
210 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Fast Retrieval of Similar Configurations
Dimitris Papadias, Marios Mantzourogiannis, and Ishfaq Ahmad, Member, IEEE

Abstract—Configuration similarity is a special form of con-
tent-based image retrieval that considers relative object locations.
It can be used as a standalone method, or to complement re-
trieval based on visual or semantic features. The corresponding
queries ask for sets of objects that satisfy some spatio-temporal
constraints, e.g., “find all triplets of objects (1, 2, 3), such that
1 is northeastof 2, which is inside 3.” Exhaustive processing

(i.e., retrieval of the best solutions) of configuration similarity
queries, in general, has exponential complexity and fast search for
sub-optimal solutions is the only way to deal with the vast amounts
of multimedia information in several real-time applications. In
this paper we first discuss the utilization of nonsystematic search
heuristics, based on genetic algorithms, simulated annealing and
hill climbing approaches. An extensive experimentation with
real and synthetic datasets reveals that hill climbing techniques
are the best for the current problem; therefore, as a subsequent
step we study the search space, and develop improved variations
of hill climbing that take advantage of the special structure of
the problem to enhance speed. The proposed heuristic methods
significantly outperform systematic search when there is only
limited time for query processing.

Index Terms—Content-based retrieval, local search algorithms,
spatial similarity.

I. INTRODUCTION

T HE large availability of visual content in emerging
multimedia applications and the worldwide web (WWW)

has triggered significant advances in content-based retrieval
mechanisms. Such mechanisms, sometimes in conjunction
with traditional information retrieval techniques for text, allow
users to access a variety of information sources. A special
form of content-based retrieval isconfigurationsimilarity, also
known asspatial, structural, or arrangementsimilarity. The
corresponding queries describe some prototype configuration
and the goal is to retrieve all images containing arrangements
of objects matching the input exactly or approximately. As an
example consider that the user is looking for all images (video
frames, html pages, VLSI circuits) containing arrangements
similar to those of Fig.1(a). Such a query could be expressed by
one of the existing pictorial languages that permit configuration
similarity retrieval, e.g.,VisualSeek[34], Query by Sketch[8],
PQBE[29], Safe[35], or extended SQL commands, e.g., Select

Manuscript received May 11, 2000; revised December 12, 2001. This work
was supported by Grants HKUST 6070/00E and HKUST 6081/01E from Hong
Kong RGC. Portions of this paper were presented at the ACM SIGIR [25], [28].
The associate editor coordinating the review of this paper and approving it for
publication was Prof. Shih-Fu Chang.

D. Papadias and M. Mantzourogiannis are with the Department of Computer
Science, Hong Kong University of Science and Technology, Clearwater Bay,
Hong Kong (e-mail: dimitris@cs.ust.hk; mantzour@cs.ust.hk).

I. Ahmad was with the Department of Computer Science, Hong Kong Uni-
versity of Science and Technology, Clearwater Bay, Hong Kong. He is now with
the Department of Computer Science and Engineering, University of Texas at
Arlington, Arlington, TX 76019 USA.

Digital Object Identifier 10.1109/TMM.2003.811629

, , , , From ImageDB, Where NE(,), NW(,),
N(,), (NE meansnortheast, NW northwest, and so on).

Formally, a configuration similarity query can be de-
scribed by 1) a set of variables, that
appear in the query; 2) for each variable, a finite domain

of values; and 3) for each pair
of variables (,), a constraint which can be a simple
spatio-temporal relation or a disjunction of relations. The
example query contains four variables , one for
every drawn object. The domain of each variable consists of the
objects in the image(s) to be searched for the particular config-
uration. The input constraints restrict the possible assignments
of variables to subsets of the domains. In addition to binary
spatio-temporal relations, some query languages allow the user
to specify unary constraints in the form of object properties
at the feature (is a red square) or the semantic level (
is a building). In this case, appropriate retrieval algorithms
(e.g., for color matching) must be integrated with the ones for
configuration similarity.

As in most forms of information retrieval, a scoring mech-
anism should be employed for inexact matches. Depending on
the types of constraints allowed in the expression of queries,
several types of similarity measures have been proposed. [22]
uses Allen’s [1] relations in multidimensional space and con-
ceptual neighborhoods [10]. The idea is extended in [28] with
the incorporation of binary string encoding to automate simi-
larity calculations. Conceptual neighborhoods for topological
relations (e.g., inside, overlap) are also applied in [8]. Refer-
ence [15] uses angular directions (e.g., northeast is defined as
an angle of 45) and fuzzy similarity measures. A related ap-
proach, which also includes distances between object centroids,
is followed in [27].

Irrespective of the relations employed and the similarity mea-
sures used, the goal of query processing is to find instantiations
of variables to image objects so that the input constraints are
satisfied to a maximum degree. Theinconsistency degree
of a binary instantiation is defined as
the dissimilarity between the relation (between ob-
jects and in the image to be searched) and the constraint

(between and in the query). Given the inconsistency
degrees of binary constraints, the inconsistency degree
of a completesolution

can be defined as

where (1)

Fig. 1(b) and (c) illustrate two solutions for the example query
where , . The first solution corresponds to
a perfect match, while the second is inexact since some binary

1520-9210/03$17.00 © 2003 IEEE

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 211

(a) (b) (c)

Fig. 1. Query example and solutions.

constraints (e.g., between and) are not totally satisfied. If
is the image cardinality, the total number of possible solutions

that have to be considered in each image is equal to the number
of -permutations of the objects: . Due to the
high cost of query processing, it is not always possible to search
all database images within a reasonable amount of time. In some
cases, systematic search for the best solutions even in a single
large image may take hours to complete [27].

An alternative approach is to compromise quality in order to
achieve speed; in other words, we could assign a certain amount
of processing to each image (possibly proportional to its size or
importance) so that the whole database can be searched within
the available time. In this paper we follow this approach and ex-
ploit nonsystematic search heuristics that can quickly provide
good, but not necessarily optimal, solutions. The contributions
of this work can be summarized as follows: a) we first apply
three search methodologies, genetic algorithms, hill climbing
and simulated annealing, to the problem of configuration simi-
larity retrieval and identify the best one (hill climbing) using a
variety of experimental settings; b) we perform a study of the
solution space and evaluate alternative search strategies for hill
climbing; and c) based on our study, we develop improved algo-
rithms that take advantage of the spatial structure of the problem
to enhance performance.

The rest of the paper is organized as follows. Section II
outlines previous processing approaches and discusses their
advantages and shortcomings. Section III describes the ap-
plication of genetic algorithms, hill climbing and simulated
annealing, to configuration similarity retrieval. Section IV
compares systematic search with nonsystematic search, using
experiments with both synthetic and real datasets. Section V,
studies the problem space and proposes improved variations of
hill climbing. Section VI concludes the paper with a discussion.

II. QUERY PROCESSINGTECHNIQUES

The problem of configuration similarity retrieval is similar
to scene matching, which has been extensively studied in
computer vision and pattern recognition [32], [33]. In the
multimedia databases literature, several forms of processing
configuration similarity, based on different assumptions and
algorithms, have been proposed. The various approaches can
be classified according to the size of database images for which
they can be applied, the form of relations permitted, and the
type of query variables. The form of relations, otherwise called
relation scheme, can bestatic or dynamic. Static methods

assume a predefined set of relations to be used by all users in
all queries. Dynamic methods can be employed with any type
of relations (assuming of course that the query language allows
different sets of relations for different queries). Query variables
can befixedor unrestricted: a fixed variable can be instantiated
to at most one object in each image, while an unrestricted one
can range within the whole domain.

A class of methods, which can be grouped under a general
category calledpairwise matching, assumes that all query vari-
ables are fixed (e.g., find all images in which George is left of
Mary). Thus, an image has at most one configuration matching
the query which can be found in polynomial time as follows:
a) locate the query objects in the image (possibly using an index
on object id), b) for each object pair compute its similarity to
the corresponding query constraint, and c) calculate the total
similarity of the configuration using the pairwise similarities.
[15] follows this approach to answer configuration similarity
queries involving angular directions including rotation in-
variants. [22] deals with projection directions and topology.
Algorithms that combine pairwise matching with contextual
similarity (i.e., based on object features) can be found in
[37]. Assuming that image objects are stored using absolute
coordinates, pairwise matching can be applied with dynamic
relation schemes. Its disadvantage is its limited applicability
due to the fixed nature of query variables.

[30] solves configuration queries for medical images
(X-rays) that contain a constant number of labeled/expected
objects (e.g., stomach, heart) and a small number of unlabeled
ones (e.g., tumors). Every image is mapped onto a point in
multi-dimensional space, where each dimension corresponds
to a relation between a specific pair of objects; i.e., if is
the number of image objects andthe number of relations in
the relation scheme, the number of dimensions is .
Queries, which are also X-ray images containing mostly la-
beled (i.e., fixed) variables, are processed by multidimensional
nearest neighbor search using R-trees. In order to keep the
number of dimensions stable, images with unlabeled objects
are decomposed into combinations of images with fixed size.
An enhanced version that reduces the number of dimensions
is proposed in [31]. Performance could be further improved
by employing more efficient high dimensional indexing
methods, such as M trees [6], the pyramid technique [2] etc.
Nevertheless, the method (like all techniques based on high
dimensional indexing and search) is applicable only for static
relation schemes (otherwise it is not possible to pre-determine
the dimensions) and databases with small images (fewer than

212 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

ten objects) of mainly labeled objects (otherwise, the number
of dimensions and images explodes to unmanageable levels).

A number of methods are based on several variations of two-
dimensional (2-D) strings, which encode the arrangement of ob-
jects on each dimension into sequential structures. strings
capture the object projections, while and strings
decompose objects in entities with disjoint convex hulls, al-
lowing the representation of more detailed spatial information
at the expense of storage [3], [19], [20]. Every database image
is indexed by a 2-D string, and queries are also transformed to
2-D strings while configuration similarity retrieval is performed
by applying appropriate string matching algorithms [4]. If the
query contains only fixed variables, the cost of processing each
image is polynomial, while in the general case it is exponential
since matching has to be performed for multiple instantiations
of the variables to different image objects. Users are not allowed
to define their own relation scheme, but are restricted to the re-
lations captured by the 2-D strings.

[27] deals with configuration similarity without any restric-
tion on the type of variables or relations. Approximate retrieval
is modeled and solved as a constraint satisfaction problem by
applying branch and bound algorithms that stop searching once
a partial solution cannot lead to a desired target. The method
is applicable for images of – objects and can be em-
ployed with variable relation schemes. In [26], the incorpora-
tion of spatial indexing (R-trees) enables retrieval from much
larger images (– objects). Although this approach works
well in most cases, systematic search algorithms do not have a
predictable behavior depending on the problem size. Different
query/image combinations, even with the same number of vari-
ables and image objects, may yield vast variances in cost de-
pending onconstrainedness[12]. For instance, the running time
for the same query in two images of the same size may be orders
of magnitude different. As a consequence, a large part of query
processing may be devoted to a few images, while other images
may not be searched at all within the available time.

III. H EURISTICSEARCH FORCONFIGURATION SIMILARITY

Consider a database with numerous, large images where
users can ask any type of queries (i.e., with nonfixed variables)
using variable relation schemes. The only approach that could
be employed here is systematic search [26], [27], which due to
the worst-case exponential cost is not guaranteed to terminate
within reasonable time. In order to deal with configuration
similarity under limited time, we employ search heuristics
based on genetic algorithms, hill climbing and simulated
annealing, which are explained as follows.

A. Genetic Algorithms

Genetic algorithms [13] are based on the concepts of nat-
ural mutation and the survival of the fittest individuals. Given
a well-defined search space, three different genetic operations,
selection, crossoverandmutation, are applied to transform an
initial population of chromosomes to next generation with the
objective to improve their quality. A chromosome is an encoded
representation of a feasible solution (i.e., in our problem an as-
signment of each query variable to an image object). Before

the search process starts, a set ofchromosomes (called initial
population) is initialized to form the first generation. Then the
three genetic search operations are repeatedly applied in order to
obtain a population (i.e., a new set of solutions) with better char-
acteristics, on which the genetic algorithm performs the same
actions and so on, until a stopping criterion is met.

Next we demonstrate agenetic configuration similarity algo-
rithm (GCSA), by presenting the encoding mechanism and then
the selection, crossover and mutation operators.

Encoding Mechanism:Each chromosome/solution is simply
an array of values, where is the instantiation of variable

in solution . The quality of is measured by itsfitness
(i.e., its similarity). is the average fitness of a population of
chromosomes.

Selection Mechanism:This operation consists of two parts:
evaluation of a chromosome and offspring allocation. Evalua-
tion is performed by measuring the above defined fitness value;
offspring generation is then done by allocating to each chromo-
some, a number of offspring proportional to its fitness. GCSA
implements thestochastic remainder technique[36]: a solution
is assigned offspring according to the integer part of the pro-
portionate fitness value in a deterministic way and the
fractional parts are put in a roulette wheel1 for determining the
remaining offspring. Thus, we restrict randomness to the frac-
tional parts only and assure that a good chromosome will not
vanish.

Crossover mechanismis the driving force in theexploration
part of a genetic algorithm. In the simplest approach, pairs of
chromosomes are selected randomly from the population. For
each pair a crossover point is defined randomly, and the chro-
mosomes beyond it are mutually exchanged, with probability

(crossover rate), producing two new chromosomes. The
two newly generated chromosomes are very likely to possess
the good characteristics of their parents (building-block hy-
pothesis[13]). In our case this corresponds to swapping of the
assignments in two solutions after a selected point. One-point
crossover is inefficient for our application domain, since the
probability of a bit to be swapped increases as we move to the
end of the string. Instead we selected a two-point crossover
mechanism for GCSA: after the pairing of chromosomes, two
crossover points are randomly selected and the portion of the
chromosome in between them is swapped. The entire operation
is performed with probability .

Mutation Mechanism:Mutation aims at restoring lost ge-
netic material and is performed in GCSA by simply changing
a variable instantiation with a probability , called themuta-
tion rate. Although mutation is not the primary search operation
and sometimes is omitted, it may be very useful forexploitation,
i.e., cases where, through selection and crossover, all the chro-
mosomes have converged to a local optimum for some variable.

GCSA starts with an initial population of randomly gen-
erated chromosomes/solutions and terminates after the creation
and evaluation of generations. If only one solution is needed,
then the best chromosome among all generations is returned.
The option of specifying atargetfitness also exists (i.e., retrieve

1Roulette wheel selectionallocates a sector of the wheel equal to2�f=F to
every chromosome and then creates an offspring if a generated number in the
range of 0 to2�, falls inside the assigned sector of the chromosome.

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 213

Fig. 2. Fitness (similarity) as a function ofP andG in GCSA.

the best solutions where the similarity is greater thantarget),
in which case only chromosomes that exceed the target are kept
at each run of GCSA.

Several theoretical and empirical studies [14], [36] have been
carried out on the control parameters,, , and . Most
results suggest that the mutation and the crossover rate should
be in the range of 0.001%–0.05% and 0.60%–0.95%, respec-
tively. We experimented with these values using the queries and
datasets described in Section IV. The best results for most cases
were achieved for and . We measured
the average similarity of the best solutions (for all combinations
of queries and datasets) found by GCSA for several values of

in the range 50–300 and in the range 500–100 (as in-
creases, has to decrease in order to keep the execution time
constant). Fig. 2 shows the fitness of the solution as a function
of and .

The different values of do not affect fitness significantly;
we chose because this value produces fair results for
all cases and is small enough to allow a sufficient number of
generations even for large problem instances. Combined with
the relatively high value of (0.60) GCSA was able to exploit
a large portion of the solution space.

B. Hill Climbing

The problem space for configuration queries can be thought
of as a graph, where each solution corresponds to a node as-
sociated with a similarity value. The goal is to find the nodes
with the globally maximum similarity, i.e., the best solutions.
Hill climbing algorithms operate on such a graph, performing
random walks between the nodes based on a certain movement
(transition) mechanism. This transition mechanism defines a
neighborhood for each node, which consists of all the nodes
that can be reached fromin one move. In our case, the neigh-
bors of are all the solutions that can be derived fromby
changing the assignment of a single variable, i.e., a node has

neighbors, where is the number of query variables
and the image cardinality (each variable can take
values, excluding its current assignment). A move is called up-
hill, if it leads to a better solution, and downhill if the destination
node has lower similarity.

Configuration similarity iterative improvement(CSII) starts
with a randomly chosen initial solution (seed) and tries to find
a better one by visiting random neighbors. If such a solution is

Fig. 3. Outline of CSSA.

found, it replaces the previous one. The process continues until
a local maximum is reached. This iterative optimization is re-
peated a number of times, each time starting from a different
seed. The user defines the stopping criterion by specifying the
running time, or providing the target similarity of the solutions
to be retrieved. As time approximates, the probability that
iterative improvement will find the global maximum approxi-
mates 1 [23]. However, given a finite amount of time, the algo-
rithm terminates at a local maximum.

C. Simulated Annealing

Configuration similarity simulated annealing(CSSA), based
on [5], [18], also performs random walks, but in addition to up-
hill, it also accepts downhill moves with a certain probability.
The intuition behind accepting downhill moves is led by the fact
that some local maxima may be close to each other, separated by
a small number of downhill moves. If only uphill moves were
accepted (as in CSII) the algorithm would stop at the first local
maximum visited, missing a subsequent (and possibly better)
one. Fig. 3 illustrates CSSA for the case where the user requires
solutions exceeding the similarity specified bytarget.

The inner for-loop is calledlevel. Each level is executed with
a fixed value of the parameter. The starting value of is such
that the probability at the first levels approximates
1, where denotes the difference between the similarity of
the current solution and the new random neighbor. After
the execution of each level, is reduced according to some
function, and the next level is performed using the new value of

. This means that the probability of accepting a downhill move
is greater at the earlier levels and decreases in the subsequent
ones. CSSA terminates when the value ofis very close to
zero and thus the probability of accepting downhill moves is
almost zero. Another way for the algorithm to stop is when a
fixed criterion is reached; for example, when a solution with a
given target similarity has been found.

As with GCSA, the quality of the output is strongly related to
the choice parameter values. In order to define the initial value

we adopt the method of [18]: a large value for is chosen
and a number of transitions are performed. If the acceptance
ratio , defined as the number of accepted transitions divided
by the number of proposed transitions, is less than a given value

(in [18],), is doubled. This procedure continues
until the acceptance ratio exceeds. Experimental evaluation
suggests that and a equal to the similarity of the
initial solution, is the best combination for the initial value of

214 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

. For decreasing the value of, we apply the common (e.g.,
[17]) decrement rule: , where .

The length of the inner while-loop is determined by the equi-
librium condition. For a given value of , an equilibrium is
reached if all the neighbors of a solution, have the same sim-
ilarity with . This parameter is, in general, the most com-
plicated to adjust because it is closely related to the specific
problem. We experimented using several queries with various
sizes, over multiple datasets. The following formula provides a
suitable value for the number of iterations:

(2)

where is the number of -permutations of the ob-
jects (i.e., the number of possible solutions). (2) has been widely
used in the constraint satisfaction literature as a measure of the
problem size [12].

IV. EXPERIMENTAL EVALUATION OF SEARCH HEURISTICS

In order to evaluate performance, we constructed five sets,
each containing 25 queries using the relation scheme and simi-
larity measures2 of [7]. The number of variables in each set was
fixed to three, six, nine, 12, and 15. Query tightness varied from
complete queries (where all pairs of variables are constrained) to
very loose ones involving only a few nonrestrictive constraints.
We used the three 2-D datasets in Fig. 4; the first set contains
randomly generated rectangles according to a uniform distri-
bution, while the second set contains a VLSI circuit, and the
third set contains road segments of Greece. Note that the den-
sity (sum of all rectangle areas divided by the workspace) and
distribution of the objects significantly affects the performance
of algorithms since it determines the quality of solutions. For
instance, queries involving constraints such asoverlap, inside,
etc., are more easily satisfied in the second dataset due to its high
density. Heuristic search is especially sensitive to the number of
solutions [12]; if there exist only a few good solutions (e.g., for
some restrictive large queries) it requires a significant amount
of time to find them. The above datasets cover a wide range
of cardinality values, data densities and distributions; thus they
provide a good estimation for the performance of the algorithms
on most problem instances.

As a benchmark for systematic search we usedforward
checking(FC) [16], because it is considered to be one of the
most effective algorithms for general CSP problems, as well as
for configuration similarity [26], [27]. The current implemen-
tation of FC works in abranch and boundmanner, i.e., a partial
solution is abandoned if it cannot lead to similarity equal or
higher than the best already found. In this way unsuccessful
instantiations are rejected early and the search space is pruned
effectively. We also compare performance with random sam-
pling (RND), which chooses solutions randomly and keeps the
best ones—for some optimization problems, random sampling

2The algorithms can be employed with any type of spatial constraints. Due
to the absence of a standard benchmark, we use the relation scheme in [7] since
a) it is general, in the sense that it can express all types of common constraints
(i.e., direction, topological and distance), b) it permits the automatic calculation
of similarity measures, and c) it has been used for systematic search algorithms
[26].

outperforms other search heuristics due to its simplicity [11].
The experiments were run on a SUN UltraSparc2 (200 MHz)
with 256 MB of RAM.

The first set of experiments measures the CPU time (in mil-
liseconds) required to find one solution with similarity3 above
a target of 0.7, 0.75 and 0.8. Each execution was allowed 400 s
to complete; after this period it was terminated. Fig. 4 illustrates
the results for every query size/dataset combination (each row
corresponds to one query size and each column to one dataset).
CSII and CSSA clearly outperform the other algorithms for all
cases, with CSII being the best option. Moreover, these algo-
rithms were the only ones to successfully terminate for all com-
binations; FC and RND exceeded the time threshold in most
large queries, and their results are omitted from most graphs.
RND, in general, outperformed FC. This is because RND, due
to its simple implementation, checks more instantiations per
second than the other algorithms. GCSA, on the average, yields
slightly better performance than RND, but in comparison to
CSII and CSSA requires more time to reach a solution above
the target similarity.

The performance of all algorithms degrades as the query size
increases because large queries have, in general, few good solu-
tions and a large part of the space has to be searched. The algo-
rithms are most effective in the second dataset due to the pres-
ence of a high number of solutions, especially for small queries
(note that RND always finds solutions for target similarity 0.7).
Obviously, if the available processing time increases, FC will
eventually outperform nonsystematic search—but for the cur-
rent, rather long (400 s) processing limit, it is inefficient.

The next set of experiments measures the similarity of the
best 50 solutions retrieved by the algorithms as a function of
the execution time (50, 100, 150, and 200 s). Each diagram in
Fig. 5 corresponds to a different query size and shows the simi-
larity ranges of the 50 solutions averaged over the three datasets
of Fig. 4. In other words, the lowest (highest) value represents
the average of all lowest (highest) similarities for queries of the
given size in any dataset.

As expected, CSII and CSSA again outperform the other
algorithms. The greater range of similarity values for CSSA can
be explained by the fact that it starts from a random solution,
which tends to have low similarity and remains in this region,
until the temperature is reduced significantly. CSII also starts
from a solution with low similarity, but very soon reaches
a region with high similarity because it accepts only better
solutions. Therefore, it has a better performance for the current
problem because it can reach very quickly a local maximum
while SA spends the initial stages exploiting low similarity
regions.

GCSA performs better than RND but the quality of retrieved
solutions with respect to CSII and CSSA drops for large queries
(where the number of good solutions is small). The wide range
of similarities for queries with three variables can be explained
by the fact that if a single instantiation changes (e.g., due to mu-
tation), it significantly affects (up to 33%) the fitness of the solu-
tion. FC is acceptable only for queries involving three variables

3Similarity values range between 0 and 1. Some queries (especially large
ones) do not have perfect matches.

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 215

Fig. 4. Time (in milliseconds) required to retrieve a solution with a given target similarity.

where there is enough time to search a good part of the solu-
tion space. Its performance deteriorates significantly with the
query size. It can be observed that that for large queries all so-
lutions retrieved are in a narrow and low similarity range. This
is because in restricted time periods, FC will find an area of
the search space where some constraints are partially satisfied
(while the rest totally violated) and retrieve all 50 solutions in
this area. Most of these solutions tend to have the same instan-

tiations for the partially satisfied constraints and differ only on
the remaining variables.

In summary, nonsystematic clearly outperforms systematic
search when the processing time is limited with respect to the
problem size. Among the heuristics tested, CSII yields the best
performance. Furthermore, it does not require parameter tuning.
This is a significant advantage because tuning of GCSA and
CSSA is rather complicated. Moreover, the parameter values

216 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Fig. 5. Similarity range of 50 best solutions for predetermined execution time.

depend on the query and dataset characteristics (i.e., a set of
values that yield optimal results for a query/image combination,
may provide very poor results for another combination). Subse-
quently, we further improve the performance of hill climbing by
proposing alternative search strategies.

V. IMPROVED HILL CLIMBING ALGORITHMS

CSII generates neighbors by selecting a random variable and
changing its instantiation. An alternative approach, motivated
by conflict minimization algorithms [21] is to select the “worst”
variable. The inconsistency degree of a variable(currently
instantiated to value) in a solution is defined as the sum of
inconsistency degrees of all binary instantiations involving:

where (3)

Worst variable selectionreinstantiates the variable with the
highest inconsistency degree, so that the similarity of the spe-
cific solution may be increased significantly. If the worst vari-
able cannot be improved, the second worst will be considered
and so on. If one variable can be improved, the next step will
consider again the new worst one; otherwise, if all variables are
exhausted with no improvement, the current solution is consid-
ered to be a local maximum.

Once a variable is chosen for reinstantiation, CSII determines
its new value by applyingfirst-better value selection,i.e., by as-
signing values to the specific variable randomly, until a better
instantiation is found. When the similarity of a solution is very
low, first-better selection performs just a few attempts before it
finds a better solution. As the quality increases, it becomes more
difficult for the solution to be improved by random re-instanti-
ations. If after unsuccessful assignments no better neighbor
is found, the solution is considered a local maximum. Notice,

however, that due to the random nature of search, better neigh-
bors may be missed since some instantiations are tried multiple
times, whereas others not at all. Another option isall-best value
selection(sometimes calledsteepest ascent), which systemati-
cally tries all possible values in the domain of the variable to
be re-instantiated and assigns the one that results in the highest
similarity.

A. Search Space Analysis

In order to comprehend the behavior of hill climbing under
different search strategies, we first study the search space for
configuration similarity. The goal is to identify how easily are
local maxima found and how much they differ from random
solutions. For the first experiment, we randomly selected five
queries with nine variables, and five with 12, and for each query
we generated 500 random solutions in a dataset of 1,000 uni-
formly distributed rectangles with density 0.5. Fig. 6 shows the
averagesimilarity of a solution and theaveragemaximumand
minimumsimilarities of the neighbors that can be reached with
a single move. The similarity values are scaled, i.e., they are di-
vided by the average maximum similarity found in each case.
The x-axis represents the five different queries, with no specific
significance in the placement. According to the diagrams, there
is a considerable difference between the similarity of a solution
and the maximum and minimum similarity of its neighbors. For
queries of size 9, this difference is around 15%, while for queries
involving 12 objects about 10%. Thus, even a single move can
have a significant effect on the quality of the solution especially
in small queries (because each variable has a higher contribu-
tion to the total similarity).

The second experiment studies the number ofsteps, i.e., up-
hill moves that must be performed in order to reach a local max-
imum. We use two approaches for identifying local maxima: i)
in the first one we replace a solution with the best of all its neigh-
bors and ii) in the second one we accept the first better neighbor
found by changing the instantiations of random variables. We

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 217

Fig. 6. Similarity ranges around random solutions.

Fig. 7. Similarity and total number of attempts versus the number of steps.

refer to the local maxima obtained using these approaches as
All-maximum(A-maxfor short) andFirst-maximum(F-max) re-
spectively. When searching forA-max, each step tries all pos-
sible values for each variable, i.e., a total of attempts.
For F-maxthis number differs in each step; in the best case an
uphill move can be found with the first attempt, while in the
worst, even O() attempts may fail to find a better neighbor
(some instantiations may be missed).

Fig. 7 shows how these maxima are reached (attempts, sim-
ilarity) as a function of the number of steps, for a query with
nine variables over the 0.5 density dataset (,).
The horizontal axis corresponds to the number of steps, the left
-axis to the total number of attempts (including unsuccessful

instantiations) and the right-axis to similarity.A-max(simi-
larity 0.824) is reached after 24 steps; 9000 instantiations are
tested in each step, resulting in 216 000 attempts.F-max(sim-
ilarity 0.831) is reached after 77 steps and 273 408 attempts.
Search forA-max is deterministic, meaning that starting with
one seed, we always reach the same local maximum. On the
other hand, the value ofF-maxand the steps required to reach
it change depending on the order that neighbors are visited. In
most cases the two maxima are close to each other.

Although search forF-maxfinds the highest similarity using
a longer path (77 steps as opposed to 24), it reaches high quality
solutions faster. Consider, for instance, a solution with similarity
around 0.8. If search is performed according to theA-maxap-
proach, the solution will be found after nine steps and 81 000

Fig. 8. Attempts per step for the F-max.

attempts (see Fig. 7). On the other hand, if theF-maxapproach is
employed, the solution will be found in about 40 steps. However,
the total number of attempts is lower than 15 000 because uphill
moves are easily performed from solutions of low similarity.
The average number of attempts per step when searching for
F-max is shown Fig. 8. Up to the 37th step, fewer than 1000
instantiations are needed before each uphill move is found.4 At
that point the similarity is close to 0.8. Every attempt involves
a similarity computation; thus the number of attempts (rather
than steps) determines the cost of search. The advantage of the
F-maxsearch approach is clear, since it converges much faster
to high similarity solutions.

B. Performance of Hill Climbing Alternatives

According to the previous results, first-better value is ex-
pected to outperform all-best selection. However, as the quality
of the solution increases, improvement by random re-instantia-
tions becomes more difficult and large parts of the domains are
searched (see Fig. 8). Near local maxima, first-better behaves
likes all-best value selection, but unlike exhaustive search it
may miss some good neighbors. Consequently, in some cases
where there is enough time for processing (small queries and/or
datasets), all-best may eventually yield better solutions than
first-better selection.

In order to test this observation we ran experiments with the
four variations of hill climbing (2 variable selection2 value se-
lection mechanisms) using the query sets of six and 15 variables

4The maximum number of attempts per step for this experiment is 9000, since
there exist nine variables, each taking 1000 values.

218 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Fig. 9. Similarity retrieved as a function of the execution time.

over datasets of 1000 uniformly distributed rectangles with den-
sities of 0.1 and 1.5 Fig. 9 shows the average similarity (of 25
queries in each set) retrieved over the two datasets every 50 s.

Observe that the relative performance of the algorithms is the
same for both datasets, despite the large density difference, im-
plying that their effectiveness is independent of density. First-
better value selection quickly (within the first 50 s) finds good
solutions even for the large queries. Among the two variable
selection mechanisms, random selection (R-F) is faster6 than
worst variable (W-F) since random variables are more easily
improved than the worst one. All-best value selection is ineffec-
tive for large queries because the number of neighbors, as well
as the cost of similarity computations increases with the number
of variables. Thus, W-A and R-A take a long time to converge
to high similarity regions. Notice that for 15 variables W-A con-
verges after 200 s, while R-A does not converge at all within the
300-s limit. R-A is worse than W-A, because some variables,
especially if the solution is good, contribute little, or not at all,
to the total degree of inconsistency. Therefore, spending a long
time to improve these variables does not pay-off.

5Most real-life datasets have densities between 0.1 and 1, with a density
around 0.5 considered common/average. The datasets used in this section are
synthetic (so we can vary the densities) and relatively small (10 objects—so
we can run numerous experiments). Nevertheless, similar results are obtained
with the real datasets of Section IV.

6R-F corresponds to CSII algorithm.

For 6-variable queries, however, W-A (worst variable selec-
tion, all best value) outperforms CSII after 100 s and achieves
the highest similarity. This is due to a combination of reasons:
for small queries, finding the best possible instantiation for a
variable may increase the similarity of the solution significantly,
especially if the variable chosen is the worst one. Furthermore,
due to the small problem size, there is enough time to search
extensively within the neighborhood of a solution, identifying
good local maxima. Motivated by these observations, we pro-
pose an algorithm that can outperform the previous ones in all
cases. The idea is to start with CSII that quickly reaches an area
of high similarity. In subsequent steps (when CSII starts be-
having like exhaustive search), a deterministic value selection
technique locates the good neighbors, using the spatial struc-
ture of the problem to avoid the expensive search for all possible
variable instantiations.

C. Window Value Selection

Consider the example query of Fig. 1(a), where the first three
variables are instantiated to objects, , and , as shown
in Fig. 10(a). Assume that these three instantiations perfectly
match the query constraints. The fourth variable is chosen
for re-instantiation and the goal is to find the best value for
it. Variable is related with the other ones by the following
projection-based constraints: south(,), northeast(,)

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 219

(a) (b) (c)

Fig. 10. Value selection using windows.

Fig. 11. WVS versus exhaustive search: similarity as a function of time.

and northwest(,). Each of the constraints, in combination
with the current value of the corresponding variable, defines a
window in space containing all consistent values for(e.g.,
all objects south of are inside). The best values of (i.e.,
satisfying all constraints) are the ones that lie in the intersection
of all windows. In other words, if a value is found in the dark
gray area of Fig. 10(a), there is no need to search the whole
domain of .

Although, in the example of Fig. 10(a), we assume that the
first three variables are instantiated to objects that result in a per-
fect match, in most cases the partial solution after the removal of
a single variable, is only approximate. As an example consider
the partial solution of Fig. 10(b), where has been shifted to
the left. The instantiation { , , } has
some inconsistency degree on theaxis (the positions of the
objects on the axis are the same). As a result, the intersection
of , and is empty and therefore cannot contain any ob-
jects. Intuitively, the good instantiations for, are still found
somewhere in the area between, , and . In order to con-
tinue improving the solution, we should extend the windows so
that a new value for can be chosen.

Window value selection(WVS) applies this idea. Once the
variable for reinstantiation has been chosen, the appropriate
windows (,) are computed. Then each
window is extended according to the maximum inconsistency
degree of the partial solution (where all variables except for

have been instantiated) on each dimension; the higher the
value of , the larger the extension on the corresponding axis.
In the example of Fig. 10(c), , and are only extended

Fig. 12. 2PS versus WVS and CSII—Similarity as a function of time.

on the x-axis because there is no inconsistency on the y-axis.
Although the objects in the intersection (dark gray area) do not
result in perfect matches (e.g., the constraint betweenand
is still violated), they provide good solutions that can be further
improved in subsequent steps. The window extension method
depends on the relation scheme in use. In the current imple-
mentation, which is based on conceptual neighbors [7], in ad-
dition to the original constraint, its neighbors are taken into
account when generating the window. If angular directions were
used, anortheastconstraint, for instance, could generate an an-
gular window 40–50 in case of a low value of, or a window
30 –60 for higher inconsistency.

220 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

TABLE I
SIMILARITY AS A FUNCTION OF TIME RND AND FC

In order to be able to search fast within such windows, all ob-
jects within an image are sorted according to the-coordinate
of the lower left point (this preprocessing takes place when the
image is inserted in the database). The objects that fall inside the
window (and potentially some false hits) are found by a simple
range query in this sorted list. The other three coordinates of
each retrieved object are checked and, if they also fall within
the specified window, the object is kept as a good value. Initially,
due to the low similarity of random solutions (seeds), the win-
dows and their intersection usually cover the whole workspace.
In this case WVS behaves like all-best value selection (with the
additional overhead of computing the windows). As the incon-
sistency degree of the solution drops, the windows in some pro-
jections decrease restricting the search space.

We compare WVS against best-value selection (i.e., exhaus-
tive domain search) for worst and random variable selection.
Fig. 11 illustrates the results for query-sets (average of 25
queries per set) with six and 15 variables over the dataset with
density 0.5 . WVS always outperforms exhaustive
search; as in the case of all-best value selection (see exper-
iments in Fig. 9), WVS performs best with worst variable
selection (W-WVS) since each re-instantiation may improve
the solution significantly.

D. Two-Phase Search

Despite its good performance, W-WVS does not converge
fast to high similarity regions, due to the large windows in the
initial phases of the algorithm. To circumvent this problem, we
propose atwo-phase search(2PS) algorithm that first uses CSII
to quickly find a good solution, which is then improved by
W-WVS. CSII is executed for a time analogous to the size of the
problem (for this implementation ms), and W-WVS for
the remaining time. For instance, for a query with 15 variables
over a 1000 objects dataset, the running time of CSII is 15 s.
During this time CSII has performed enough steps to improve
the seed significantly. Thus, in most cases the initial windows
of W-WVS restrict the search to a relatively small portion of the
space.

We compared 2PS with W-WVS and CSII using all query sets
over the 0.5 density dataset . As shown in Fig. 12,
2PS outperforms both algorithms in all cases since it combines
their best characteristics. Observe that for small queries (six and
nine variables), W-WVS produces better solutions than CSII
even at the first 50 s. As the query size increases, W-WVS slows
down significantly and for 15 variables, it catches up with CSII
only at 300 s.

We also repeated the same experiment using RND and FC.
Table I shows the best similarity retrieved over time for the
smallest (six variables) and largest (15 variables) query sizes.
In general, both algorithms provide very low similarity when
compared with the local search (see Fig. 12). RND produces
better results than FC within the 300 seconds but quality does
not increase much over time, implying that that only a small per-
centage of solutions have similarity close to a local maximum.
Even though FC expectedly improves gradually with time it
does not find good solutions even for six variables within the
available limit. The situation is worse for 15 variables due to
the significant increase of the search space; FC remains in the
neighborhood of the initial assignments, which in most cases
have low quality.

These results motivate the need for fast retrieval of subop-
timal solutions in large multimedia databases. Among all tech-
niques tested, 2PS consistently yielded the best performance for
all combinations of queries/datasets (including real data). In ad-
dition to its robustness, another advantage of 2PS with respect
to genetic algorithms and simulated annealing is that it does not
require the complicated tuning of parameters that significantly
affect efficiency.

VI. CONCLUSION

This paper applies nonsystematic search algorithms for
processing configuration similarity queries. We first apply
three techniques based on genetic algorithms, iterative im-
provement and simulated annealing, and compare them against
forward checking, a very effective systematic search algorithm,
and random search. Extensive experimentation, with various
query/dataset combinations, shows that heuristic search is an
effective way to process configuration similarity in cases that
a near optimal solution is needed in restricted time. The best
performance is consistently achieved by CSII, which is based
on hill climbing; thus, as a second step we try to enhance its
efficiency by studying alternative variable and value selection
mechanisms. Next we present window value selection, a
technique that quickly identifies the best values of a variable
while avoiding exhaustive search in its domain. Finally, the best
overall algorithm is shown to be two-phase search, a method
that first applies CSII to quickly find a good solution and then
improves it by window value selection.

To our knowledge, currently there do not exist other methods
that can solve arbitrary queries (with no restrictions on the
size of the problem or the type of the variables), given a time

PAPADIAS et al.: FAST RETRIEVAL OF SIMILAR CONFIGURATIONS 221

limit. The proposed methods have a wide range of applica-
tions in most modern spatial/multimedia database systems
(which are increasingly vector-based), as well as the upcoming
image/video compression methods such as MPEG-4. An effi-
cient way of indexing MPEG-4 video objects is proposed in [9].
In addition, some query languages such asQuery-by-Sketch[8]
andVisualSeek[34] already provide facilities for the expression
of configuration similarity queries.

In our implementation we do not use any indexing for the
input datasets. The application of a multi-dimensional data
structure, such as R-trees, may improve the performance of
heuristic search as it does for systematic algorithms [26]. In
this way, the proposed algorithms are applicable in domains
where the number of objects is very large (e.g., in the order
of). Future work can be carried out on the application
of other sub-optimal algorithms (for a bibliography see [24])
on configuration similarity. In order to achieve efficiency,
however, such algorithms need to be fine-tuned and modified
for the particular, structure of the problem.

REFERENCES

[1] J. Allen, “Maintaining knowledge about temporal intervals,”Commun.
ACM, vol. 26, no. 11, pp. 832–843, 1983.

[2] S. Berchtold, C. Boehm, and H. Kriegel, “The pyramid technique: to-
ward breaking the curse of dimensionality,” inProc. ACM SIGMOD,
1998, pp. 142–153.

[3] S.-K. Chang, E. Jungert, and T. Li, “The design of pictorial databases
based upon the theory of symbolic projections,” inProc. 1st Symp. Large
Spatial Databases, 1989, pp. 303–323.

[4] S.-K. Chang, Q. Shi, and C. Yan, “Iconic indexing by 2-D string,”IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-9, no. 3, pp. 413–428,
1987.

[5] V. Cerny, “Thermodynamical approach to the traveling salesman
problem: an efficient simulation algorithm,”J. Opt. Theor. Applicat.,
vol. 45, pp. 41–51, 1985.

[6] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient access method
for similarity search in metric spaces,” inProc. Very Large Databases
Conf., 1997, pp. 426–435.

[7] V. Delis, D. Papadias, and N. Mamoulis, “Assessing multimedia simi-
larity: a framework for structure and motion,” inProc. ACM Multimedia,
1998, pp. 333–338.

[8] M. Egenhofer, “Query processing in spatial-query-by-sketch,”J. Vis.
Lang. Comput., vol. 8, pp. 403–424, 1997.

[9] A. Ferman, B. Gunsel, and A. Tekalp, “Object-based indexing of
MPEG4 compressed video,”Proc. SPIE, Vis. Commun. Image Process.,
pp. 953–963, 1997.

[10] C. Freksa, “Temporal reasoning based on semi intervals,”Artif. Intell.,
vol. 54, pp. 199–227, 1992.

[11] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten, “Fast, randomized
join-order selection—why use transformations?,” inProc. Very Large
Databases Conf., 1994, pp. 85–95.

[12] I. Gent, E. MacIntyre, P. Prosser, and T. Walsh, “The constrainedness of
search,” inProc. AAAI, 1996, pp. 246–252.

[13] D. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[14] J. Grefenstette, “Optimization of control parameters for genetic
algorithms,”IEEE Trans. Syst., Man, Cybern., vol. SMC-16, no. 1, pp.
122–128, 1986.

[15] V. Gudivada and V. Raghavan, “Design and evaluation of algorithms for
image retrieval by spatial similarity,”ACM Trans. Inform. Syst., vol. 13,
no. 1, pp. 115–144, 1995.

[16] R. Haralick and G. Elliot, “Increasing tree search efficiency for con-
straint satisfaction problems,”Artif. Intell., vol. 14, pp. 263–313, 1980.

[17] Y. Ioannidis and Y. Kang, “Randomized algorithms for optimizing large
join queries,” inProc. ACM SIGMOD, 1990, pp. 312–321.

[18] S. Kirkpatrick, C. Gelat, and M. Vecchi, “Optimization by simulated
annealing,”Science, vol. 220, pp. 671–680, 1983.

[19] S. Lee and F. Hsu, “Spatial reasoning and similarity retrieval of images
using 2D C-strings knowledge representation,”Pattern Recognit., vol.
25, no. 3, pp. 305–318, 1992.

[20] S. Lee, M. Yang, and J. Chen, “Signature file as a spatial filter for iconic
image database,”J. Vis. Lang. Comput., vol. 3, pp. 373–397, 1992.

[21] S. Minton, M. Johnston, A. Philips, and P. Laird, “Minimizing conflicts:
a heuristic method for constraint satisfaction and scheduling problems,”
Artif. Intell., vol. 58, pp. 161–205, 1992.

[22] M. Nabil, A. Ngu, and J. Shepherd, “Picture similarity retrieval using 2d
projection interval representation,”IEEE Trans. Knowl. Data Eng., vol.
8, no. 4, pp. 533–539, 1996.

[23] S. Nahar, S. Sahni, and E. Shragowitz, “Simulated annealing and com-
binatorial optimization,” inProc. 23rd Design Automation Conf., 1986,
pp. 293–299.

[24] I. Osman and G. Laporte, “Metaheuristics: a bibliography,”Ann. Oper.
Res., vol. 63, pp. 513–623, 1996.

[25] D. Papadias, “Hill climbing algorithms for content-based retrieval of
similar configurations,” inProc. ACM SIGIR, 2000, pp. 240–247.

[26] D. Papadias, N. Mamoulis, and V. Delis, “Algorithms for querying
by spatial structure,” inProc. Very Large Databases Conf., 1998, pp.
546–557.

[27] D. Papadias, N. Mamoulis, and D. Meretakis, “Image similarity retrieval
by spatial constraints,” inProc. ACM CIKM, 1998, pp. 289–296.

[28] D. Papadias, M. Mantzourogiannis, P. Kalnis, N. Mamoulis, and I.
Ahmad, “Content-based retrieval using heuristic search,” inProc. ACM
SIGIR, 1999, pp. 168–175.

[29] D. Papadias and T. Sellis, “A pictorial query-by-example language,”J.
Vis. Lang. Comput., vol. 6, no. 1, pp. 53–72, 1995.

[30] E. Petrakis and C. Faloutsos, “Similarity searching in medical image
databases,”IEEE Trans. Knowl. Data Eng., vol. 9, no. 3, pp. 435–447,
1997.

[31] E. Petrakis, C. Faloutsos, and K. Lin, “ImageMap: an image indexing
method based on spatial similarity,”IEEE Trans. Knowl. Data Eng., to
be published.

[32] K. Price, “Relaxation matching techniques—a comparison,”IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-7, pp. 617–623, 1981.

[33] L. Shapiro and R. Haralick, “Structural descriptions and inexact
matching,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3,
pp. 504–519, 1981.

[34] J. Smith and S.-F. Chang, “VisualSEEk: a fully automated content-based
image query system,” inProc. ACM Multimedia, 1996, pp. 87–98.

[35] , “Integrated spatial and feature image query,”Multimedia Syst.,
vol. 7, pp. 129–140, 1999.

[36] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and mu-
tation in genetic algorithms,”IEEE Trans. Syst., Man, Cybern., vol. 24,
pp. 656–667, Apr. 1994.

[37] A. Soffer and H. Samet, “Retrieval by content in symbolic image
databases,”Proc. SPIE, Storage and Retrieval for Image and Video
Databases, pp. 144–155, 1996.

Dimitris Papadias is an Associate Professor,
Department of Computer Science, Hong Kong
University of Science and Technology (HKUST).
Before joining HKUST in 1997, he worked at the
German National Research Center for Information
Technology (GMD), Bonn, the National Center for
Geographic Information and Analysis (NCGIA),
Orono, ME, the University of California at San
Diego, the Technical University of Vienna, the
National Technical University of Athens, and
Queen’s University, Kingston, ON, Canada. His

main interests are in spatial and spatio–temporal databases.

Marios Mantzourogiannis received the B.Eng degree from the University of
Patras, Greece, and the M.Phil. degree from the Hong Kong University of Sci-
ence and Technology under the supervision of Dimitris Papadias and Ishfaq
Ahmad. He is currently serving in the Greek army.

222 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Ishfaq Ahmad (M’92) received the B.Sc. degree in
electrical engineering from the University of Engi-
neering and Technology, Lahore, Pakistan, in 1985,
and the M.S. degree in computer engineering and the
Ph.D. degree in computer science from Syracuse Uni-
versity, Syracuse, NY, in 1987 and 1992, respectively.

He is currently a professor of computer science and
engineering in the CSE Department of the Univer-
sity of Texas at Arlington. His recent research focus
has been on developing parallel programming tools,
scheduling and mapping algorithms for scalable ar-

chitectures, heterogeneous computing systems, distributed multimedia systems,
video compression techniques, and web management. His work in the above
areas is published in over 100 technical papers in refereed journals and confer-
ences. He is an associate editor ofCluster ComputingandJournal of Parallel
and Distributed Computing.

Dr. Ahmad received the best paper awards at Supercomputing’90 (New
York), Supercomputing’91 (Albuquerque, NM), and 2001 International
Conference on Parallel Processing (Spain). He is an associate editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY,
IEEE Concurrency, andIEEE Distributed Systems Online.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

