IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 2, FEBRUARY 2006 209

On Using Game Theory to Optimize
the Rate Control in Video Coding
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Abstract—This paper presents a game theory based technique
for optimizing the bit rate control in video coding. Game theory, by
virtue of its enormous potential for solving constrained optimiza-
tion problems, has been effectively utilized in several branches
of natural and social sciences. But this paper is the first attempt
in using game theory for video compression. The objective is to
optimize the perceptual quality while guaranteeing ‘fairness”
in bit allocation among macroblocks (MBs). The proposed tech-
nique is a dual-level rate control algorithm: At the first level,
the algorithm allocates the target bits to frames based on their
coding complexity; a method to estimate the coding complexity
of the remaining frames is proposed. At the second level, MBs of
a frame play cooperative games such that each MB competes for
a fair share of resources (bits) to optimize its quantization scale
while considering the human visual system (HVS) perceptual
property. We formulate the rate control problem by defining
players, strategies and objective function. Since the whole frame is
an entity perceived by viewers, MBs compete cooperatively under
a global objective of achieving the best quality with the given bit
constraint. The major advantage of the proposed approach is that
the cooperative game leads to an optimal and fair bit allocation
strategy based on the Nash bargaining solution. Another advan-
tage is that it allows multi-objective optimization with multiple
decision makers (e.g., MBs) in order to achieve accurate bit rate
with good perceptual quality while maintaining a stable buffer
level. Several extensions of the work are possible.

Index Terms—Bit allocation, discrete cosine transform (DCT),
game theory, human visual system (HVS), rate control (RC), video
compression.

1. INTRODUCTION

HE VISUAL quality of an encoded frame is related to the

bits it consumes. To maintain stable quality throughout
the video sequence, one needs to consider the distribution of the
bit budget for each frame. Therefore, bits are precious resources
that must be utilized effectively. Most rate-distortion optimiza-
tion algorithms optimize a unique objective function, which is
typically the perceptual quality or distortion of an entire frame.
While such an approach is simple (but still computationally
intensive), the same objective function may not yield the best
results for the whole video frame or a sequence. This paper
presents a game theory based rate allocation strategy that allows
multi-objective optimization with multiple decision makers
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(e.g., blocks), while working under an overall constraint (e.g., a
given bit budget for a frame). The proposed approach is based
on cooperative game theory, under which each decision maker
has its own objective function, which is its own perceptual
quality measure. The solution for the cooperative game yields
the optimal bit allocation that is fair to each macroblock (MB)
under the give constraints. The proposed rate control algorithm
has two stages. In the first stage, target bits are allocated at the
frame level. In the second stage, the quantization scale for each
MB is determined by using a game theoretical approach.

At the frame level, the algorithm allocates target bits to the
current frame based on the coding complexity of the frame,
which is the mean absolute prediction error. Since the remaining
frames are unavailable, we estimate the coding complexity of
the remaining frames from the encoded frames. The target
number of bits of the current frame is optimized by using
the current frame coding complexity as well as the estimated
coding complexity of the remaining frames.

At the MB level, the algorithm uses game theory for bit allo-
cation. We formulate the bit allocation as a bargaining problem
[25]. Each MB competes for a share of resources, which are
the target bits for a frame. Based on Nash bargaining solution
(NBS) [27], we derive a cooperative optimal quantization
scale for each MB. Furthermore, we incorporate the human
visual system (HVS) perceptual property in the game theory
framework. Initial visual quality of the game setting, which
is guaranteed for each MB, is determined proportional to the
perceptible distortion, which is the distortion that exceeds the
just-noticeable distortion (JND) threshold [14]. Fig. 1 shows
the block diagram of the proposed rate control algorithm that
can be embedded in a discrete cosine transform (DCT)-based
video encoder. The gray box in the diagram shows the modules
of the proposed algorithm.

Game Theory is widely thought to have originated in the
early 20th century, when von Neumann proved the min-max
theorem [28]. Some of the most pioneering results were re-
ported within a year, when Nobel Laureate John Nash made
seminal contributions to both cooperative and noncoopera-
tive games. In [26], Nash proved the existence of a strategic
equilibrium for noncooperative games (Nash Equilibrium).
He also proposed that cooperative games were reducible to
noncooperative games. He accomplished that by pioneering
the axiomatic bargaining theory and proved the existence of
the NBS for cooperative games (a notion similar to the Nash
Equilibrium) [26]. One remarkable property of Game Theory is
its abstractly defined mathematics and notions of optimality. In
no other branch of Sciences do we find so many understandable
definitions and levels of optimality [30]. Game Theory has been
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Fig. 1. Proposed algorithm embedded in a DCT-based video encoder.

used as a powerful method to analyze and solve problems that
contain natural competition in several areas of social sciences
[17], Biology [10], Political Science [23], Economics [22],
etc. In computer science, a few applications of Game Theory
applied to job scheduling and networking problems have
been documented [32]. Recently, auction theory has started
to be recognized as the emerging solution for problems in
microeconomics [22], and agent-based systems [35]. To our
knowledge, this paper is the first attempt to apply game theory
in video compression.

The rest of the paper is organized as follows. Section II
presents the related works on rate control reported in the
literature. Section III describes the proposed frame level bit al-
location scheme and the game theoretical problem formulation
for MB layer quantizer optimization. Section IV presents sim-
ulation results of the proposed scheme, including a comparison
to the quadratic rate control proposed in [3] and suggested by
MPEG-4 VMBS [11]. Section V concludes the paper with some
concluding remarks and future work.

II. RELATED WORK

Several rate control algorithms have been proposed and
utilized in video compression standards like MPEG-1/2/4 and
H.261/263. In the early rate control algorithms, such as the
H.263 Test Model Near-term version 5 (TMN5) [13], a fixed
bit allocation for each frame is employed. The target bit budget
for each frame is obtained by dividing the target bit rate by the
frame rate. The MPEG Test Model 5 (TM5) [12] rate control
employs a hierarchical bit allocation scheme, in which the target
number of bits is decided for the GOP layer first. Constrained
by the group of pictures (GOP) bit budget, target number of bits
for a frame is then calculated. Target bits for I-, P-, B-frame
are allocated according to the complexity of the previous
frame. With respect to the model-based quantization scale

decision, early rate control algorithms, such as TMS5, adopt a
linear rate-distortion model. Thereafter, various rate-distortion
models have been proposed to improve the accuracy of the
quantization scale estimation. Chiang and Zhang proposed a
quadratic rate-distortion model that can be applied to both DCT
and wavelet-based coders [3]. An improvement in bit allocation
has been proposed by Pan et al. [5] by exploiting the position
of a frame in a GOP. Ngan, Meier, and Chen have introduced
a new constraint for the least-mean-square estimation of the
model parameter of the rate-distortion function [29]. Cheng
and Huang have proposed an adaptive piecewise linear model
[1]. Chiang ef al. have proposed a scheme for MB level bit allo-
cation and two distinct models for high bit rate and low bit rate
situations respectively [2]. The model for high bit rate adapts
the quantization scale with the energy of the block by using
finer quantization for MB of flatter image regions. The model
for low bit rate maintains a near-constant quantization scales,
in order to minimize the overhead bits for DQUANT, which is
to define the change of quantization scale. Ribas-Corbera and
Lei have proposed a rate-distortion model, which was adopted
in the H.263+ testing model TMNS [33]. Based on [33], Tsai
and Hsieh have proposed to modify the encoding order of MBs
to favor the more complex MBs [40]. For object-based video
coding, Lee, Chiang and Zhang have proposed an algorithm that
is scalable for various bit rates, spatial and temporal resolution
[18], [19]. Vetro and Sun also developed a scheme for multiple
video objects in [40], [42]. Lee et al. has proposed models for
coded frames and objects as well as skipped frame and objects
[20]. Other rate control algorithms have been proposed in [16],
[21], [39], [44], etc. The above rate control algorithms report-
edly achieve efficient bit rate regulation. What distinguishes
our approach from these works is that we define a new criterion
of optimizing the rate-distortion efficiency under the bit rate
and “fairness” constraints, and propose an efficient solution.
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A few algorithms have considered the rate-distortion opti-
mization. Since the quantization scale can refer the distortion of
the decoded frame, some rate control algorithms seek optimal
quantization to maximize the aggregate perceptual quality or
minimize the aggregate distortion subject to the bit rate con-
straints, using Lagrange multiplier or dynamic programming
[31], [33], [36], [43]. He and Mitra have modeled the rate and
distortion as the functions of p, which is the percentage of zeros
among the quantized DCT coefficients, and an optimized bit
allocation has been proposed based on this model [7]-[9]. Al-
though these algorithms address the rate-distortion optimization
problem, the perceptual redundancy of human vision system has
not been efficiently exploited. Moreover, the fairness of bit al-
location among the MBs has not been discussed.

This paper proposes an algorithm that masks the impercep-
tible distortion and optimizes the perceptual quality using a
game theory approach ensureing optimality and fairness of bit
allocation.

III. PROPOSED ALGORITHM

A. Frame-Level Bit Allocation

Since it takes more bits to encode a complex frame than a
simple frame to obtain the same visual quality, we tune the
frame level target bit budget according to the estimated coding
complexity of the frame. We measure the coding complexity of
a frame using the mean absolute prediction error, denoted by
mad:

w H

1 A
mad = 3 Y pley) =iyl 1)

x=0y=0

where (x, y) is the pixel coordinate, and W and H are the width
and height of the frame in pixel. The target bit budget is al-
located proportional to the coding complexity of the current
coding frame. Therefore, we need to know the coding com-
plexity of the remaining frames. Since the encoder only contain
the current frame and the reference frame due to the memory and
delay constraints, we estimate the coding complexity of the re-
maining frame by computing the weighted mean of the coding
complexity of the previous coded frames. Suppose we are en-
coding a frame at time ¢. The estimated coding complexity of
the remaining frames is denoted by mad_r;. and given by

t t
> (i-mad;)  2- Y (i-mad;)
_ =1 _ =1
mad_r; = = +1)-1

(t+1)-t
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where mad; is the coding complexity of frame at time z. The
number of bits allocated to a frame at time ¢ is given by
Rioi
Ny
where R;_1 and V;_; are the numbers of remaining bits and
remaining P-frames after encoding the frame at time ¢ — 1.
Initially, I-frame at time O is encoded using an external input
quantization scale. The number of the remaining bits after en-
coding the first I-frame is

R():B’I“-L—Rf (4)

mad;
I _
1) =

3

mad_r;

where Br is the target bit rate of the sequence, L is the total
length of the sequence in unit of second. Ry is the number of
bits used to encode the first I-frame.

We need to further adjust the target bits 7/ to the current
buffer fullness with the following equation:

,,_Bt—|—2X(B—Bt)
¢ _2XBt+(B—Bt)

where B is the buffer size and B; is the buffer fullness at time ¢.
Equation (5) intends to maintain the buffer fullness in the middle
of the buffer. If the buffer fullness is lower than the middle
level, more bits will be allocated to the current frame. Other-
wise, fewer bits will be allocated.

Finally, the target number of bits is bounded by

. (2Br Br
T; = min <T max (4—F,Tt")> (6)

where F' is the frame rate. Br/ F' is the average bits for a frame.
Equation (6) intends to avoid allocating extremely large or ex-
tremely small number of target bits to a frame, in order to pre-
vent the buffer overflow or under flow. The upper bound of target
number of bits for a frame is two times of average bits for a
frame and the lower bound is a quarter of the average bits for a
frame.

x Ty ©)

B. MB-Level Bit Allocation

The problem to identify the optimal quantization scale is
equivalent to find an optimal allocation of the frame target bits
to maximize the perceptual quality, which is a resource opti-
mization problem. Each MB competes for a share of resources
to optimize its own performance. Since the whole frame is
an entity perceived by the viewers, MBs need to work coop-
eratively. We solve the problem by playing a multiple-player
cooperative game. An optimal and fair bit allocation strategy is
derived based on the NBS.

C. Quadratic Rate Control Model

We use a quadratic rate-distortion model to formulate the re-
lation of the consumed bits and the quantization scale used to
encode a MB. The proposed model is plugged in to the game
theoretical framework presented in Section III-D, to determine
the optimal quantization scale. The model is given by

T3 . K

me  Q;”
where r; is the number of bits spend to encode the ith MB,
my; is the standard deviation of prediction errors of the :th MB,
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Q; is the quantization step size for the ith MB, K are model
parameters. « is a constant (o = 0.8).

The rate-distortion model is updated after the encoding of
each MB. The rate-distortion model parameter K for the (i +
1)th MB will be updated as the following:

(one—ljer 2@ 4,50

K’H'l = 1—Tg
Ki X 09, Az = 0

, K;, A; >0
i+1 = Y K.

A; =0
where A; is the actual bits used to encode the 7th MB, n; is the
number of skipped MBs. The initial value Ky is set to 3000.

)

D. Solving Quantizer Optimization With Game Theory

In the proposed MB level bit allocation, the bargaining game
is configured as follows.

Players: Each frame contains N uncoded MBs. Each MB is
regarded as a player in the game. IV players compete for the use
of a fixed resource, which is the target bit budget for the frame.

Strategies: The strategy of a player is the number of bits it
requests for, denoted by r;. Since the target number of bits for
a frame is constrained, the sum of the bits requested by the N
remaining MBs should be no more than the remaining bits for
a frame, i.e.,

®)

N
Z T S Rc
=1

where R, is the remaining bits for the N MBs.

Preference: A utility function u; for each player i reflects
its preference. We use the visual quality as a measure of utility.
Higher visual quality is more preferable. Given a combination of
strategies carried out by all the MBs r = (r1,79,...,7N), 4 =
(u1(r),ua(r), ..., un(r))is the utility of the game. Since in the
DCT video coding, the visual quality of a MB is related only to
the number of bits it obtained, the utility can be represented by

Initial Utility: The initial utility of the ith MB, denoted by d;,
is the initial perceptual quality that required to be guaranteed.
The initial quality is determined according to the perceptible
distortion of each MB, which is defined in Section III-E. Denote
the initial quality of the game d = (di,ds,...,dn), we have
u > d. Define the number of bits achieving d; as r{. Since
u > d, we have r > 7%, where 70 = (7%, 7,°, ..., rx?), which
means

i > 1. )
Define U the set of achievable utilities. Tuple (U, d) repre-
sents the game setting.
NBS is a unique solution that satisfies a set of axioms for fair
bargain [27]. Let strategy r* be the NBS of the game (U, d), the
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corresponding utility u*((U, d)) is called the Nash bargaining
point. The following axioms define a unique NBS:

Efficiency: The NBS is Pareto optimal, i.e., there is no other
solution produces better utility for one player without hurting
another player.

Linearity: Given a monotonous increasing linear trans-
form function F, Nash bargaining point u* satisfies that:
W ((F(U), F(d)) = F(u* (U, d)).

Independence of Irrelevant Alternatives: Let X, Y are sets
of attainable utilities, and X C Y. If u*((Y,d)) € X, then
w((Y,d)) = w({X,d)).

Symmetry: IfU is symmetric with respect to any two players
in the game, and if their initial utility is equally preferable, then
exchange the two players will not affect the solution.

The efficiency axiom states that the NBS is cooperatively op-
timal. The linearity axiom implies that the NBS will not change
if the player’s objective is linearly transformed. The irrelevant
alternatives axiom expressed that if we remove the irrelevant
subset (the subset does not contain the Nash bargaining point),
the NBS of the game will not change. The symmetry axiom says
that the solution is only depended on the players’ initial utilities
and their utility functions. The last three axioms are the axioms
of fairness.

NBS for a multiple players bargaining game is characterized
by the following property [37].

The solution v* is a NBS if and only if [],(u;(r*) — d;) >
11, (uwi(r) — d;) for all v € H, where H is the set of all feasible
combination of strategies.

Therefore, to find the NBS, we need to solve the following
maximization problem:

N

N
max H(uL(rL) —d;) st >y, Z” < R.. (10)
i=1 i=1
The conditions in (10) are constraints from (8) and (9).
The approximate mean square error (MSE) distortion of the
ith MB is D; = Q2 /12 [6]. Therefore, we defined the visual
quality of the ;th MB by

1 12 127;
U = — = = .
Kmg

D; Q2

(1)

Since u; is concave and injective, In(u;) is strictly concave.
The above problem is equivalent with the following problem:

N N
maXZIn(ui(ri) —d;) s.torp > Zri < R.. (12)
i=1 i=1
The above inequality constrained optimization problem can
be solved by maximizing the following Lagrangean, using the
theorem of Kuhn and Tucker [38]

N N N
J = Zln(ui—d,;)—l—)\ <Rc — Zn) +Z 97‘,(7“1‘,—7“?) (13)
i=1 i=1 i=1
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where A\ and 6; are the Lagrange multiplier. The optimized so-
lution can be obtained by solving (14)

0 ln(ui — dz)

(S5
<

ari: 8ri _)\+0i:0
]\T
oJ _ _ )
ox = R, i;n >0
N
2 = )\<RC— Zn> =0
i=1
8 = r;— r? >0
9L 0 = gi(Ti—T?):()?
where
i€ (1...N). (14)
Since ZZ 1 rl < R., there must be a solution 7 that strictly

superior to 79, so that r; — r,? > 0. Therefore, §; = 0. From

(14), we have

8ln(ui — dt) 1 k
_—— P = = —_ @ 1
or; A=y )\+12md (15)
and
N N
N K
R.— i=0=>R.— — — — o di =0. 16
Therefore, the NBS for the game is given by
= ——mZmad + md;. (17)
And the optimal quantization step size is given by
Kmg
Qi = ! (18)

o Kmd
(}1{6—12sz‘£+ )

Proof of Fairness: An assignment of resource s =
(s1,82,...,8N) is said to be proportionally fair with respect to
a utility function f, if for any other feasible allocation s’, the
aggregate proportional changes is zero or negative [15]

/

X () = f(si)
> e <0.

i=1

(19)

Denote r* the allocation from NBS. Consider a small change
of r* to 1/, where v} = r} + Ar}. In the context of our game
setting, the proportional fairness criteria can be rewritten as

N

U d;] = [ui(r}) — d;
Z[ ()ul(lf)[—cgi) |

<0.
=1

Replace u with (11), we have

fﬂm()udkﬂm(ﬂ—dﬂ<o

i=1 L(r;k) - di o
N | A2r g | A20 g
AN Z 127"1* d — 0
i=1 Km® -
N 12 127; N oo
Km3 Km? o
<:>Z 1207 127“? s0e r* 0 <0 (20)
i=1 Kmo — Kmo =i T
Let v;(r;) = In(u;(r;) — d;). Since r* is the optimal solution

for (12) any change in 7* will make a zero or negative change
in El 1 vi(r;). Therefore, we have

]\T
> [oi(rf) = vi(r))] <0 1)
=1
N
dv;
3 [ Y Arr| <0 (22)
- 87‘i ri=r" .
=1 v
N ug(r;)
AP <0 23
;ui(rf)—di K @9
Plug (11) into (23), we have
N r* N TI ¥
i _<o= i< 24
; 2 .

E. Perceptually Tuned Quantizer

The perceptual redundancy is inherent in video signals. It is
found that the HVS is insensitive to the signals in some spatial
frequencies. Moreover, the human vision is much easier to de-
tect the luminance difference rather than the absolute intensity.
And the sensitivity to the luminance contrast is depended on the
average background intensity. Due to the above observation, a
metric of JND is proposed in [14] to measure the perceptual
lower bound of the signal distortion. JND is a threshold below
which the distortion is imperceptible. The computation of IND
of a pixel at (z,y) is given by [4]

IND(z,y)=max{ fi(bg(w,y),mg(z,y)), f2(bg(z,y))} (25)
fi(bg(z,y), mg(x,y)) =mg(z,y) - a(bg(z,y)) + B(bg(x,y))
(26)
fz(bg(aa y)) _ To- <1_ (%)1/2>> +3 bg(:v, y) <127
~v-(bg(z,y)—127)43 bg(x,y)>127
27
a(bg(z,y)) =bg(z,y) x 0.0001 + 0.115 (28)
B(bg(z,y)) = = bg(z,y) x 0.01 (29)

where Ty, v and A are 17, 3/128, and 1/2, respectively.
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bg(x,y) and mg(x,y) represent the average background lu-
minance and the maximum weighted average of luminance dif-
ferences around the pixel at (x, y). The calculations of bg(x, y)
and mg(z,y) are as follows:

1 . N
bg(w,y) = 25 D> plw =3 +i y=3+7) B(i.J)

i=1 j=1

for0<z < HO<y<W (30

where p(x, y) is the luminance of pixel at (z, y). B(4, ), (4,5 =
1,...,5),1s amatrix of weights, which is shown in Fig. 2. mg is
the maximum gradient among different directions. grad,, repre-
sents the gradient in direction k, where k = {1, 2, 3,4} is one of
the following four directions: 1) vertical; 2) diagonal (upper-left
to lower-right); 3) horizontal; 4) diagonal (upper-right to lower-
left). grad,, is computed with (32)

€29

mg(z,y)= maX{ gradk(w,y)‘}

1 5 5
grady (2, y) =73 D p(a—3+i,y—3+))-Gr(i.j) (32)

i=1j=1

where G, is the matrices of weights in four directions, which is
given in Fig. 3.

In (18), a factor that affects the optimal quantization step size
Q; is the initial quality d;. In the proposed algorithm, the initial

quality of a MB is proportional to its noticeable distortion e. The
noticeable distortion in the :th MB is given by

L Js 16
ei:ﬁZZ{[h(m+u,n+v)

m=1n=1

—JIND(m 4+ u,n+v)] - 6(m +u,n+v)} (33)

where (u,v) is the top-left corner of the ith MB, and
ha.y) = |p(a.y) - Pla.y) (34)
e = {5 MenZNeey, o

Due to the bit rate constraint, the total bits corresponding to
the initial quality of the N uncoded MBs in a frame cannot ex-
ceed the remaining bits, i.e., Zf;l r? < R.. Therefore, we
bound the initial quality by a scale factor C, such that the total
bits corresponding to the initial quality are bounded by a half of
the remaining bits for the N uncoded MBs (0.5R,.). C' is com-

puted as follows:

N
1 R. > % > mse;
j=1
C = N (36)
% R. < % Z mse;
KZ mse; J=1
j=1
The initial quality for the ¢th MB is given
di =C- €;. (37)

F. Algorithm Summary

The proposed algorithm, name Game Theoretic (GT) algo-
rithm, is embedded in a DCT-based video encoder (e.g., H.263
or MPEG-4), as shown in Fig. 1. The functionality of each block
in the diagram is introduced in the previous sections. We sum-
marize the GT algorithm in the following steps.

Step 1) Frame layer bit allocation will be performed prior
to the encoding of a frame. The mean absolute pre-
diction error of the current frame is computed with
(2) and (3), in order to determine the initial estima-
tion of the target number of bits 7}. Buffer fullness
is fed back to further tune 7} with (5). Then T}’ is
further adjusted with (6) to get 7;.

Before encoding a frame, R, is initially set to 7}.
The noticeable distortion for each MB in the frame
is calculated with (33).

Based on the noticeable distortion and remaining
bits R., the initial qualities for the remaining MBs
are computed with (36) and (37).

The quantization step size of current MB is com-
puted based on the derived game theoretical formu-
lation, given by (18).

After encoding each MB, the quadratic rate-
distortion model is updated with (7). R, is updated

Step 2)

Step 3)

Step 4)

Step 5)
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TABLE 1

BIT RATE ACCURACY, PSNR, PSPNR, AND NUMBER OF SKIPPED FRAME COMPARISON BETWEEN VM8 AND THE GT ALGORITHM
a) QCIF sequences

video Algorithm Bit rate bit rate Bits Ayerage A\:'erﬂge Frame ::IT:R Ig’:iI;NR
sequence Target Actual accuracy  [saved  [PSNR_Y |PSPNR_Y |skipped @By |idp)
VM8 64 66.64 95.88% 28.88 32.38 3
GT 64 64.1 99.84% 396%  29.04 326 0 015 022
table VM8 96 99.24 96.63% 30.26 3436 3
GT 96 96 100.00%  3.37% 3034 3448 0 0.08  0.12
VM8 128 131.54 97.23% 31.2 35.76 2
GT 128 128 100.00%  2.77%  31.34 3598 0 015 022
VM8 96 101.54 94.23% 24.45 26.87 5
GT 96 96.12 99.88% 5.64%  24.51 26.94 0 0.06  0.07
ctefm VM8 112 11981 93.03% 24.86 27.39 6
GT 112 111.98 99.98% 6.99%  25.03 27.61 0 0.17 0.22
VM8 128 1359 93.83% 25.34 28.03 5
GT 128 128.05 99.96% 6.13% 2546 28.18 0 011 014
VM8 64 69.7 91.09% 29.73 33.56 8
GT 64 64.04 99.94% 8.84%  29.84 33.7 0 011 0.4
foreman VM8 128 131.99 96.88% 3253 37.93 2
GT 128 12794 99.95% 3.17% 3262 3823 0 0.09 031
VM8 192 19527 98.30% 3427 40.98 1
GT 192 191.79 99.89% 1.81% 3432 41.29 0 0.05 0.31
VM8 192 199.06 96.32% 38.15 47.46 3
GT 192 192.09 99.95% 3.63% 3848 47.81 0 033 036
. VM8 384 386.87 99.25% 41.15 54.62 0
container GT 384 384.12 99.97% 0.72%  41.95 56.3 0 0.79 1.68
VM8 512 512.01 100.00% 41.96 56.84 0
GT 512 5122 99.96% -0.04% 4299 58.78 0 1.03 193
VM8 192 198.22 96.76% 4231 55.97 2
GT 192 191.88 99.94% 330% 4242 58.05 0 0.11 2.07
akiyo VM8 384 38491 99.76% 44.16 60.62 0
GT 384 38341 99.85% 0.39%  44.72 62.85 0 056 223
VM8 512 511.99 100.00% 45.39 64.18 0
GT 512 511.32 99.87% 0.13% 4625 67.71 0 086 3.53
b) CIF sequences
. video Algorithm Bit rate bit rate bits f\}-cragu /V\vcragc FIHH]L: PQSS:{ P;::R
sequence Target | Acudl accuracy saved | PSNR_Y | PSPNR_Y | skipped (de (dB)
VM8 192 193.32 99.31% 32.54 37.33 0
GT 192 191.82 9991%  0.78% 32.57 37.42 0 0.03 009
container VM8 256 263.35 97.13% Ba 38.64 2
GTr 256 256.12 99.95%  2.82% 3344 38.80 0 0.06  0.16
VM8 384 400.84 95.61% 34.86 41.26 4
GT 384 384.32 99.92%  4.30% 34.90 4132 0 0.04 005
VM8 256 270.36 94.39% 27.40 30.86 3
GT 256 256.04 99.98%  5.59% 2743 30.88 0 0.03 002
Coasteuard VM8 384 395.19 97.09% 28.69 32.67 2
GT 384 383.95 99.99%  2.93% 28.79 2.7 0 0.10  0.10
VM8 512 521.55 98.13% 29.73 34.10 I
GT 512 511.88 99.98%  1.89% 29.78 3415 0 0.05 005
VM8 256 271.10 94.10% 32.05 3642 5
GT 256 255.82 99.93%  5.97% 3235 36.97 0 030 0355
foreman VM8 384 398.17 96.31% Be 38.98 3
GT 384 383.48 99.86%  3.83% 33.69 39.18 0 012 021
VMS§ 512 522.32 97.98% 34.59 40.79 L
GT 512 511.41 99.89%  2.13% 34.64 40.81 0 0.05 002
VM8 384 397.00 96.61% 30.80 34.89 3
GT 384 383.77 99.94% 3.45% 31.08 35.29 0 0.27 0.40
able VM8 512 522.09 98.03% 31.93 36.56 1
GT 512 51199 100.00%  1.97% 3207 36.80 0 0.14 024
VM8 640 648.14 98.73% 32.75 37.85 I
GT 640 640.03 100.00%  1.27% 32.88 38.04 0 012 020
VM8 512 54851 92.87% 24.10 27.01 6
GT 512 512.33 99.94%  7.06% 24.17 27.10 0 0.07 009
Mobils VM8 640 674.20 94.66% 24.88 28.07 4
GT 640 640.19 99.97%  5.31% 24.95 28.16 0 0.07  0.09
VM8 768 800.36 95.79% 25.56 29.01 3
GT 768 768.16 99.98%  4.19% 25.62 29.09 0 0.06  0.08
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as R. = R. — A;. Go to step 6 if all the MBs in the
frame is finished, otherwise go to step 3.

Update the buffer status after encoding each frame.
Stop if all the frames are encoded, otherwise go to
step 1.

Step 6)

IV. EXPERIMENTS AND RESULTS

First, we compare the GT algorithm with the quadratic rate
control algorithm suggested by MPEG-4 VMS [11]. Both com-
paring algorithms are implemented in Momusys encoder for
MPEG-4 Verification Model. To be consistent with the VM8
rate control algorithm, we set the buffer size to Br/8, which
means the maximum delay is 125 ms. The initial buffer fullness
is Br/16.

The performance of a rate control algorithm is evaluated by
the following metrics:

1) bit rate accuracy;

2) percentage of bits saved;

3) number of skipped frames;

4) peak-signal-to-noise ratio (PSNR);

5) peak-signal-to-perceptible-noise ratio (PSPNR).

A good rate control algorithm should be able to control the
actual bit rate as close as possible to the target bit rate. We mea-
sure the bit rate accuracy with the following equation:

Rac ua. _Rar (&
| tual t gt| (38)

bit_rate_accuracy = 1 —
Rtarget

where Ractual and Riarger are the actual bit rate and the target
bit rate respectively. Besides the bit rate accuracy, we also mea-
sure the percentage of bits saved of the GT algorithm compared
to the VMS algorithm. For the same visual quality, lower bit
consumption means the higher rate-distortion efficiency.

Frame skip technique is employed to avoid the buffer over-
flow. Once the buffer fullness is over a threshold, the encoding
of the next frame will be skipped and will not be buffer in order
to cut down the buffer fullness level. In the decoder side, the
skipped frame will be replaced by a duplication of the previous
frame in order to maintain the continuity of the video decoding.
However, a frame skip will degrade the signal quality. A good
rate control algorithm should be able to avoid the buffer over-
flow and minimize the number of skipped frames.

PSNR is a widely adopted metric to measure visual quality.
PSNR averages the noise of all pixels in a frame, regardless
if it is perceptible to HVS or not. PSPNR proposed by Chou
and Li [4] measures the perceptible visual quality incorporating
the human perceptual property. PSPNR only take account of the
perceptible noise and is defined as

PSPNR
=201logq

255

H W
%RWZ S (h(, ) — IND(z, )28z,

z=0y=0

(39)

where h(z,y) and §(x, y) and is defined in (34) and (35), respec-
tively. According to the MPEG-4 core experiment, the PSNR
(and PSPNR) of the skipped frame is computed by considering
the skipped frame as the duplication of the previous decoded
frame in the decoded sequence [33], [34].

We encode QCIF and CIF format test sequences at various
target bit rates. The frame rate in the experiments is 30 frames
per second. For each sequence, 100 frames are encoded. The
temporal prediction structure used in the experiment is IPPP...,
i.e., only the first frame is encoded as I-frame and the remaining
frames are encoded as P-frame (IPP...). It is to be noted that the
GT algorithm is not limited to P-frames, and easily extended
to the frame level bit allocation for I-frame and B-frame. The
reason of using this temporal prediction structure in the exper-
iment is that the comparative algorithm (VMS8) supports only
this structure. To be consistent with VMS in the comparison, we
adopt IPPP... structure in the experiment. The detailed simula-
tion results and the comparisons are shown in Table I. Table I(a)
shows the results of QCIF format and Table I(b) shows the re-
sults of CIF format.

A. Bit Rate Accuracy and Percentage of Bits Saved

From Table I, we observe that the GT rate control algorithm
produces fewer bits and achieves more accurate bit rate than the
VMBS algorithm in most test cases. The average bit rate accuracy
of VMBS is 96.45% for CIF format and 96.61 for QCIF format
while the GT algorithm achieves 99.95% for CIF format and
99.93% for QCIF format. Compare to VMS, the GT algorithm
saves 3.57% and 3.39% bits for CIF format and QCIF format,
respectively.

One can note that the GT algorithm uses fewer bits in the
situation that without frame skipped. That means, comparing
with VMBS that skips a certain number of frames to achieve the
target bit rate, the proposed algorithm averagely use even less
bits to encode a frame.

B. Frame Skipping

On the number of skipped frames comparison, one can notice
that various numbers of frames are skipped when using VM8
algorithm. On the contrast, there is no frame skips in the exper-
iments when using the GT rate control algorithm. The advan-
tage of the GT algorithm is especially prominent in the low bit
rate tests. For example, in the “Table” QCIF 64 kbps test and
“Stefan” QCIF 96 kbps test, VM8 skips 3 frames and 5 frames,
respectively, while the GT algorithm does not skip any frame.

The reason of improvement of frame skipping is because the
GT can maintain a stable buffer level, which thanks to the ac-
curate estimation of frame level target bit budge and the high
accuracy of MB level rate control.

Figs. 4(a), 5(a), and 6(a) illustrate the frame-to-frame com-
parison on buffer fullness. One can observe that the proposed
algorithm has less fluctuation on buffer level and is able to con-
trol the buffer fullness around the middle of the buffer size. The
buffer fullness level is maintained within a safe margin to avoid
frame skipping.
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(“Stefan” QCIF, 112 kbps, 30 fps).
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(“Container,” 192 kbps, 30 fps).

C. PSNR and PSPNR

The overall visual quality is measure by the average PSNR
and PSPNR. Different rate control algorithm may lead to dif-
ferent number of frame to be skipped. If a rate control algorithm
skips more frames than the other one, more bits are used to en-
code the nonskipped frame, which will lead to a higher PSNR
and PSPNR value on the nonskipped frame. Therefore, it is un-
fair to compare the average PSNR and PSPNR only taking into
account the encoded frame. The distortion of the skipped frame
should be considered to for a fair comparison. In the MPEG-4
decoder, a skipped frame will be repeated by the previous en-
coded frame. Hence, in the MPEG-4 rate control test the pre-
vious frame is used in the PSNR and PSPNR computation when
a frame is skipped. [33]

Table I shows the PSNR and PSPNR comparison between
VMBS and the proposed algorithm. It can be observed that the
GT algorithm achieves higher PSNR than its counterpart in the
PSNR comparison, although the GT algorithm is optimized for
the PSPNR.

With regard to the perceptible distortion comparison, the GT
algorithm successfully masks the imperceptible distortion. This
is due to the bit allocation based on the noticeable distortion.
Therefore, the algorithm produces substantial improvement
in perceptual quality, compared to the VM8 algorithm. For
example, the PSPNR improves by 1.68 dB in the “Container”
QCIF 384 kbps test, and by 2.23 dB in the “Akiyo” QCIF
384 kbps test. The GT algorithm outperforms the VM8 algo-
rithm in terms of both the bit rate and the visual quality.

Figs. 4-6 show detailed results of buffer fullness level and
PSPNR values of each frame achieved by the two algorithms.
One can observe that the GT algorithm achieves higher PSPNR
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and maintains the buffer fullness level within a safe margin to
avoid frame skipping.

V. CONCLUSION

This paper proposed a rate control algorithm using a game
theoretical approach. The algorithm models the bit allocation
problem on the MB level as a bargaining problem. Bit alloca-
tion and quantization scale of each MB are decided based on
the NBS. The proposed algorithm masks the imperceptible dis-
tortions by adjusting the initial quality of each MB based on
noticeable distortion. The algorithm includes an efficient frame
level bit allocation according to the frame coding complexity.
The proposed algorithm outperforms the VMBS rate control al-
gorithm in terms of several aspects, including bit rate accuracy,
PSNR, PSPNR, and the buffer stability.
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