column of
I�x; y� with Gaussian derivative, Gq

y , to create an intermediate image Jyq ; then we
perform another 1D convolution of each row of Jyq with Gp

x to give Jxpyq , i.e.

Jyq = Gq
y ⊗ I�x; y�: [14]

Jxpyq = Gp
x ⊗ Jyq : [15]

Similarly, for Equation 13, we first perform 1D convolution in z-direction, then in
y-direction and finally in x-direction, i.e.

Jzr = Gr
z ⊗ I�x; y; z�: [16]

Jyqzr = Gq
y ⊗ Jzr : [17]

Jxpyqzr = Gp
x ⊗ Jyqzr : [18]

3. The proposed algorithm

In this section, we describe the proposed parallel algorithm for computing the
derivatives of the image. We first show why the simple strategy to parallelize the

238 yip, ahmad and pong

2-D separated convolution by conventional block partitioning is not optimal for our
purpose. Analytical results will be presented in next section.

In a conventional approach, image is partitioned into regular blocks which are
distributed to a group of processors. Each processor then performs local convolu-
tion on its own data. In order to compute the convolution of the boundary pixels,
each processor has to access the data of neighboring processors. Communication
overhead can be avoided by duplicating the boundary of neighboring processors into
a processor’s own memory space. This method is perhaps the best way for paral-
lelizing the conventional one step convolution of non-separable filters. However, it
is not practical for convolution with larger filters because it requires the duplication
of a large amount of boundary data. Moreover, as shown in the previous section,
our filters are separable where two 1D convolutions are performed for 2D image,
and three 1D convolutions are performed for 3D image. In the case of 2D image,
for example, the second convolution depends on the result of the first. So the first
convolution has to be performed on all data including the duplicated boundaries.

Since the conventional strategy of fixed partition is not optimal for our filters, we
propose to redistribute the data blocks among the tasks between the convolutions
of two 1D Gaussian filters. The algorithm works as follows. First, the image is di-
vided into regular blocks by a column-wise striped partitioning (see Figure 1(a)).
The blocks are distributed to a group of processors connected as an array. Each
processor convolves its own data with 1D filter, Gq

y , in y-direction. Next, all proces-
sors work cooperatively to exchange data blocks with each other. The arrow curves
in Figure 1 indicate how the data blocks are redistributed. The blocks with a dot
remain in the same processor without inter-processor redistribution. The result of
this redistribution is that the image is divided into regular blocks with row-wise
partitioning (Figure 1(b)). This process is similar to a parallel transposition of the
whole image (see Figure 2). After redistribution, each processor performs another
1D convolution with Gp

x in x-direction. The final result is obtained by merging the
data blocks of the processors together.

The following is the pseudo code of the algorithm where Byi and Bxi are data
blocks held by processor Pi before and after redistribution, respectively, and M is
the number of processors.

Figure 1. Redistribution of the image.

an efficient parallel algorithm 239

Figure 2. Transposition of the image.

1. function ∂I ← Gaussian2�I; p; q;M�
2. for all Pi; i← 0; · · · ;M − 1 �
3. Byi ← Split�I;M�;
4. Conv1D�Byi;Gq

y �;
5. for j← 0; · · · ;M − 1 �
6. Bxi�j� ← Byj�i�;
7. �
8. Conv1D�Bxi;Gp

x �;
9. �

10. ∂I ←Merge�Bxi�;

During the course of redistribution, the sub-images Byi and Bxi are logically di-
vided into M regular blocks which is represented by Byi�j� and Bxi�j�; respectively.
Byi�j� and Bxi�j� are the unit of data exchange among the processors.

As a byproduct of the mechanism, redistribution maintains the locality of sub-
image in each processor which minimizes the cache miss rate, and hence improves
the performance of the algorithm [26]. Although cache miss may be negligible for
convolution of 2D images with small size, it may be one of the major sources of
performance degradation for 3D case because the size of 3D images is usually huge.
follows. Before the 1(a)) to store column major because the 1D performed for each
column of the sub-image. the sub-image (Figure convolution is

Similarly, the same philosophy of redistributing the data block among processors
is generalized to parallelize the estimation of partial derivatives of 3D spatiotempo-
ral volume. The algorithm works as follows. The image volume is first partitioned
into smaller volumes along the z-direction as shown in Figure 3(a). Each processor
convolves its own volume with Gr

t in t-direction. The whole image volume is then
redistributed among the processor mesh. As a result, the volume is rotated above
x-axis (see Figure 3(a) and (b)) and the volume is partitioned along the y-direction
into smaller volumes. Each processor performs the second convolution on its own
volume with Gq

y in y-direction. Next, the volume is once again redistributed such
that it is rotated above z-axis (see Figure 3(b) and (c)) and the volume is partitioned
along the x-direction.

Finally, the results of the third convolution with Gp
x in x-direction are merged

together. Totally, we need to redistributed the volume among the mesh-connected

240 yip, ahmad and pong

Figure 3. Rotation of image volume.

processors twice (see Figure 4). Throughout the process, good locality of data blocks
is maintained to reduce the cache missing rate.

The following is the pseudo code of the algorithm. In the pseudo code, Btij , Byij
and Bxij are data blocks held by Pij at three time steps separated by the redistribu-
tion operations. During the algorithm, they are divided into N sub-blocks which are
represented by Btij�k�, Byij�k� and Bxij�k�. These sub-blocks are exchanged among
the processors during the redistribution processes.

Figure 4. Redistribution of image volume.

an efficient parallel algorithm 241

1. function ∂I ← Gaussian3�I; p; q; r;M;N�
2. for all Pij; i← 0; : : : ;M − 1; j← 0; : : : ;N − 1 �
3. Bzij ← Split�I;M;N�;
4. Conv1D�Bzij;Gr

z�;
5. for k← 0; : : : ;M − 1 �
6. Byij�k� ← Bzkj�i�;
7. �
8. Conv1D�Byij;Gq

y �;
9. for k← 0; · · · ;N − 1 �

10. Bxij�k� ← Bykj�i�;
11. �
12. Conv1D�Bxij;Gp

x �;
13. �
14. ∂I ← Merge�Bxij�;

4. Analysis

In this section, we analyze the performance of the proposed algorithm. The analysis
is performed separately on 2D image and 3D spatiotemporal volume. In general,
the overhead due to the redistribution scheme is the internal transposition of the
partition inside each processor as well as the redistribution of image data among the
processors. The computation time of our redistribution system can then be modeled
as

T = T1

Np
+ αOcomm + βOint; [19]

where T1 is the computation time by single processors, Oint is the number of steps
required for internal redistribution and Ocomm is the number of steps for communi-
cation (redistribution) among processors. The parameters α and β are the compu-
tation times required for one step of the intra- and inter-processor redistribution,
respectively. The last two terms of Equation 19 are overheads of the redistribution
algorithm. However, the possibility of cache misses is not captured by this model.
Moreover, our analysis will not consider the communication delay caused by net-
work congestion which depends much on the network configuration.

4.1. 2D image

Suppose the image size is nx × ny , the filter size is m and the number of processors
is M . For the redistribution based algorithm, the communication overhead for each
processor is

Ocomm =
nxny

M

(
1− 1

M

)
;

242 yip, ahmad and pong

and the intra-processor overhead is

Oint =
nxny

M2 :

Therefore, the total overhead for each processor is

δredist =
nxny

M
;

if we assume both α and β to be one. Notice that the overhead is independent
of the filter size, since the amount of communication depends only on the size of
the image. This shows that substantial speedup can be achieved for large number
of processors.

For the simple algorithm of checkerboard partitioning (fixed partition without re-
distribution), suppose the image is partitioned into Mx ×My blocks where MxMy =
M . Then the overhead per processor of duplicating boundary points is given by

δchecker =
m

2

(
2nx
Mx

+ 2ny
My

)
[20]

= m
(
nx
Mx

+ ny

My

)
: [21]

Unlike the redistribution based algorithm, this overhead depends on the filter size
and is not upper bounded.

The ratio of the two overhead terms is

R = δchecker
δredist

= m�nxMy + nyMx�
nxny

: [22]

Suppose Mx =My =
√
M and nx = ny = n, then the ratio becomes

R = m�2n
√
M�

n2 = 2m
√
M

n
: [23]

We can see that the redistribution based algorithm performs better if R > 1, i.e.
2m
√
M > n. In other words, the performance of the redistribution based algorithm

is optimized when the filter size and number of processors is large.
The computation time of the parallel program is

T2D
(
nx; ny;m;M

) = 2mnxny
M

+ nxny
M

(
1− 1

M

)
; [24]

which is the sum of computation and overhead. The speedup of our algorithm is
given by

Speedup = 2mnxny
T2D�nx; ny;m;M�

[25]

= M

1+ 1
2m

(
1− 1

M

) [26]

an efficient parallel algorithm 243

The efficiency of the algorithm is

Efficiency = 1
1+ 1

2m

(
1− 1

M

) [27]

≥ 1
1+ 1

2m

[28]

which is lower bounded. If the filter size increases, this lower bound will be closer
to one, the theoretical limit.

4.2. 3D volume

Suppose the size of the image sequence is nx × ny × nz, the filter size is m and
the number of processors is M ×N = Np. The communication overhead for each
processor is the sum of the two redistribution processes

Ocomm =
nxnynz

MN

(
1− 1

M

)
+ nxnynz

MN

(
1− 1

N

)
[29]

= nxnynz
Np

(
2 − 1

M
− 1
N

)
: [30]

and the intra-processor overhead is

Oint =
nxnynz

Np

(
1
M
+ 1
N

)
: [31]

The total overhead is given by

δ = Ocommα+Ointβ [32]

= nxnynz
Np

[(
2 − 1

M
− 1
N

)
α+

(
1
M
+ 1
N

)
β

]
: [33]

If either M or N equals one (let’s call it stripy partition), the total overhead
becomes

δ1 =
nxnynz

Np

[(
1− 1

Np

)
α+

(
1+ 1

Np

)
β

]
:

If M = N = √
Np (let’s call it checkerboard partition), the total overhead be-

comes

δ2 = 2
nxnynz

Np

[(
1− 1√

Np

)
α+

(
1√
Np

)
β

]
:

244 yip, ahmad and pong

Suppose α equals β, then both δ1 and δ2 will also be equal to

2
nxnynz

Np
α:

Suppose α = 1 and β = 0, the ratio of these two overhead terms is

R = δ2

δ1
[34]

=
2
(
1− 1√

Np

)
(

1− 1
Np

) [35]

= 2
1+ 1√

Np

[36]

Obviously, 1 ≤ R < 2 for Np ≥ 1. Hence dividing the image volume using stripy
partitioning is always preferable to checkerboard partitioning. This can be explained
by the fact that only one redistribution requires transfer of data among processors
and data is only exchanged within a processor for the other redistribution. Of course
this is true only if β = 0, that is when the cost of intra-processor transposition is
negligible.

The difference of δ1 and δ2 is

δ1 − δ2 =
nxnynz

Np

[(
2

1√
Np
− 1− 1

Np

)
α+

(
1+ 1

Np
− 2

1√
Np

)
β

]
[37]

= nxnynz
Np

(
1+ 1

Np
− 2

1√
Np

)
�β− α�: [38]

Note that for all Np ≥ 1, we have(
1+ 1

Np
− 2

1√
Np

)
≥ 0:

Therefore, if β > α, then δ1 > δ2, i.e. the overhead of the strip partitioning is
larger than that of the checkerboard partitioning. On the contrary, if β < α, then
δ1 < δ2. Hence checkerboard partitioning is preferable to the strip partitioning if
β > α and vice versa if β < α.

The computation time of the parallel program with the communication over-
head is

T3D
(
nx; ny; nz;m;M;N

)
= 3mnxnynz

MN
+ nxnynz

MN

(
2 − 1

M
− 1
N

)
α+ nxnynz

MN

(
1
M
+ 1
N

)
β: [39]

an efficient parallel algorithm 245

The speedup of our algorithm is given by

Speedup = 3mnxnynz
T3D�nx; ny; nz;m;M;N�

[40]

= MN

1+ 1
3m

(
2 − 1

M
− 1

N

)
α+ 1

3m

(1
M
+ 1

N

)
β
: [41]

If α ≈ β, the efficiency of the algorithm is approximatively

1
1+ 2

3mα
:

As in the 2D case, the efficiency for the 3D convolution is a function of the filter
size.

5. Parallel surface reconstruction

In this section, we describe a parallel algorithm to detect the surface of the 3D
image volume using LoG filter.

Our boundary detection algorithm is based on a surface building technique,
named the Weaving Wall [2], which is designed for the analysis of image sequences.
This process operates over images as they arrive from a sensor, knitting together,
along a parallel frontier, connected descriptions of images as they evolve over time.
The original Weaving Wall algorithm essentially consists of the following two phases:

Preprocessing. Firstly, we blur the image volume using the 3-D Gaussian filter.
The purpose of this step is to filter out noise and unnecessary detail. Next, we
compute the Laplacian of the blurred 3-D image. The Laplacian and the Gaussian
operations can be combined by convolving the image volume with a Laplacian of
Gaussian filter.

In three dimensional space, the LoG is defined as

LoG�x; y; z� = ∇2G�x; y; z� [42]

= ∂2

∂x2G�x; y; z� +
∂2

∂y2G�x; y; z� +
∂2

∂z2G�x; y; z�: [43]

Hence the transformed image is given by

LoG⊗ I = ∂2
xG⊗ I + ∂2

yG⊗ I + ∂2
zG⊗ I: [44]

The processors are divided into three groups and each of them compute respectively
the following partial derivatives using the parallel algorithm described in previous

246 yip, ahmad and pong

section:

∂2
xG⊗ I = G"x ⊗Gy ⊗Gz ⊗ I: [45]

∂2
yG⊗ I = Gx ⊗G"y ⊗Gz ⊗ I: [46]

∂2
zG⊗ I = Gx ⊗Gy ⊗G"z ⊗ I: [47]

Notice that two levels of parallelism are achieved. Task partitioning is applied on
the three group to processors and data partitioning is applied within each group of
processors.

After finishing convolutions in all three directions, each group of processor mesh
will hold the partial results. The result of the convolution can be obtained by sum-
ming up the corresponding pixel values of the convoluted image volume obtained
by the three groups of processors.

In our algorithm, the Summation operation is also carried out in parallel as fol-
lows:

• Group 2 and Group 3 send the first slice of convoluted results to Group 1.
• Group 1 and Group 3 send the second slice of convoluted results to Group 2.
• Group 1 and Group 2 send the third slice of convoluted results to Group 3.

Therefore, group 1, group 2 and group 3 processors sum up the corresponding
pixel values for the first, second and third slice of the convoluted image volume,
respectively. The output from this 3D convolution program will be used for surface
reconstruction using zero-crossing detection algorithm which is described in the
following section.

Reconstruction. The surface is defined at the zeros of Laplacian. Based on the
results of the LoG convolution, each processor then performs a registration process
to detect the surface patches at the locations of zero crossing. At the same time,
these patches are linked together to form a surface. The registration and linking
processes are so localized that the processor look at a neighborhood of eight voxels.
In the process, a small 2 × 2 × 2 window is employed to scan through the image
signed volume. The direction of the scanning is from the first image to the last. For
each image, the scanning is bottom to top, and within that, left to right.

At each step, the local surface structure inside the window will be determined.
Notice that there are six neighbors for each voxel. If the sign of the Laplacian value
is different for two neighbors, there is a facet between them. Hence, there are at
most six facets for each voxel and twelve facets for each window.

Instead of determining all the facets of the window at the same time, we deter-
mine at most three new facets at each step. The position of these three facets are
between the following voxel pairs:

Ii; j; k and Ii−1; j; k;
Ii; j; k and Ii; j−1; k;
Ii; j; k and Ii; j; k−1:

an efficient parallel algorithm 247

These new facets will be combined with the facets determined at the previous
step and linked together to form the local surface. There may be more than one
local surface inside a window.

In order to handle the boundary cases, each processor needs to communicate
with its neighboring processor. There are six surfaces for each local volume of a
processor. One obvious and simple scheme is that each processor sends the voxel
values of its six volume surface to the corresponding neighbors, and receives from
the same neighbors their boundary voxel values. The number of communication
messages can, however, be further reduced by half if each processor sends only the
voxels on three of the surfaces and receives the other three from its neighbors.

6. Experimental results

In this section, we present the experimental results of the proposed parallel Gaus-
sian convolution algorithm and parallel surface reconstruction algorithm imple-
mented on our 140-node Intel Paragon.

Figure 5. MRI slices of skull.

248 yip, ahmad and pong

Figure 6. (a) The top-front view of the skull. (b) Spatiotemporal-surface detected from image evolution.

The Intel Paragon XP/S based on Intel’s i860 XP processor is a distributed-
memory MIMD machine. Its processing nodes are arranged in a two-dimensional
rectangular grid. The system consists of three types of nodes: compute nodes, which
are used for the execution of parallel programs; service nodes, which offer capabil-
ities of a UNIX system, including compilers and program development tools; and
I/O nodes, which are interface to mass storage and LANs. Paragon Mesh Routing
Chips (MRCs), connected by high-speed channels, are the basis of the communica-
tion network, where nodes may be attached. There are two independent channels—
one for each direction—between two neighboring nodes. The channels are 16 bits
wide and have a theoretical bandwidth of 175 Mbps. The MRCs can route mes-
sages autonomously and are independent of the attached nodes. Communication
is based on wormhole routing with a deterministic routing algorithm. All the three
types of nodes are implemented by the same General Purpose (GP) node hardware.
A 32-bit address bus and a 64-bit, 50 MHz (i.e. 400 Mbps) data bus connects all
the components of the GP node’s compute and network interface parts. The i860
XP is a Reduced Instruction Set Computer (RISC) processor with a clock speed
of 50 MHz and a theoretical peak performance of 75 Mflops (64-bit arithmetic: 50
Mflops add, 50 Mflops multiply) and 100 Mflops (32-bit arithmetic: 50 Mflops add,
25 Mflops multiply). The interface of the GP node to the interconnection network
performs such that message-passing is separated from computing.

an efficient parallel algorithm 249

Figure 7. Impact of no. of processors on the execution time.

We first show the results of the surface reconstruction process using a rendering
package, and then we present the performance of our algorithms.

6.1. Visualization

Real MRI slices of a human skull. This data set consists of twenty-seven real MRI
slices of a human skull, as shown in Figure 5. Each slice contains a lot of details
(for instance the tissue of brain) inside the skull. The reconstructed skull is shown
in Figure 6(a). It should be noticed that some of the details inside the skull are lost
because the contrast of the tissue is too low.

Synthetic image sequences. This realistic data set is generated using a ray tracer
called RayShade which is available in our system. Figure 6(b) is the resultant de-
tected surface from a sequence of one hundred images taken by a camera under-
going forward motion. The surface indicates looming effect from the objects in the
images.

250 yip, ahmad and pong

Figure 8. (a) The plot of execution time vs filter size. (b) Execution time for various image size.

6.2. Experiments

There are three variables which affect the performance of our parallel convolution
algorithm. These variables are the number of processors used, the size of the filter,
and the size of the image data. In this section, we investigate the impact of these
parameters on the computation time. In addition, we verify the analysis given in the
last section by experimental results.

6.2.1. Performance with 2D image

Number of processors. In this experiment, we study how the number of processors
can affect the execution time. We set the size of the image to be 2400 × 2400
(integers) which is approximately equal to 16M bytes. The σ was set to 1 such that
the filter size was 9. With increased number of processors used, the convolution
problem was decomposed into more smaller subtasks which require less processing
time for each processor.

The execution time (in msec) for convolution is shown in Figure 7(a). The time
curve is nearly perfect hyperbolic which agrees with Equation 24 of execution time.
The time points of number of processors equals 1 to 9 is not included in the figure

an efficient parallel algorithm 251

Figure 9. Impact of no. of processors on the execution time.

because their values are huge. Figure 7(b) shows the speedup of the program from
which we see that super-linear speedup is achieved. This super-linear speedup is
expected because heavy demand for memory accesses is required for small number
of processors. As the size of the data caches is limited, there are excessive number
of page faults when the image data and result data exceed the cache size. Therefore
the execution times increase tremendously for the experiments using small number
of processors.

We have implemented a program for measuring the lowest execution time
achieved by a single processor. The lowest execution time achieved is 800000ms
(around 13min) for the same setup of 2400× 2400 image and filter size 9 while the
execution time for the parallel problem with number of processors 10 and 20 is
8800ms and 4600ms, respectively.

Filter size. For the second experiment, we alter sigma of the Gaussian from 1
to 6. Recall that the filter size is equal to 9σ . Hence the filter size varies from 9
to 54. From Equation 24, the execution time is proportional to the filter size if both
image size and the number of processors is fixed. In the experiment, the number of

252 yip, ahmad and pong

Table 1. Execution time for various mesh configurations.

No. of processors Mesh configuration Execution time (ms)

12 12 × 1 14472
6× 2 57730
4× 3 53158

16 16× 1 7979
8× 2 8125
4× 4 8313

30 30× 1 4262
15× 2 4544
10× 3 4239

6× 5 4228

60 60× 1 2182
30× 2 2188
15× 4 2151
12 × 5 2088
10× 6 2082

120 120× 1 1273
60× 2 1155
30× 4 1111
15× 8 1080

processors is fixed at 60. Five sets of results are obtained for different image size
from 4M bytes to 36M bytes. The experimental results are presented in Figure 8(a).
From this figure, we can see that the slope of the lines increases as the image
becomes larger. In fact, a careful inspection reveals that the slope is proportional
to the image size, nxny , confirming Equation 24.

Image size. The third experiment studies the impact of the image size on the
performance. In this experiment, we fixed the number of processors to 60 and sigma
to 1 (i.e. filter size equals 9). Besides, the image dimensions, nx and ny , are assumed
to be equal. From Figure 8(b), we see that the execution time is a quadratic function
of the image dimension which confirms Equation 24.

6.2.2. 3D volume

Number of processors. The size of the image sequence for this experiment is 240×
240× 120 (integers) which is more than 26 Mbytes and the filter size is fixed at 9 (i.e.
σ = 1). A single processor takes 26 min to compute the 3D Gaussian convolution
of this sequence. The plot of execution time (in msec) against number of processors
is shown in Figure 9(a). As suggested by Equation 39 of execution time, the time
curve is perfect hyperbolic. The timings with 1 to 5 processors are not included
in the figure because their values are huge. Figure 9(b) shows the speedup of the
program from which we see that super-linear speedup as again achieved because

an efficient parallel algorithm 253

Figure 10. (a) The plot of 3D convolution time vs filter size. (b) The plot of execution time vs number
of frames.

less cache missing occurred in experiments with large number of processors. We
can also observe that the speedup was still linearly increasing with more than 100
processors.

Configuration of processors. We have shown by analytical result that the configu-
ration of processors can also affect the performance of the program. To examine
this effect, we used various mesh configuration. Table 1 presents the execution time
of 3D convolution on various configurations. From this table, we can notice that the
strip partitioning is preferable to the checkerboard partitioning for small number
of processors such as 12 and 16. On the other hand, the checkerboard partitioning
performs better for larger number of processors such as 30, 60 and 120.

Filter size. The influence of the filter size is significant for the computation time
of 3D convolution. In the next experiment, the filter size was altered from 9 to 54
by adjusting σ from 1 to 6 and the number of processors was fixed at 120. The size
of each image slice was 240 × 240. The result is shown in Figure 10(a) in which
each line corresponds to a different number of slices in the sequence. As can be

254 yip, ahmad and pong

observed, the computation time increased linearly with the filter size, and the rate
of increase (slope) was proportional to the number of slices in the sequence.

Image size. Obviously, for a fixed number of processors and filter size, the compu-
tation time would increase with an increase in the problem size. Equation 39 tells us
that the computation time depends linearly on the number of slices of the sequence.
Figure 10(b) shows the experimental results which verify the linear relationship. In
this experiment, we used 120 processors and a filter of length 9.

7. Conclusions

In this paper, an efficient algorithm for the convolution of the three-dimensional
image data volume has been proposed. The proposed algorithm uses the direction
of the convolution to guide the partitioning of image data volume to minimize of
communication overhead. The algorithm uses both the task and data parallelism
strategies and yields substantial speedup.

An analytical study and extensive experimentation have revealed that the pro-
posed parallel convolution algorithm scales very well with increasing both the prob-
lem size and the number of processors. In particular, it performs very well at con-
volution of large image data volume. The results achieved indicate the efficacy of
the proposed convolution algorithm.

References

1. B. Arambepola. Architecture for high-order multidimensional convolution using polynomial trans-
forms. Electronics Letters, 26(12):801–802, June 1990.

2. H. H. Baker. Building surfaces of evolution: The Weaving Wall. International Journal of Computer
Vision, 3:51–71, 1989.

3. V. Berzins. Accuracy of Laplacian edge detectors. Computer Vision, Graphics, and Image Processing,
27:195–210, 1984.

4. M. Bomans, K. H. Hohne, U. Tiede, and M. Riemer. 3-D segmentation of MR-images of the head
for 3-D display. IEEE Transaction on Medical Imaging, 9(2):177–183, June 1990.

5. J. Canny. A computational approach to edge detection. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 8(6):679–698, 1986.

6. J. H. Chang, O. Ibarra, T. C. Pong, and S. Sohn. Convolution on a pyramid computer. In Proceedings
of the International Conference on Parallel Processing, pp. 780–782, 1987.

7. A. N. Choudhary. Performance of vision algorithms on multiple clusters in netra. Proceedings of the
Fourth Annual Parallel Processing Symposium, April 1990.

8. H. E. Cline, W. E. Lorensen, R. Kikinis, and F. Jolesz. Three-dimensional segmentation of MR
images of the head using probability and connectivity. Journal of Computer Assisted Tomography,
14(6):1037–1045, 1990.

9. S. G. Dykes, X. Zhang, Y. Zhou, and H. Yang. Communication and computation patterns of large
scale image convolutions on parallel architectures. In Proceedings of the Eighth International Parallel
Processing Symposium, pp. 926–931, 1994.

10. T. J. Kenney, et al. A serial/parallel color matrix, 2d convolution and 9-tap filter asic with a systems
perspective. In Proceedings of the Fifth Annual IEEE International ASIC Conference and Exhibit,
pp. 181–184, September 1992.

an efficient parallel algorithm 255

11. H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from planar contours.
Communications of the ACM, 20(10):693–702, October 1977.

12. H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Molnar, G. Turk, B. Tebbs,
and L. Israel. Pixel-planes 5: A heterogeneous multiprocessor graphics system using processor-
enhanced memories. Computer Graphics, 23(3):79–88, July 1989.

13. C. D. Hansen and P. Hinker. Massively parallel isosurface extraction. In Proceedings: Visualization
’92, pp. 77–83, October 1992.

14. D. D. Haule and A. S. Malowany. High-speed 2-d hardware convolution architecture based on vlsi
systolic arrays. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, June 1989.

15. K. H. Hohne and W. A. Hanson. Interactive 3D segmentation of MRI and CT volumes using
morphological operations. Journal of Computer Assisted Tomography, 16(2):285–294, 1992.

16. F. Jutand, N. Demassieux, and A. Artieri. A new vlsi architecture for large kernel real time convo-
lution. In International Conference on Acoustics, Speech and Signal Processing, April 1990.

17. H. K. Kwan and T. S. Okullo-Oballa. 2-d systolic arrays for realization of 2-d convolution. IEEE
Transactions on Circuits and Systems, 37(2), 1990.

18. T. Lindeberg. Detecting salient blob-like image structures and their scales with a scale-space primal
sketch: a method for focus-of-attention. International Journal of Computer Vision, 11(3):283–318,
December 1993.

19. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction algo-
rithm. Computer Graphics, 21(3):163–169, June 1987.

20. D. C. Marr and E. C. Hildreth. Theory of edge detection. Proceedings of the Royal Society of London
Series B, 207:187–217, 1980.

21. O. Monga, S. Benayoun, and O. D. Faugeras. From partial derivatives of 3D density images to
ridge lines. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 354–359, 1992.

22. V. S. Nalwa. A Guided Tour of Computer Vision, 1st ed., Addison-Wesley, Reading, Mass., 1993.
23. S. Ranka and S. Sahni. Convolution on simd mesh connected multicomputer. In Proceedings of

International Conference on Parallel Processing, August 1988.
24. D. Raviv. Parallel algorithm for 3D surface reconstruction. Proceedings of the SPIE—The Interna-

tional Society for Optical Engineering, 1192:285–296, 1990.
25. O. Schwarzkopf. Computing convolutions on mesh-like structures. In Proceedings of the Seventh

International Parallel Processing Symposium, pp. 695–699, 1993.
26. A. Silberschatz, J. L. Peterson, and P. Galvin. Operating System Concepts, 3rd ed. Addison-Wesley,

Reading, Mass., 1991.
27. G. E. Sotak and K. L. Boyer. The Laplacian-of-Gaussian kernel: A formal analysis and design

procedure for fast, accurate convolution and full-frame output. Computer Vision, Graphics, and
Image Processing, 48:147–189, 1989.

28. S. Talele, T. Johnson, and P.E. Livadas. Surface reconstruction in parallel. In Proceedings of the
Fourth IEEE Symposium on Parallel and Distributed Processing, pp. 102–106, 1992.

29. F. Ulupinar and G. Medioni. Refining edges detected by a LoG operator. Computer Vision, Graphics,
and Image Processing, 51:275–298, 1990.

30. A. P. Witkin. Scale-space filtering. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence, pp. 1019–1022, Karlsruhe, West Germany, August 1983.

31. T. S. Yoo and D. T. Chen. Interactive 3D medical visualization: A parallel approach to surface
rendering 3D medical data. In Proceedings of the Symposium for Computer Assisted Radiology, pp.
100–105, June 1994.

32. X. Zhang and H. Deng. Distributed image edge detection methods and performance. In Proceedings
of the Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 136–143, 1994.

