
Policies for Caching OLAP Queries
in Internet Proxies

Thanasis Loukopoulos and Ishfaq Ahmad, Senior Member, IEEE

Abstract—The Internet now offers more than just simple information to the users. Decision makers can now issue analytical, as

opposed to transactional, queries that involve massive data (such as, aggregations of millions of rows in a relational database) in order

to identify useful trends and patterns. Such queries are often referred to as On-Line-Analytical Processing (OLAP). Typically, pages

carrying query results do not exhibit temporal locality and, therefore, are not considered for caching at Internet proxies. In OLAP

processing, this is a major problem as the cost of these queries is significantly larger than that of the transactional queries. This paper

proposes a technique to reduce the response time for OLAP queries originating from geographically distributed private LANs and

issued through the Web toward a central data warehouse (DW) of an enterprise. An active caching scheme is introduced that enables

the LAN proxies to cache some parts of the data, together with the semantics of the DW, in order to process queries and construct the

resulting pages. OLAP queries arriving at the proxy are either satisfied locally or from the DW, depending on the relative access costs.

We formulate a cost model for characterizing the respective latencies, taking into consideration the combined effects of both common

Web access and query processing. We propose a cache admittance and replacement algorithm that operates on a hybrid Web-OLAP

input, outperforming both pure-Web and pure-OLAP caching schemes.

Index Terms—Distributed systems, data communication aspects, Internet applications databases, Web caching, OLAP.

Ç

1 INTRODUCTION

CACHING has emerged as a primary technique for coping
with high latencies experienced by the Internet users.

There are four major locations where caching is performed:

1. proxy at the front-end of a server farm [7],
2. network cache at the end-points of the backbone

network [13],
3. LAN proxy [1], [39], and
4. browser.

Although caching at these locations has been shown to
significantly reduce Web traffic [3], dynamically generated
pages are not cacheable. Dynamic pages typically consist of
a static part and a dynamic one (for example, query results).

On the other hand, the need for decision support systems
has become of paramount importance in today’s business,
leading many enterprises to building decision support
databases called data warehouses (DWs) [14]. Decision
makers issue analytical, as opposed to transactional, queries
that typically involve aggregations of millions of rows in
order to identify interesting trends. Such queries are often
referred to as OLAP (On-Line-Analytical-Processing). Users
perceive the data of the DW as cells in a multidimensional
data-cube [15]. Fetching from the DW the parts of the cube
needed by queries and performing aggregations over them
is an extremely time consuming task. A common technique

to accelerate such queries is to precalculate and store some
results. Such stored fragments are essentially parts of views
in relational database terms and hence we will refer to their
storage as materialization/caching of OLAP views. Most of
the past work on view selection for materialization is
limited to the central server.

In this paper, we address the problem of caching OLAP
queries posed by ad hoc, geographically spanned users,
through their Web browsers. Unlike previous approaches,
e.g., [18], [20], we employ the existing proxy infrastructure
and propose a method of caching both Web pages and
OLAP query results in common proxy servers. Our work is
applicable to other caching points, provided that significant
traffic towards the DW passes through them (e.g., edge
servers of a Content Distribution Network [22]). Some
preliminary results were presented in [25].

Web pages carrying OLAP query results, abbreviated as
WOQPs (Web OLAP query pages), are essentially dynamic
pages and are normally marked as uncacheable. This is not
because their content changes frequently (as is the case for
instance with sport pages where continuous updates occur
in the server), but is rather due to the fact that it is unlikely
that successive queries bear the same results. Therefore,
unless the caching entity is enhanced with query processing
capabilities, it is impossible to use a cached WOQP in order
to answer future queries inquiring a subset of the cached
results. The proposed active caching framework enables the
proxies to answer queries using the views cached locally
and construct the WOQPs needed to present the results in
the users’ browsers. For tackling cache replacement issues,
we develop an analytical cost model and propose strategies
that are empirically proven to lead to high quality solutions.
Although active caching has been employed before in
answering transactional queries [26], to the best of our

1124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

. T. Loukopoulos is with the Department of Computer and Communication
Engineering, University of Thessaly, 37 Glavani—28th October str.,
Deligiorgi Bld., 38221 Volos, Greece. E-mail: luke@ inf.uth.gr.

. I. Ahmad is with the University of Texas at Arlington, Box 19015, CSE,
UTA, Arlington, TX 76019. E-mail: iahmad@cse.uta.edu.

Manuscript received 13 Sept. 2004; revised 4 July 2005; accepted 8 Sept. 2005;
published online 24 Aug. 2006.
Recommended for acceptance by J. Fortes.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0231-0904.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

knowledge, this is the first time that OLAP data are

considered. The special case of OLAP involves unique

challenges (for instance the results may vary in size by

many orders of magnitude) and provides new opportu-

nities for optimizations (e.g., the interdependencies of the

views in a lattice).
The rest of the paper is organized as follows: Section 2

provides an overview of OLAP queries and illustrates the

lattice notion to describe OLAP views. Section 3 presents

the proposed framework for caching OLAP queries in

departmental LAN proxies. Section 4 deals with the caching

and replacement strategies for OLAP views. Section 5

discusses the simulation results, while Section 6 presents

the related work. Finally, Section 7 includes some summar-

izing remarks.

2 OVERVIEW OF OLAP QUERIES

DWs are collections of historical, summarized, and con-

solidated data, originating from several different databases

(sources). Analysts and knowledge workers issue analytical

(OLAP) queries over very large data sets, often millions of

rows. DW’s contents are multidimensional and the typical

OLAP queries consist of group_by and aggregate operations

along one or more dimensions. Fig. 1 depicts an example of

a 2D space with the dimensions being the customer’s name

and the product id.
The value at each cell in the 2D grid gives the volume of

sales for a specific < product id; customer id > pair. An

OLAP query could, for example, ask for the total volume of

sales for the product SX2 or the customer T. Johnson, shown

as shaded cells in Fig. 1. It could also be a group by query for

two products and three customers as shown in the shaded

rectangle, or an aggregation of total sales. A view is a

derived relation, which is defined in terms of base relations

and is normally recomputed each time it is referenced. A

materialized view is a view that is computed once and then

stored in the database. In the example of Fig. 1, we might

consider for materialization the results of the four described

queries. The advantage of having some views materialized

is that future queries can be answered with little processing

and disk I/O latency. Moreover, queries asking for a subset

of the materialized data may be answered by accessing one

view, or through a combination of two or more views as
shown in Fig. 2.

In our 2D example, any rectangle in the plain can be a
potentially materialized view. Due to the fact that OLAP

queries are ad hoc, stored fragments will most likely be able

to only partially answer future queries, in which case we

need to combine the results obtained by querying multiple

stored fragments as shown in Figs. 2b and 2c. This approach

though can be time consuming since all possible combina-

tions of fragments may have to be considered for answering

a query. Therefore, it is sound practice to consider whole

views as the only candidates for materialized views [12],

[15] and not fragments of them. In this paper, we follow this

approach. For instance, in the example of Fig. 1, the only

candidates for materialization are the p, c, � views, together

with the whole plain (pc view). It is easy to see that under

this strategy the total number of candidate views for

materialization is 2r, where r is the number of dimensions.
Views have computational interdependencies, which can

be explored in order to answer queries. A common way to

represent such dependencies is the lattice notation. Skip-

ping the formal definitions, we illustrate the notion through

the example of Fig. 3. The three dimensions account for

< product; customer; time > . A node in the lattice accounts

for a specific view and a directed edge connecting two

nodes shows the computational dependency between the

specific pair of views, i.e., the pointed view can compute the

other, e.g., pc can compute p. Only dependencies between

views differing 1 level are shown in the lattice diagram

(Fig. 3a), e.g., c can be derived from pct but there is no direct

edge connecting the two views.

A query is answered by different views at different costs.

A widely used assumption in the OLAP literature is that the

cost for querying a view is proportional to the view size

[15]. Fig. 3a shows the associated query costs for a

3D lattice. We should notice that the costs increase as we

move from a lower level to a higher level in the lattice. This

is reasonable since higher views are normally larger. In

Fig. 3b, we expand the lattice adding all the edges in the

transitive closure and for each edge we attach the cost of

computing the lower view, using the upper one. Again, we

should notice the relation of the computational cost to the

view size, e.g., deriving p view from pct incurs higher cost

than computing p from pc, while the cheapest way to

materialize � view is to calculate it from p as compared to

pc and pct.

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1125

Fig. 1. An example of OLAP queries in 2D space.

Fig. 2. Using materialized views to answer queries. (a) Query answered

by one view, (b) query answered by combining three views, and (c) query

cannot be answered by any view combination.

Answering an OLAP query of the form:

SELECT <grouping predicates> AGG (predicate)

FROM <data list>

WHERE <selection predicates>

GROUP BY <grouping predicates>

involves the following steps: 1) the query dimensions are
defined as the union of the selection and grouping
predicates, 2) the corresponding to the dimensions view is
located, and 3) in case the view is not cached, we check
whether any of its ancestors are present and select the one
with the minimum cost to answer the query.

Since recomputing views from the raw data is an
expensive procedure, it is common practice that the central
DW always keeps the topmost view materialized, in order
to be able to handle all OLAP queries [20]. We follow the
same policy in the central DW but not in the proxy, since
the size of the topmost view may be prohibitively large.

A well-studied problem in the database community is
the view selection under storage and update constraints
(see Section 6), which can be defined as: Given the query
frequencies and the view sizes, select the set of views to
materialize so as to minimize the total query cost under
storage capacity constraints and with respect to an update
window. The problem is solved with static centralized
solutions that are inefficient in the Web environment. Our
approach is fundamentally different since we consider a
distributed environment where OLAP views are cached
together with normal Web pages.

3 SYSTEM MODEL

We consider an environment consisting of an enterprise
with a central DW located at its headquarters and multiple
regional departments having their own LANs. Each LAN is
assumed to be connected to the Internet through a proxy
server. Clients from the regional departments access the
Web site of the company and issue OLAP queries as well as
other Web traffic. The Web server of the company forwards
the queries to the DW, fetches the results, creates the
relevant WOQP and sends it back. In general, a WOQP has
a static part possibly consisting of many files (e.g., HTML
document, gif images), and a dynamic part consisting of the

query results. Throughout the paper, we treat the static files
as one composite object and assume that all WOQPs have
the same static part. This is done without loss of generality,
since extending the framework to account for different
static parts is straightforward.

3.1 Limitations of Existing Caching Schemes

A brute force approach for caching WOQPs at a client proxy is
to treat them as static HTML documents, putting an
appropriate TTL (time-to-live) value. The main drawback of
this strategy is that the proxy will be able to satisfy a query
only if it had been submitted in the past in its exact form. For
instance, a user request for the projection at each year of the
volume of products sold between 2000 and 2002 will not be
answered, although the proxy might have cached a WOQP
referring to the volumes sold between 1999 and 2002. Treating
WOQPs as normal Web pages will also affect the overall
system performance when it comes to cache replacement
decisions. The majority of replacement algorithms proposed
in the literature [9], [17] assume that only network latency
determines cache miss cost. This is not sufficient in our
environment, since the processing time for answering an
OLAP query at the server side is another significant factor.
Therefore, we need to develop a new cache replacement
policy that can take into account both delays.

3.2 The Proposed Caching Policy

Our aim is to allow WOQP construction at the proxy using
locally cached views. Active caching [10] was proposed in
order to allow front-end network proxies to dynamically
generate pages. A cache applet is kept together with the
static part of the page and in the presence of a request the
applet fetches the dynamic data from the original site and
combines them with the cached static part to create the
HTML document. The main benefit of this approach is that
Web page construction is done close to the client and
network latencies are avoided. We implement a similar
scheme as follows:

The first time an OLAP query arrives at the central site, it
triggers a number of different files to be sent to the client
proxy:

. The WOQP answering the query.

. The static part of the WOQP.

1126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 3. Lattice and expanded lattice diagrams for < p; c; t > dimensions with associated query and view computing costs. (a) Query costs associated

with each node and (b) costs for computing views associated with each edge.

. A cache applet.

. The view lattice diagram together with the asso-
ciated query costs (Fig. 3a) and a flag indicating
whether the view is materialized at the server or not.

. The id of the view used by the server to answer the
query.

The proxy forwards the WOQP to the end-user without
caching it and caches the applet, the lattice diagram and the
static part of the WOQP. Afterward, it runs the cache
applet, which is responsible for deciding whether to fetch
the answering view from the server or not. Subsequent
queries are intercepted and the cache applet is invoked to
handle them. The applet checks whether the currently
cached views can answer the query at a cost lower than
sending the request to the server and selects the minimum
cost cached view to do so. Then, it combines the query
results with the static part of the WOQP to create the
answering page. In case the views currently cached in the
proxy cannot answer the query or answering the query
from the proxy is more costly than doing so from the server,
the request is forwarded to the Web server.

The Web server responds with the WOQP carrying the
results, together with the id of the view used to satisfy the
query. The WOQP is forwarded to the client without being
cached and, subsequently, the applet decides whether to
download the answering view or not. The alternative of
sending only the query results to the proxy and constructing
the WOQP there is not considered in this paper, although the
model can encapsulate this case as well. We found that unless
the results are very small (not common in OLAP), the
additional overhead of going through two connections to
reach the client instead of one nullifies any traffic gains.
Moreover, it is reasonable to assume that WOQP construction
in the proxy is more expensive than in the Web server (when
the later operates under normal workload) and, therefore, it
should only happen when query results are computable from
the locally cached views which is more beneficial than
redirecting the request to the Web server. If the storage left in
the cache is not sufficient to store a newly arrived object (view
or Web page), the proxy decides which objects to remove
from the cache. In order to do so, it asks the cache applet for
the benefit values of the cached views. The cache applet, the
lattice diagram, and the static part of the WOQPs are never
considered in the cache replacement phase for possible
eviction. They are deleted from the cache only when the traffic
towards the central DW falls below a threshold specified by
an administrating entity.

4 CACHING VIEWS

Deriving an analytical cost model in order to decide
whether to fetch a view or not is necessary. Furthermore,
a suitable cache replacement strategy must be developed
that takes into account both the nature of the normal Web
traffic and the additional characteristics of OLAP queries.
We tackle both problems by enhancing the GDSP (Popu-
larity-Aware Greedy-Dual-Size) [17] algorithm to take into
account query processing latencies. The resulting algorithm
is referred to as VHOW (Virtual Hybrid OLAP Web).
Similar enhancements are applicable to most proxy cache
replacement algorithms proposed in the literature. Table 1
summarizes the notation used.

4.1 The VHOW Algorithm

Let Wi denote the ith Web page (either normal page, or
WOQP), assuming a total ordering of them, sðWiÞ its size
and fðWiÞ its access frequency. The basic form of VHOW
algorithm computes a benefit value BðWiÞ for each page
using the following formula:

BðWiÞ ¼ fðWiÞMðWiÞ=sðWiÞ; ð1Þ

where MðWiÞ stands for the cost of fetching Wi from the
server in case of a cache miss. In other words BðWiÞ
represents the per byte cost saved as a result of all accesses
to Wi during a certain time period. The access frequency of
Wi is computed as follows:

fjþ1ðWiÞ ¼ 2�t=T fjðWiÞ þ 1; ð2Þ

where j denotes the jth reference to Wi, t is the elapsed
number of requests between the jþ 1th and jth access, and
T is a constant controlling the rate of decay. The intuition
behind (2) is to reduce past access importance. In our
experiments f1 was set to 1/2 and T to 1/5th of the total
number of requests. VHOW inherits a dynamic aging
mechanism from GDSP, in order to avoid cache pollution
by previously popular objects.

Each time a page is requested, its cumulative benefit
value HðWiÞ is computed by summing its benefit BðWiÞ
with the cumulative benefit L of the last object evicted from
cache. Thus, objects that were frequently accessed in the
past, but account for no recent hits are forced out of the
cache, whereas, if eviction was only based on the benefit
values (and not on the cumulative benefit) they would have
stayed for a larger time period. Below is the basic
description of VHOW in pseudocode:

L ¼ 0
IF (Wi requested)

IF (Wi is cached)

HðWiÞ ¼ LþBðWiÞ
ELSE

WHILE (available space < sðWiÞ) DO

L ¼ minfHðWkÞ : Wk are cachedg
Evict from cache Wx : HðWxÞ ¼¼ L

Store Wi

HðWiÞ ¼ LþBðWiÞ
In order to compute the cost MðWiÞ various functions

can be chosen. For instance, by selecting MðWiÞ ¼ 18Wi, the
algorithm behaves like LFU. A more suitable metric is the
latency for fetching an object from the server. Most of
research papers compute this latency as the summation of
the time required to setup a connection and the actual
transfer time. This is clearly not appropriate in case of
OLAP queries since the miss penalty depends also on the
query processing time at the central site, which in terms
depends on which views are already materialized in the
server. In the sequel, we provide a cost model to compute
the miss and benefit costs for caching views in the proxy.

4.2 Cost Model

Let V be the set of views in an r-dimensional datacube

(Vj j ¼ 2r). A page Wi that arrives at the proxy is the answer

for a unique query Qi. In case Wi refers to normal Web

traffic, Qi ¼ �. Let V ðP Þ denote the set of views currently

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1127

cached at the proxy and V ðSÞ the ones materialized at the

server. Furthermore, let V
ðSÞ
i be the view among the set V ðSÞ

that can answer Qi with minimum cost and V
ðP Þ
i , a similar

view among set V ðP Þ. Hence, we refer to the corresponding

query costs as CðV ðSÞi Þ and CðV ðP Þi Þ. Moreover, let V all
i be

the view that would answer Qi with the minimum cost if all

views were materialized (either at the proxy or at the

server). In case Qi can not be answered by V ðP Þ, V
ðP Þ
i ¼ �

and CðV ðP Þi Þ ¼ 1. We should notice that Qi can always be

satisfied by V ðSÞ since the topmost view is always

materialized at the central server. Moreover, if Qi ¼ �,

CðV ðSÞi Þ ¼ CðV
ðP Þ
i Þ ¼ 0. Let LðP ! SÞ be the cost (in terms

of latency) for establishing a connection between the proxy

and the server, and T ðS ! P Þ be the average transfer rate at

which the server sends data to the proxy. The network

latency Ni, exhibited when fetching Wi from the central

server is given by: Ni ¼ LðP ! SÞ þ sðWiÞ=T ðS ! P Þ,

where sðWiÞ ¼ sðwÞ þ sðQiÞ, with sðwÞ denoting the size

of the static part of the page and sðQiÞ the size of the query

results.
Finally, we denote the time required to construct Wi

(having obtained the query results) at the central server and

the proxy by F
ðSÞ
i and F

ðP Þ
i , respectively. In case Qi ¼ �,

F
ðSÞ
i ¼ F ðP Þi ¼ 0. The total cost MðWiÞ of a cache miss for Wi

in terms of latency is given by:

MðWiÞ ¼ CðV ðSÞi Þ þ F
ðSÞ
i þNi: ð3Þ

Notice that, in case Wi comes from normal Web traffic (3) is

reduced to:

MðWiÞ ¼ Ni ðQi ¼ �Þ: ð4Þ

Equations (3) and (4) define the miss cost for a WOQP

and a normal Web page, respectively. The benefit and

cumulative benefit values can then be derived using (1).

1128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

TABLE 1
Notation Used in the Paper

Under our scheme we do not consider caching WOQPs due
to the ad hoc nature of OLAP queries.

Concerning views, we can compute directly the benefit
BðVjÞ of keeping Vj view in the cache, by taking the
difference in total cost for answering the queries before and
after a possible eviction of Vj from the cache. Let fðVjÞ
denote the access frequency of Vj. Since there are no direct
hits for views we use the following alternative to compute
fðVjÞ. Whenever a query Qi arrives, the cache applet adapts
the frequency of V all

i using (2).

Let AiðV ðP Þ; V ðSÞÞ denote the cost for satisfying Qi in the
whole system (both proxy and server). Qi can be answered
either by V ðP Þ or by V ðSÞ, depending on the relative cost
difference. Thus, we end up with the following equation:

AiðV ðP Þ; V ðSÞÞ ¼ min
CðV ðP Þi Þ þ F

ðP Þ
i ;

CðV ðSÞi Þ þ F
ðSÞ
i þNi

()
: ð5Þ

Let sðVjÞ be the size of view Vj and sðVjÞ be the average
query size for queries with V all

i ¼ Vj. Since all queries
satisfied by the same view incur the same processing cost
(proportional to the view size), the benefit value of Vj can be
computed as follows:

BðVjÞ ¼
P
8Vk fðVkÞ½AVkðV ðP Þ � fVjg; V ðSÞÞ �AVkðV ðP Þ; V ðSÞÞ�

sðVjÞ
;

ð6Þ

where AVkðV ðP Þ; V ðSÞÞ stands for the cost of answering at the
system a query: Qi: V

all
i ¼ Vk && sðQiÞ ¼ sðVkÞ.

4.3 Deriving the Parameters

Here, we provide details on how to compute the parameters
of (5), (6). CðV ðSÞi Þ and CðV ðP Þi Þ are computed by finding at
the lattice diagram the query costs of the corresponding
V
ðSÞ
i and V

ðP Þ
i views as described in Section 2. Computing

CðV ðSÞi Þ requires each node of the cached lattice diagram to
maintain two fields. The first one (materialized field) denotes
whether the view is materialized at the central site or not,
while the second (cached field) shows if it is cached at the
proxy. Unless the central site follows a static view selection
policy, we need a consistency mechanism in order to keep
the materialized field up to date.

The cache applet is responsible for defining which view
can answer a query with the minimum cost. In order to
avoid traversing the lattice upon every query arrival, each
node stores two additional fields. The first (local_answer-
ing_view), shows the cached view that can answer the
queries related to the node at a minimum cost, while the
second (remote_answering_view) keeps the id of the mini-
mum cost answering view at the DW. This information can
be maintained efficiently when a new view is added or
deleted from the cache.

Benefit calculation requires further discussion. Whenever
a new query Qi corresponding to the Vi view arrives, the
benefit values of Vi and all its ancestors in the lattice, must
be updated (notice that the benefit of successor views in the
lattice do not alter since Vi is not computable by them).
Straightforward calculation of (6) requires Oð Vj j2Þ time in
the worst-case (Vj j is the number of views in the lattice).
However, we can incrementally compute the benefits in

Oð Vj jÞ worst-case time, by noticing that only the coefficient
of Vi changes in (6). Finally, estimation of the network
latency parameters can be done by keeping statistics of past
downloads and predicting future latency, in a way similar
to how RTT (Round-Trip-Time) is estimated by the TCP
protocol [35].

4.4 Cache Admittance of Views in VHOW

Web caching algorithms consider for caching all arriving
objects, stemming from the fact that Web traffic exhibits
temporal locality [6]. However, when views come in
question, such approach is inadequate since their size can
be large, resulting in many objects being evicted from the
cache in order to free space. To avoid this, we follow an
alternative policy.

When a view Vj is considered for caching at the proxy, its
benefit value BðVjÞ is calculated using (6) and, conse-
quently, its cumulative benefit value HðVjÞ is defined as in
Section 4.1. In case there is not enough storage space left to
cache Vj, instead of evicting immediately the object with the
least cumulative benefit which might still not free enough
space, we calculate the aggregated cumulative benefit of a
set of objects that if deleted from the cache, enough space
would be freed. Vj is cached only if HðVjÞ is greater than
this aggregated value. Fig. 4 shows a description in
pseudocode of the complete VHOW caching algorithm.

Deleting objects from the cache in order to fit a new view

deserves further attention. The problem can be formulated as:

Given a set of n objects, each of benefit bi and size si, find a

subsetD such as:
P

i2D bi � B and
P

i2D si � S, withB, S, bi,

si integers. Notice that by interchanging the roles of benefit

and size we end with the (0, 1) Knapsack problem [29], the

decision problem of which is known to be NP-complete. (0, 1)

Knapsack can be solved to optimality using dynamic

programming [29] however, the method incurs unacceptable

(for caching purposes) running time. Therefore, we followed

a heuristic approach. We start by adding in a candidate listD

(evict_list in the pseudocode) the objects Oj of minimum

cumulative benefit HðOjÞ, until: 1)
P

Oj2D HðOjÞ � HðV ðSÞi Þ
and

P
Oj2D sðOjÞ � sðV ðSÞi Þ or, 2)

P
Oj2D HðOjÞ � HðV ðSÞi Þ. In

the first case, the view is admitted after deleting the objects in

the candidate list, while in the second case we check whether

the last added object in D, let Ok, satisfies HðOkÞ � HðV ðSÞi Þ
and sðOkÞ � sðV ðSÞi Þ, in which case Ok is replaced with V

ðSÞ
i ,

otherwise V
ðSÞ
i is not admitted.

5 EXPERIMENTAL EVALUATION

Two series of experiments were conducted. The first aimed
at investigating the throughput of a hybrid Web-OLAP
proxy, while the second used simulation in order to
determine the potential benefits in query cost terms.

5.1 System Throughput

Before proceeding with identifying the potential gains in
query cost terms, we investigated whether augmenting a
proxy with query answering capabilities has an adverse
effect on the throughput of the rest of HTTP requests. For

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1129

this reason, we built a limited HTTP server to act as a Web
proxy. The Web proxy had a pool of 10,000 files of 35Kbytes
each. Answering OLAP queries was the task of another
server process, while requests were generated by a client
process. We conducted the experiments using two distinct
machines (one hosting the two server processes and the
other the client process), connected over an Ethernet LAN.
OLAP queries were modeled as aggregations over a certain
number of rows. Every experiment involved a total of
10,000 requests sent by the client. We measured the average
completion time for nonquery requests and compared it to
the respective time if no queries existed in the system, i.e.,

ThroughputChange¼TimeWithQueries�TimeNoQueries
TimeNoQueries

:

Fig. 5 presents the results for two distinct request arrival
rates (0.5 and 5 req/sec) as the number of rows each query
aggregates increases. The OLAP traffic percentage was
fixed to 10 percent. Two observations can be drawn from
the figure. First, the throughput of the system on nonquery
requests is significantly reduced only when the queries
operate on relatively large views (e.g., 10 million rows).
Second, the higher the overall request arrival rate, the
higher the negative effects. However, in practice, it is quite

unlikely that all queries will refer to large views. Never-
theless, if we are to prevent an even temporary throughput
drop (presumably due to a burst on highly computation
demanding queries) the proxy must avoid caching very
large views. Recall that the algorithm amortizes the view
benefit to its size, thus favoring small views for caching
purposes. Fig. 6 illustrates how increasing the OLAP ratio
affects the completion time of the remaining HTTP requests.
The figure shows an almost linear increase of the comple-
tion time, while the negative effects are again more obvious
for larger request arrival rates.

In the final experiment, we tested whether fetching
views has an adverse effect on the system throughput. Fig. 7
shows the results as the view size increases for two different
frequencies of view transfers. The results show that the
system performance remains almost unaffected, although
there is a small throughput decrease especially toward the
end of the figure. Note that the results were obtained over a
LAN. In practice, we expect that whenever fetching large
views over the Internet is required, it will lead to a further
performance decrease. This adds another factor for which
caching large views must be avoided.

Overall, we conclude from the first series of experiments
that a hybrid Web-OLAP proxy will likely exhibit a small

1130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 4. Pseudocode of VHOW algorithm.

Fig. 5. Effects of query computation cost (Web:OLAP ratio = 90:10).

Fig. 6. Effects of OLAP request percentage (rows to aggregate =

100,000).

performance drop on the service of Web related traffic as
compared to its pure Web counterpart. However, the
negative effects can be restricted by avoiding loading the
proxy with large views.

5.2 Simulation Workload

Here, we present the second series of experiments based on
simulation runs. Three scenarios are considered for com-
parison: 1) a proxy that caches only normal Web pages
using the GDSP algorithm, 2) a proxy that caches only
OLAP views using the benefit function of (6) for replace-
ment, and 3) a proxy that implements VHOW. We measure
the performance of the alternatives, both in terms of Hit
Ratio (HR) and in terms of Cost Saving (CS) defined as:
ðWCost� PCostÞ=WCost, where Wcost is the cost occurred
when no proxy is available and Pcost the cost of each of the
proxy implementations.

In order to simulate the environment, we generated
representative workloads for both OLAP queries and Web
requests. For the OLAP queries, we employed the data set
from the APB benchmark [30]. The size of the entire cube
was around 3.5GB of tuples (each tuple being roughly
20 bytes). For the Web traffic we used a synthetic workload
with the page popularity following a Zipf distribution with
0.6 parameter and the size following a heavy tail one. The
average page size was 35K and this is also the value we
used for the static part of WOQP. We used a total of
2 million distinct Web pages, thus, equalizing the potential
traffic from OLAP and Web.

OLAP queries were generated using: 1) a uniform
distribution, i.e., the probability of a query to refer to a
node in the lattice was equal for all nodes, and 2) the 80-
20 rule, i.e., 20 percent of the lattice nodes (chosen as the
ones at the lowest lattice levels) accounted for 80 percent of

the queries (the remaining queries were distributed
randomly). The first method represents the situation that
is likely to appear when multiple users with diverse
interests rest behind the same proxy, while the later depicts
the case when users share common preferences. The final
input stream consisted of 10 million requests and was
created by first generating the pure Web traffic according to
the page popularities and randomly combining it with the
OLAP queries.

Since the views materialized at the DW server affect
the query costs and the caching decisions, we decided to
employ the VHOW at the server side, too. Furthermore,
we allowed the server to cache only 10 percent of the
data-cube (total size of views). Note that the only factor
that burdens the materialization of all the data-cube is the
storage capacity, i.e., we do not take into account update
constraints.

The query cost of a view (Fig. 3a) was assumed to be the
same (proportional to its size), regardless of whether it was
cached at the proxy or at the DW server. Strictly speaking,
this implies equal processing capabilities for the DW server
and the proxies, which is not expected to be the case in
practice. However, we were interested to test the scenario
whereby if the same answering view is cached at both the
proxy and the DW server, then the query is directed to the
proxy. This is a reasonable policy to follow whenever
offloading the DW server is of primary concern since it only
directs queries to the DW in case 1) the proxy is unable to
answer, or 2) the DW has a lower level (in the lattice) cached
view that can answer the query.

5.3 Simulation Results

Intuitively, caching OLAP data into the proxy server pays
off when there is a substantial amount of OLAP requests. In
the first set of experiments, the goal is to identify the ratio of
OLAP to common Web requests above which, VHOW is
beneficial. Fig. 8 and Fig. 9 compare the alternatives of
caching only normal Web pages (GDSP), OLAP views
(OLAP), and both using VHOW. The cache size is fixed to
be 1 percent of the data-cube, which also amounts to
roughly 1 percent of the total size of Web pages. The
network transfer rate is 32KBps and the percentage of non-
OLAP (i.e., Web requests) varies from 0 percent to
100 percent. Figs. 8a and 8b show the hit ratio achieved
by the algorithms when OLAP queries follow a uniform
distribution and the 80-20 rule, respectively.

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1131

Fig. 7. Effects of view fetching (Web:OLAP ratio = 90:10, arrival rate =

5 req/sec, rows to aggregate = 100,000).

Fig. 8. Hit ratio versus percentage of Web requests (1 percent cache). (a) Uniform queries and (b) 80-20 queries.

As expected, the performance of GDSP increases to the
percentage of Web requests, while OLAP follows an inverse
trend. The maximum hit ratio achieved by OLAP is higher
by about 13 percent compared to the one of GDSP. This is
because view interdependencies enable the proxy to answer
queries even if it does not have the referred view cached
(by deriving it from a higher level view as explained in
Section 2). VHOW combines the merits of both GDSP and
OLAP and, not surprisingly, outperforms for the biggest
part the alternatives. Note that when the Web percentage is
80 percent or higher (Fig. 8a) VHOW achieves slightly
worse hit ratio compared to GDSP. This is because OLAP
views are usually larger in size compared to Web pages
and, therefore, caching them, results in evicting many
pages. With only 20 percent of the requests being OLAP
oriented, the initial overhead of storing OLAP views is not
amortized (in hit ratio terms). When OLAP queries follow
the 80-20 rule, the impact of the initial overhead for caching
OLAP views is smoothened as it can be shown in Fig. 8b.
The same figure also shows that when queries are more
“concentrated,” OLAP and, subsequently, VHOW achieve
higher hit ratios compared to the uniform case.

Fig. 9 shows the performance of the algorithms in terms
of cost saving. The trends of the plots are the same as in
Fig. 8. Observe the cost difference between OLAP queries
and Web page accesses (GDSP and OLAP plots cross each
other at around 70 percent in Fig. 9a). This results in VHOW
being only marginally worse to GDSP when the Web traffic
accounts for 90 percent of the total and significantly
outperforming both alternatives in the rest of the cases.
As in the hit ratio case, the 80-20 rule results in increased
cost savings for VHOW (Fig. 9b). Fig. 10 shows the
performance of the different policies when the cache size

is 10 percent. With the cache size being substantial, VHOW
totally outperforms the other two strategies since enough
space is provided to cache both the most beneficial views
and the most popular pages. The plots for the hit ratio and
the 80-20 rule follow similar patterns and are not included.
In order to gain further insight on the behavior of VHOW,
we measured the average storage percentage allocated to
OLAP views throughout a simulation run.

Fig. 11 presents the results for the two query generation
strategies when the cache size is fixed to 10 percent. The
first observation is that uniform queries lead to higher
storage allocation for OLAP data, compared to queries
following the 80-20 rule. This can be explained since when
queries are evenly distributed to the lattice nodes, a larger
number of views becomes beneficial for caching purposes,
while on the other hand the 80-20 rule implies that caching
20 percent of the views is sufficient. From Fig. 11, we also
observe that the storage space allocated to OLAP is
disproportionably larger than its traffic when the majority
of the requests are from Web (70 percent and more). The
reason being the view sizes are much larger compared to
pages. This explains the slight performance advantage of
GDSP over VHOW for very high values of Web traffic.

In the general case, the experiments show that there
exists a threshold on the percentage of OLAP traffic, above
which caching OLAP data provides substantial benefits.
The value of this threshold depends on both the query
distribution and the cache size. For a small cache size of
1 percent, it was found that when OLAP traffic exceeds 10-
20 percent, caching OLAP views becomes beneficial. When
the cache size is 10 percent, the performance of VHOW is
marginally worse compared to GDSP in the case where the
Web traffic accounts for more than 94 percent of the total
(not shown in Fig. 7). The results are encouraging since in a

1132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 9. Cost saving versus percentage of Web requests (1 percent cache). (a) Uniform queries and (b) 80-20 queries.

Fig. 10. Cost saving versus percentage of Web requests (uniform

queries, 10 percent cache).

Fig. 11. Storage percentage allocated to OLAP versus percentage of

Web requests (10 percent cache).

decision making environment such OLAP traffic levels can
be easily reached. Notice that we did not record any case in
our simulations where OLAP outperformed VHOW,
probably due to the fact that Web pages follow a Zipf
distribution and, therefore, even when traffic is OLAP
predominant, caching the most popular Web pages is still
advantageous.

In the second set of experiments, we tested the
performance of VHOW when cache size varies between
0.1 percent and 10 percent of the total data-cube size. The
network transfer rate is again fixed to 32KBps and the
percentage of OLAP requests is 30 percent (Fig. 12a) and
70 percent (Fig. 12b). The performance for all algorithms
increases to the available cache size. We observe that
VHOW follows the same trend as GDSP when 70 percent of
the load comes from the Web and the same trend as OLAP
when 70 percent is for queries, while maintaining a clear
lead against both OLAP and GDSP. Another observation is
that the rate of performance increase for the algorithms
tends to drop (increasing the cache size from 1 percent to
10 percent accounts for an increase in performance that is
comparable to the one achieved by moving from 0.1 percent
to 1 percent).

In the final experiment, we investigate the performance
of the algorithms as a function of the transfer rates between
the proxy and the central DW. The ratio of Web requests
was fixed to 70 percent (solid lines) and 30 percent (dashed
lines), queries followed a uniform distribution, and the

network transfer rate varied from 32 KBps to 4 MBps.
Fig. 13 a presents the results for 1 percent cache size, while
Fig. 13b for 10 percent. We observe that CS decreases as the
network transfer rate increases. Recall from Section 4 that
the decision of whether to satisfy a query using the cached
views at the proxy or redirecting it to the DW depends on
both the processing cost and the network cost. Since the DW
materializes a substantial part of the data-cube there is a
high probability that the processing cost for answering a
query at the DW is lower than the one at the proxy. With a
higher transfer rate, more queries will be redirected to the
DW resulting to lowering the gains of VHOW. Since this
behavior is due to OLAP traffic, the performance drop is
more prominent in the 30 percent Web case (dashed lines),
while GDSP’s performance remains almost constant.

The above results indicate that in the presence of OLAP
queries traditional Web caching schemes can be inefficient.
The proposed architecture together with the cache algo-
rithm (VHOW) can result in improving the overall system
performance.

6 RELATED WORK

A relevant previous work is on the view selection problem
[15] where the authors proposed a greedy algorithm that
chooses a near-optimal set of views, given the storage
capacity constraint and an expected query workload. View
selection under update constraints was studied in [12]. The

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1133

Fig. 12. Cost saving versus cache size (uniform queries). (a) Web:OLAP ratio 70:30 and (b) Web:OLAP ratio 30:70.

Fig. 13. Cost saving versus network transfer rate for different Web:OLAP ratios (uniform queries). (a) 1 percent cache and (b) 10 percent cache.

approximation algorithm achieves in the worst-case solu-
tion quality within 63 percent of the optimal. In [5], the
search space of the problem is reduced by a heuristic that
excludes views irrelevant to the most frequent queries.
Another method for view selection, which is based on
sorting [34], has smaller computational overhead than the
method proposed in [15], while ensuring the same lower
worst case bound provided that the view sizes satisfy
certain conditions. In [36], the authors study the minimiza-
tion of both query execution and view maintenance costs,
under the constraint that all queries should be answered
from the selected views. The above methods aim at solving
a resulting optimization problem in a static and centralized
manner. Even though they can be considered for imple-
menting view selection in a central site if the query patterns
do not change frequently, they are not suitable for
materializing views in a dynamic environment.

In [20], the authors propose a method to dynamically
materialize and maintain fragments of OLAP views with
respect to both space and time constraints in a DW. In [21], the
authors consider a Web server linked to a DBMS and tackle
the problem of whether to cache views at the server, at the
DBMS, or compute them on the fly. In [20] and [21], the
authors propose caching algorithms that consider views as
the only objects to be cached. Thus, they can suffer from cache
pollution (i.e., previously popular documents fill the cache), if
applied directly to a Web environment. The work in [21]
assumes also transactional queries further differentiating it
from our work. A normalized cost caching and admission
algorithm for DW is presented in [32]. The same authors
proposed similar caching algorithms for Web proxies in [33],
without considering OLAP queries. Related also is the view-
based query containment problem, i.e., defining which views
can answer a query. Theoretical results for various problem
formulations are presented in [8]. The authors in [2] tackle the
problem from a template-based query caching perspective,
while [4] and [28] consider the case of materialized XPath
views. Here, once the query dimensions are defined, selecting
an appropriate view to answer the query involves a search in
the lattice (since only whole dimensions are considered for
materialization).

In [26], active caching is employed to store database
results in proxies, but only transactional (i.e., non-OLAP)
workloads are considered. The same authors in [27] use a
template-based approach to tackle the case of queries with
embedded calls to user defined functions. The problem of
caching OLAP results in a distributed environment is
studied in [18]. The same authors in [19] consider the use
of a P2P network for answering OLAP queries. Our work
differs from both [18] and [19] since we study OLAP query
caching under a Web context. Although in this paper we
used the Web proxy paradigm to illustrate our framework,
it is straightforward that our work is applicable in other
cases too, e.g., at a CDN (Content Distribution Network)
server should a CDN subscriber hosting a DW, deems
necessary to offload its servers by shifting part of the query
processing overhead to the CDN.

Various Web proxy caching algorithms exist in the
Internet literature [3], [9], [17], [24], [33], [38]. Our approach
is applicable in conjunction with these algorithms. Our aim
is not to propose a new Web caching algorithm, but rather

to provide a framework for caching OLAP views as well as
illustrating the problems that rise and coping with them.
Related to Web caching is the replica placement problem
[16], [23], [31], where the aim is to allocate objects to proxies
depending on past access frequencies. Although such
problem formulations bear the merits of optimizing a
global performance parameter (compared to the individual
performance of each proxy), they often lead to static,
centralized solutions, and are not widely deployed on the
Internet (as opposed to caching proxies).

7 CONCLUSIONS

In this paper, we considered the problem of minimizing the
cost of online analytical processing queries issued through
the Internet. Instead of depending on dedicated machines
with full DBMS capabilities, we consider the existing Web
proxy architecture. We proposed a novel scheme that allows a
proxy to reply to OLAP queries without necessarily having to
access the central DW. An analytical cost model is derived to
quantify the actual benefits. Furthermore, a suitable cache
algorithm (VHOW) is developed that judiciously treats
OLAP views and Web pages while taking into account the
different costs involved in each case. Results from the
simulation studies confirm the efficacy of the proposed
framework, even when the ratio of OLAP queries to normal
Web traffic is moderate. Naturally, deploying a distributed
database system with sufficient replication capabilities
would yield substantial performance benefits in such an
environment. We consider this work complimentary to this
option; for instance, when it is more cost effective due to lack
of funds to use the already existing Web equipment.

Strategies that refresh parts of the cached views and
invalidate others will most likely lead to increased perfor-
mance and are part of our future work. Moreover, we can take
advantage of the ICP (Internet Cache Protocol) [37] and the
proxy hierarchies as described in [11] to further reduce the
query costs. The intuition is that a proxy can fetch a view or
satisfy a query, by forwarding the request to a proxy located
close to him, instead of sending it to the central site. Research
in both directions can be extended using the proposed
framework, cost model, and caching algorithm.

ACKNOWLEDGMENTS

The authors wish to thank anyonymous reviewers for their
constructive suggestions.

REFERENCES

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams, and E. Fox,
“Caching Proxies: Limitations and Potentials,” Proc. Fourth Int’l
World Wide Web Conf.: The Web Revolution, pp. 119-133, Dec. 1995.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “Scalable
Template-Based Query Containment Checking for Web Semantic
Caches,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03), pp. 493-
504, 2003.

[3] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin,
“Evaluating Content Management Techniques for Web Proxy
Caches,” Proc. ACM SIGMETRICS Performance Evaluation Rev.,
vol. 27, no. 4, pp. 3-11, Mar. 2000.

[4] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh, “A
Framework for Using Materialized XPath Views in XML Query
Processing,” Proc. 30th Int’l Conf. Very Large DataBases (VLDB ’04),
pp. 60-71, 2004.

1134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

[5] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized View
Selection in a Multidimensional Database,” Proc. 23rd Int’l Conf.
Very Large Data Bases (VLDB ’97), pp. 156-165, 1997.

[6] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in
Web Client Access Patterns: Characteristics and Caching Implica-
tions,” World Wide Web J., vol. 2, nos. 1-2, pp. 15-28, 1999.

[7] A. Bestavros, “WWW Traffic Reduction and Load Balancing
through Server-Based Caching,” IEEE Concurrency, vol. 5, no. 1,
pp. 56-67, Jan.-Mar. 1997.

[8] D. Calvanese, G. Giacomo, M. Lenzerini, and M. Vardi, “View-
Based Query Containment,” Proc. 22nd ACM Symp. Principles of
Database Systems (PODS ’03), pp. 56-67, 2003.

[9] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. USENIX Symp. Internet Technology and Systems,
pp. 193-206, Dec. 1997.

[10] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching Dynamic
Contents on the Web,” Proc. Middleware ’98 Conf., pp. 373-388,
Sept. 1998.

[11] A. Chankhunthod, P.B. Danzig, C. Neerdals, M.F. Schwartz, and
K.J. Worrell, “A Hierarchical Internet Object Cache,” Proc.
USENIX Technical Conf., pp. 153-163, Jan. 1996.

[12] H. Gupta and I.S. Mumick, “Selection of Views to Materialize
Under a Maintenance-Time Constraint,” Proc. Int’l Conf. Database
Theory (ICDT ’99), pp. 453-470, 1999.

[13] J.S. Gwertzman and M. Seltzer, “The Case for Geographical Push-
Caching,” Proc. Fifth Workshop Hot Topics in Operating Systems
(HotOS-V), pp. 51-55, 1995.

[14] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge,
“The Stanford Data Warehousing Project,” IEEE Data Eng. Bull.,
vol. 18, no. 2, pp. 41-48, 1995.

[15] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing
Data Cubes Efficiently,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 205-216, 1996.

[16] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt, and L. Zhang, “On the
Placement of Internet Instrumentation,” Proc. IEEE INFOCOM ’00
Conf., pp. 295-304, Mar. 2000.

[17] S. Jin and A. Bestavros, “Popularity-Aware Greedy Dual-Size Web
Proxy Caching Algorithms,” Proc. 20th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’00), pp. 254-261, Apr. 2000.

[18] P. Kalnis and D. Papadias, “Proxy-Sever Architectures for OLAP,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 367-378,
2001.

[19] P. Kalnis, W. Siong, B. Ng, C. Ooi, D. Papadias, and K.L. Tan, “An
Adaptive Peer-to-Peer Network for Distributed Caching of OLAP
Results,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 25-36, 2002.

[20] Y. Kotidis and N. Roussopoulos, “DynaMat: A Dynamic View
Management System for Data Warehouses,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 371-382, 1999.

[21] A. Labrinidis and N. Roussopoulos, “WebView Materialization,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 367-378,
2000.

[22] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the
Optimization of Storage Capacity Allocation for Content Distribu-
tion,” Computer Networks, vol. 47, no. 3, pp. 409-428, 2005.

[23] B. Li, M. Golin, G. Italiano, and X. Deng, “On the Optimal
Placement of Web Proxies in the Internet,” Proc. IEEE INFOCOM
’99 Conf., pp. 1282-1290, 1999.

[24] P. Lorenzetti, L. Rizzo, and L. Vicisano, “Replacement Policies for
a Proxy Cache,” IEEE/ACM Trans. Networking, vol. 8, no. 2,
pp. 158-170, Apr. 2000.

[25] T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, “Active
Caching of On-Line-Analytical-Processing Queries in WWW
Proxies,” Proc. 30th Int’l Conf. Parallel Processing (ICPP ’01),
pp. 419-426, Sept. 2001.

[26] Q. Luo, J.F. Naughton, R. Krishnamurthy, P. Cao, and Y. Li,
“Active Query Caching for Database Web Servers,” Proc. Int’l
Workshop Web and Databases (WebDB), pp. 92-104, 2000.

[27] Q. Luo and W. Xue, “Template-Based Proxy Caching for Table-
Valued Functions,” Proc. Ninth Int’l Conf. Database Systems for
Advanced Applications (DASFAA ’04), pp. 339-351, 2004.

[28] B. Mandhani and D. Suciu, “Query Caching and View Selection
for XML Databases,” Proc. 31st Int’l Conf. Very Large Databases
(VLDB ’05), pp. 469-480, 2005.

[29] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. John Wiley and Sons, 1990.

[30] OLAP Council, “OLAP Council APB-1 OLAP Benchmark, Release
II,” http://www.olapcouncil.org, 2001.

[31] L. Qiu, V. Padmanabhan, and G. Voelker, “On the Placement of
Web Server Replicas,” Proc. IEEE INFOCOM ’01 Conf., pp. 1587-
1596, Apr. 2001.

[32] P. Scheuermann, J. Shim, and R. Vingralek, “WATCHMAN: A
Data Warehouse Intelligent Cache Manager,” Proc. 22nd Int’l Conf.
Very Large Databases (VLDB ’96), pp. 51-62, 1996.

[33] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache
Algorithms: Design, Implementation and Performance,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 4, pp. 549-562, July/
Aug. 1999.

[34] A. Shukla, P.M. Deshpande, and J.F. Naughton, “Materialized
View Selection for Multidimensional Data Sets,” Proc. 24th Int’l
Conf. Very Large Databases (VLDB ’98), pp. 488-499, 1998.

[35] W.R. Stevens, TCP/IP Illustrated, vol. 3. Addison-Wesley, 1996.
[36] D. Theodoratos and T.K. Sellis, “Data Warehouse Configuration,”

Proc. 23rd Int’l Conf. Very Large Databases (VLDB ’97), pp. 126-135,
1997.

[37] D. Wessels and K. Claffy, “Internet Cache Protocol (ICP) Version
2,” RFC2186, 1998.

[38] R. Wooster and M. Abrams, “Proxy Caching that Estimates Page
Load Delays,” Proc. Sixth Int’l World Wide Web Conf., pp. 977-986,
Apr. 1997.

[39] N.E. Young, “On-Line Caching as Cache Size Varies,” Proc. Symp.
Discrete Algorithms (SODA ’91), pp. 241-250, Jan. 1997.

Thanasis Loukopoulos received a diploma in
computer engineering and informatics from the
University of Patras, Greece, in 1997. He was
awarded the PhD degree in computer science by
the Hong Kong University of Science and
Technology (HKUST) in 2002. After receiving
the PhD, he worked as a visiting scholar in
HKUST. Currently, he is a visiting lecturer in the
Department of Computer and Communication
Engineering of the University of Thessaly,

Greece. His research interests include data management in content
distribution networks, video servers, P2P, and ad hoc networks.

Ishfaq Ahmad received the BSc degree in
electrical engineering from the University of
Engineering and Technology, Lahore, Pakistan,
in 1985, and the MS degree in computer
engineering and a PhD degree in computer
science from Syracuse University, New York, in
1987 and 1992, respectively. His recent re-
search focus has been on developing parallel
programming tools, scheduling and mapping
algorithms for scalable architectures, heteroge-

neous computing systems, distributed multimedia systems, video
compression techniques, and grid computing. His research work in
these areas is published in close to 200 technical papers in refereed
journals and conferences. He is currently a full professor of computer
science and engineering in the CSE Department of the University of
Texas at Arlington (UTA). At UTA, he leads IRIS (Institute for Research
In Security), a multidisciplinary research center engaged in safety and
security related technologies. He is an associate editor of Cluster
Computing, Journal of Parallel and Distributed Computing, IEEE
Transactions on Circuits and Systems for Video Technology, IEEE
Concurrency, and IEEE Distributed Systems Online. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LOUKOPOULOS AND AHMAD: POLICIES FOR CACHING OLAP QUERIES IN INTERNET PROXIES 1135

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

