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Abstract

This paper analyzes a certain class of combinatorial board games that in-
cludes Ayo, Tchoukaillon and ModularN–queen. We refine the existing re-
sults by providing simple and intuitive proofs using abstract combinatorics,
and also reveal some interesting game positions.

1 Introduction

Chess and its variants, are pure strategic games without any random moves. It
should, at least in principle, be possible to decide whether there is a winning strat-
egy for the first or the second player, or whether the game always ends with a
draw (assuming a perfect play). Such games are called combinatorial games, and
combinatorial game theory (CGT) is a branch of mathematics devoted to their
analysis [2]. A rich theory on how to evaluate game positions has been developed
in recent years, and it has been successfully applied to analyze certain endgame
positions of Chess [6] and Go [1], for example. Unfortunately, CGT cannot di-
rectly be applied to Chess, Shogi and Xiangqi, due to the fact that draws do not
qualify as a game in CGT [2, 4]. Moreover, CGT also fails to help analyze var-
ious other board games such asAyo, TchoukaillonandModular N–queenwhich
are classified as pure combinatorial games [7, 9, 12]. In this paper we analyze
these three board games with the help of abstract combinatorics and report some
preliminary results.

2 Ayo

There are various kinds of Mancala games that date back to the early years of the
great Egyptian Empire [10]. Mancala games mostly played in Nigeria are a group
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of games, with certain common characteristics. They all involve cup–shaded de-
pressions called pits that are filled with stones or seeds. Players take turns and
maneuver the stones, by various rules, which govern them. Ayo is one such two–
player game played mostly in the western part of Nigeria. With predefined rules,
Ayo players follow their respective strategies and do not depend on chance moves
(dice).

Ayoyayo (Ayo) is played over a wooden board 20 inches long, 8 inches wide,
and 2 inches thick. This board accommodates two rows of six pits each 3 inches
in diameter. The pits are filled with either stones or dried palm nuts [3].

Ayo is played with 48 stones with 4 stones placed in each of the 12 pits. Two
players alternatively move the stones, each controlling 6 pits. Their objective is
to capture their opponent’s stones (as many as possible). A move consists of a
player choosing a non–empty pit on his side of the board and removing all of the
stones contained in that pit. The stones are redistributed (sown) one stone per
pit. The pits are sown in counter–clockwise direction from the pit that has been
just emptied. A pit containing 12 or more stones is called anOdu. If the chosen
pit is anOdu, the same redistribution continues, but the emptied pit is skipped
on each circuit of the board [10]. A capture is made, when the last pit sown is
on the opponent’s side, and contains after the addition of the sowing stone either
two or three stones. Thus, the stones in the pit are captured and removed from
the game. Also are captured the immediately preceding pits which meet the same
conditions. One important feature of this game is that each player has to make a
move such that his opponent has a legal move to play. If this does not happen, then
the opponent is rewarded with all the remaining stones on the board. If during the
game, it is found that there are not enough stones to make a capture, but both
the players can always proceed with a legal move, the game is stopped and the
players are awarded stones that reside on their respective side of the board. The
initial game is rapid and much more interesting, where both the players capture
stones in quick succession. To determine the optimal strategy during the initial
play is hard, and thus has not yet been studied. It involves planning at least 2–3
moves in advance, and remembering the number of stones in every pit [3, 10].

To the best of the authors’ knowledge, the only work reported on Ayo can
be found in [3]. They generalized Ayo such that: 1) Each player gotn pits, 2)
the Odu rule was overridden, and 3) the Ayo board was numbered in clockwise
−n + 2,−n + 1, · · · ,−1,0,1, · · · ,n,n + 1. Their analysis was only confined to the
Ayo endgames. They defined a determinable position as an arrangement of stones
where it is possible for a player to move such that:

1. A player captures at every turn.

2. No move is allowed fromOdu.



3. After a player has moved, his opponent has only one stone on his side of the
board.

4. Every stone is captured except the one which is award to his opponent.

Based on these assumptions, Broline and Loeb, also showed a small endgame
with nine stones. Thus they provided us with the following lemma.

Lemma 1. If a player has to move in a determined Ayo position, his stone has to
be in pit1, else in pit0 if his opponent has to move.

The proof presented in [3] is very complicated and tedious. Here we present a
simple and intuitive proof (the pit positions are illustrated in Figure 1).

Proof: From the predefined set of four legal moves, if a player’s opponent has to
make the move, he must capture (step 1) and leave only one stone (step 3). With
simple combinatorics it can be shown that the stone has to be in pit0 (step 4).
Thus before the player’s move, the stone has to be in pit1.

  7     6      5     4     3     2

 -4    -3    -2    -1     0      1

Figure 1:Ayo board labelled with pit numbers.

3 Tchoukaillon

Tchoukaillon is a Russian game, played with pits dug into sand and the pits filled
with stones. The game is the modern variation ofTchoukawhich was mostly
played in central Europe. In [5] the authors developed Tchoukaillon as the mod-
ern variant of Tchouka. This game also falls in the category of Mancala games [9].
The modern version of Tchoukaillon involves playing over a strip of wood (also
possible is the circular arrangement of the pits). These pits contain a certain num-
ber of stones, with one empty pit calledRouma, Cala or Roumba.

There is no limit as to how many stones can to be used, and neither is a limit on
the number of pits [12]. The objective of the game is to put the stones inRoumba.
The maneuvering of the stones is calledsow. Thus, like a solitaire game stones
are sown into the empty pit. The sowing takes place as a constant one stone per



pit at a time in the direction ofRoumba, but it can also be in the opposite direction
of Roumba. Therefore, there can be only three possibilities during the game:

1. If the last stone drops intoRoumba, the player has a choice to start sowing
another pit of his choice.

2. If the last stone drops in an occupied non-Roumbapit, this pit is to be sown
immediately.

3. If the last pit drops in an empty non-Roumbapit, the game is over and the
player who does this losses.

The objective in a two–player Tchoukaillon game is to play the last stone in an
empty pit so that the next player takes the turn. While doing so he has to sow as
many stones inRoumbaas possible. The winner of the game is the player with the
largest number of stones inRoumba. The Tchoukaillon board is shown in Figure
2.

Pit Roumba

Figure 2:Tchoukaillon board.

To the best of the authors’ knowledge, the work reported in [9] and [3] are the
only ones that address Tchoukaillon as a combinatorial game. In [3] the authors
investigated some winning positions, but disregarded a number of other possibil-
ities of winning and confined themselves to just the objective of sowing stones
in Roumbaonly. Their strategy is based on the results based on the work of [5].
They stated the winning move as:

If a win is possible from a given Tchoukaillon position, the unique winning move
must be to harvest the smallest harvestable pit.

Although the authors in [3] identified a winning strategy, yet they did not pro-
vide any proof of the strategy. Here we state a simple proof.

Lemma 2. The unique winning move in Tchoukaillon is to harvest the smallest
harvestable pit.
Proof: Imagine if there are only two pits on the board, with one pit having less



number of stones than the other. If a stone is taken from the pit having more
stones, it will increase the number of stones in the smaller pit. Thus the pit at
some moment will overflow if a play is continued in this fashion, and an indefinite
play will continue.

From Lemma 1, one can always argue that there should be a way to backtrack
all possible positions till the initial setup. Based on this argument one can always
make the following claim.

Conjecture 1. For all s = 0 (initial setup of the game), there is exactly one
winning position involving a total ofs stones.

4 Modular N–queen

Consider ann× n ordinary chessboard. It is always possible to findn queens po-
sitioned in such a way, that no two attack each other. This is although only true,
whenn = 4. There are a number of ways to pose the modularn–queen prob-
lem, e.g., How many such placements can be found, when there are no such two
queens who share a row, column or a diagonal? The original problem was only
for 8 queens on a regular chessboard. For the original 8 queens’ problem, 92 solu-
tions to this date have been identified. Of these 92, there are 12 distinct patterns.
Thus all of the 92 solutions can be transformed into the 12 unique patterns, using
reflection and rotation. These 12 patterns are show in Table 1. For instance, if one
is to constructing solution number 1, then the queen for chessboard row 1 should
be placed in column 1, the queen for row 2 should be placed in column 5, and so
on.

A modular chess board is a one where the diagonals run on the other side of
the board. Thus a queen can still be under attack, even if it is not directly under
attack from another queen on the diagonal. This fact is illustrated in Figure 3. The
basic question asked for a modular chessboard is: What is the maximum number
of queens that can be accommodated on a modular chessboard, such that no two
queens attack each other? In other words if ann × n chessboard is transformed
into a torus by identifying the opposite side, we want to placen queens in such
a way that none attack each other. This number is denoted asM(n). The basic
modular chessboardn–queen problem is accredited to Pölya [11].

There has been a lot of work done on the modularn–queen problem. The
first major result was reported in [11]. There the author proved that if and only if
gcd(n,6) = 1 then there aren queens on the modular board. The same result was
proved by many others, e.g. see [7]. Later Klöve improved the result and gave
the following theorem [8].

Theorem 1. The modular chessboard has solutions of the following form:



Solution Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8
1 1 5 8 3 3 7 2 4
2 1 6 8 7 7 4 2 5
3 2 4 6 3 3 1 7 5
4 2 5 7 3 3 8 6 4
5 2 5 7 1 1 8 6 3
6 2 6 1 4 4 8 3 5
7 2 6 8 1 1 4 7 5
8 2 7 3 8 8 5 1 4
9 2 7 5 8 1 4 6 3
10 3 5 2 8 1 7 4 6
11 3 5 8 4 1 7 2 6
12 3 6 2 5 8 1 7 4

Table 1:12 unique patterns for the 8–queen problem.

Figure 3:Modular chessboard.

1. M(n) = n if gcd(n,6) = 1

2. M(n) = n− 2 if gcd(n,6) = 3

3. n− 3 = M(n) = n− 1 if gcd(n,6) = 2

4. n− 5 = M(n) = n− 1 if gcd(n,6) = 6

Proof: [8]
Later, Heden further improved Klöve’s result by providing a simpler proof of

the original work reported in [11]. The following theorem is deduced from the
work reported in [7].

Theorem 2. The modular chessboard has solutions of the following form:



1. M(n) = n if gcd(n,6) = 1

2. M(n) = n− 1 if gcd(n,12) = 2

3. M(n) = n− 2 if gcd(n,6) = 3 or 4

4. n− 4 = M(n) = n− 2 if gcd(n,12) = 6

5. n− 5 = M(n) = n− 2 if gcd(n,12) = 12

Proof: [7]
Heden used the concept of chains of queens and colored queens to prove his

results. A chain is closed, ifQ1 = Qk. Similarly, chaining can be defined for rows
and columns. Heden defined four colors for queens asA, B, C andD. A queen
colored in colorA is calledA–queen. A queen colored in eitherA or D is called
AD–queen, and so on. This helped in defining the colorings for the diagonal and
bi–diagonal, which are the bases of his proof. This approach is so effective, that he
was able to give a partial solution without the aid of computer towards the modular
12–double queen problem, with 22 queens. A modular double queen problem is
an extension of the normal modular queen problem, where there can be at most
two queens on a single row, column, or a diagonal.

Here, we generalize the chains of queens concepts and give the following nec-
essary and sufficient conditions.

Conjecture 2. A chain of queens on a diagonal is a set of queens (Q1, Q2, Q3,
· · · , Qk) such that the following two conditions hold:

1. No three queens are on the same diagonal or bi–diagonal.

2. Two queens marked consecutively are always in the same diagonal or bi–
diagonal.

5 Concluding Remarks and Some Open Problems

In this paper we provided the readers with some preliminary results on a class
of combinatorial board games that includes Ayo, Tchoukaillon and ModularN–
queen. These games require abstract combinatorial analysis and cannot be ana-
lyzed by pure combinatorial game theoretical methods. Thus, the combinatorial
game theory lacks some fine tuning especially in case of combinatorial board
games (loopy games). We now pose the following open problems:
Problem 1: Is it possible to identify a winning sequence of moves provided an
arbitrary board position in Tchoukaillon?



We conjecture that this is possible, but it is to be noted that the game played
with n number of pits might involve enormous amount of moves (Conjecture 1).
It is thus,alsopossible that the problem might not be intractable to begin with.
Problem 2: Are there more than two necessary and sufficient conditions to form
a chain of queens on a diagonal?
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