
USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  17

IDO: Intelligent Data Outsourcing with Improved RAID Reconstruction
Performance in Large-Scale Data Centers

Suzhen Wu12, Hong Jiang2, Bo Mao2

1Computer Science Department, Xiamen University
2Department of Computer Science & Engineering, University of Nebraska-Lincoln

suzhen@xmu.edu.cn, {jiang, bmao}@cse.unl.edu

Abstract
Dealing with disk failures has become an increasingly
common task for system administrators in the face of
high disk failure rates in large-scale data centers consist-
ing of hundreds of thousands of disks. Thus, achieving
fast recovery from disk failures in general and high on-
line RAID-reconstruction performance in particular has
become crucial. To address the problem, this paper pro-
poses IDO (Intelligent Data Outsourcing), a proactive
and zone-based optimization, to significantly improve
on-line RAID-reconstruction performance. IDO moves
popular data zones that are proactively identified in the
normal state to a surrogate set at the onset of reconstruc-
tion. Thus, IDO enables most, if not all, user I/O requests
to be serviced by the surrogate set instead of the degraded
set during reconstruction.

Extensive trace-driven experiments on our lightweight
prototype implementation of IDO demonstrate that, com-
pared with the existing state-of-the-art reconstruction ap-
proaches WorkOut and VDF, IDO simultaneously speeds
up the reconstruction time and the average user re-
sponse time. Moreover, IDO can be extended to im-
proving the performance of other background RAID sup-
port tasks, such as re-synchronization, RAID reshape and
disk scrubbing.

1 Introduction

RAID [16] has been widely deployed in large-scale data
centers owing to its high reliability and availability. For
the purpose of data integrity and reliability, RAID can re-
cover the lost data in case of disk failures, a process also
known as RAID reconstruction. With the growing num-
ber and capacity of disks in data centers, the slow perfor-
mance improvement of the disks and the increasing disk
failure rate in such environments [18, 20], the RAID re-
construction is poised to become the norm rather than the
exception in large-scale data centers [2,5,6]. Moreover, it

was also pointed out that the probability of a second disk
failure in a RAID system during reconstruction increases
with the reconstruction time: approximately 0.5%, 1.0%
and 1.4% for one hour, 3 hours and 6 hours of recon-
struction time, respectively [6]. If another disk failure
or latent sector errors [3] occur during RAID5 recon-
struction, data will be lost, which is unacceptable for end
users and makes the use of RAID6 more necessary and
urgent. Therefore, the performance of on-line RAID re-
construction is of great importance to the reliability and
availability of large-scale RAID-structured storage sys-
tems.

A number of optimizations have been proposed to im-
prove the on-line RAID-reconstruction performance [8,
12, 21–24, 26, 28–31]. However, all of them are failure-
induced or reactive optimizations and thus passive. In
other words, they are triggered after a disk failure has
been detected and focus on either improving the recon-
struction workflow [23,26,30] or alleviating the user I/O
intensity during RAID reconstruction [24,28,29] but not
both. In fact, our workload analysis reveals that the re-
active optimization is far from being adequate (see Sec-
tion 2.3 for details).

On the other hand, from extensive evaluations and
analysis, our previous studies and research by others
have found that user I/O intensity during reconstruc-
tion has a significant impact on the on-line RAID-
reconstruction performance because there are mutually
adversary impacts between reconstruction I/O requests
and user I/O requests [23, 24, 28]. This is why the time
spent on the on-line RAID reconstruction is much longer
than that on its off-line counterpart [7]. However, ex-
isting on-line RAID reconstruction approaches, such as
WorkOut and VDF, only exploit the temporal locality of
workloads to reduce the user I/O requests during recon-
struction, which results in very poor reconstruction per-
formance under workloads with poor temporal locality,
as clearly evidenced in the results under the Microsoft
Project trace that lacks temporal locality (see Section 4



18  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

for details). Therefore, we strongly believe that both the
temporal locality and spatial locality of user I/O requests
must be simultaneously exploited to further improve the
on-line RAID-reconstruction performance.

Based on these observations, we propose a novel re-
construction scheme, called IDO (Intelligent Data Out-
sourcing), to significantly improve the on-line RAID-
reconstruction performance in large-scale data centers by
proactively exploiting data access patterns to judiciously
outsource data. The main idea of IDO is to divide the en-
tire RAID storage space into zones and identify the pop-
ularity of these zones in the normal operational state, in
anticipation for data reconstruction and migration. Upon
a disk failure, IDO reconstructs the lost data blocks be-
longing to the hot zones prior to those belonging to the
cold zones and, at the same time, migrates these fetched
hot data to a surrogate RAID set (i.e., a set of spare disks
or free space on another live RAID set [28]). After all
data in the hot zones is migrated, most subsequent user
I/O requests can be serviced directly by the surrogate
RAID set instead of the much slower degraded RAID set.
By simultaneously optimizing the reconstruction work-
flow and alleviating the user I/O intensity, the reconstruc-
tion speed of the degraded RAID set is accelerated and
the user I/O requests are more effectively serviced, thus
significantly reducing both the reconstruction time and
the average user response time.

The technique of data migration has been well studied
for performance improvement [1,10,11] and energy effi-
ciency [17,25] of storage systems, IDO adopts this tech-
nique in a unique way to significantly optimize the in-
creasingly critical RAID reconstruction process in large-
scale data centers. Even though IDO works for all RAID
levels, we have implemented the IDO prototype by em-
bedding it into the Linux software RAID5/6 module as
a representative case study to assess IDO’s performance
and effectiveness. The extensive trace-driven evaluations
show that IDO speeds up WorkOut [28] by a factor of up
to 2.6 with an average of 2.0 in terms of the reconstruc-
tion time, and by a factor of up to 1.7 with an average
of 1.3 in terms of the average user response time. IDO
speeds up VDF [24] by a factor of up to 4.1 with an av-
erage of 3.0 in terms of the reconstruction time, and by a
factor of up to 3.7 with an average of 2.3 in terms of the
average user response time.

More specifically, IDO has the following salient fea-
tures:

• IDO is a proactive optimization that dynamically
captures the data popularity in a RAID system dur-
ing the normal operational state.

• IDO exploits both the temporal locality and spatial
locality of workloads on all disks to improve the on-
line RAID-reconstruction performance.

• IDO optimizes both the reconstruction workflow
and user I/O intensity to improve the RAID-
reconstruction performance.

• IDO is simple and independent of the existing
RAID tasks, thus it can be easily extended to im-
prove the performance of other background tasks,
such as re-synchronization, RAID reshape and disk
scrubbing.

The rest of this paper is organized as follows. Back-
ground and motivation are presented in Section 2. We de-
scribe the design of IDO in Section 3. Methodology and
results of a prototype evaluation of IDO are presented
in Section 4. The main contributions of this paper and
directions for the future research are summarized in Sec-
tion 5.

2 Background and Motivation

In this section, we provide the necessary background
about RAID reconstruction and key observations that
motivate our work and facilitate our presentation of IDO
in the later sections.

2.1 RAID reconstruction

Recent studies of field data on partial or complete disk
failures in large-scale data centers indicate that disk fail-
ures happen at a higher rate than expected [3, 18, 20].
Schroeder & Gibson [20] found that annual disk re-
placement rates in the real world exceed 1%, with 2%-
4% on average and up to 13% in some systems, much
higher than 0.88%, the annual failure rates (AFR) spec-
ified by the manufacturer’s datasheet. Bairavasundaram
et al. [3] observed that the probability of latent sector
errors, which can lead to disk replacement, is 3.45%
in their study. The high disk failure rates, combined
with the continuously increasing number and capacity
of drives in large-scale data centers, are poised to ren-
der the reconstruction mode the common mode, instead
of the exceptional mode, of operation in large-scale data
centers [5, 6].

Figure 1 shows an overview of on-line reconstruc-
tion for a RAID5/6 disk array that continues to serve
the user I/O requests in a degraded mode. The RAID-
reconstruction thread issues reconstruction I/O requests
to all the surviving disks and rebuilds the data blocks of
the failed disk to the new, replacement disk. In the mean-
time, the degraded RAID5/6 set must service the user I/O
requests that are evenly distributed to all the surviving
disks. Thus, during on-line RAID reconstruction, recon-
struction requests and user I/O requests will compete for



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  19

the bandwidth of the surviving disks and adversely af-
fect each other. User I/O requests delay the reconstruc-
tion process while the reconstruction process increases
the user response time. Previous studies [23, 24, 28]
have demonstrated that reducing the amount of user I/O
traffic directed to the degraded RAID set is an effective
approach to simultaneously reducing the reconstruction
time and alleviating the user performance degradation,
thus improving both reliability and availability of stor-
age systems.

 
  












Figure 1: An overview of on-line reconstruction process
for a RAID5/6 disk array.

2.2 Existing reconstruction approaches
Since RAID [16] was proposed, a rich body of research
on the on-line RAID reconstruction optimization has
been reported in the literature. Generally speaking, these
approaches can be categorized into two types: optimiz-
ing the reconstruction workflow and optimizing the user
I/O requests.

The first type of reconstruction optimization meth-
ods improve performance by adjusting the reconstruc-
tion workflow. Examples of this include SOR [9],
DOR [8], PR [12], Live-block recovery [21], PRO [23],
and JOR [27]. DOR [8] assigns one reconstruction
thread for each disk, unlike SOR [9] that assigns one
reconstruction thread for each stripe, allowing DOR to
efficiently exploit the disk bandwidth to improve the
RAID reconstruction performance. Live-block recov-
ery [21] and JOR [27] exploit the data liveness semantics
to reduce the RAID reconstruction time by ignoring the
“dead” (no longer used) data blocks on the failed disk.
PRO [23] exploits the user access locality by first recon-
structing the hot data blocks on the failed disk. When
the hot data blocks have been recovered, the reconstruc-
tion process for read requests to the failed disk can be
significantly reduced, thus reducing both the reconstruc-
tion time and user I/O response time. Although the
above reconstruction-workflow-optimized schemes can
also improve the user I/O performance, the improvement
is limited because the user I/O requests still must be ser-
viced by the degraded RAID set. Therefore, the con-

tention between user I/O requests and reconstruction I/O
requests still persists.

The second type of reconstruction optimization meth-
ods improve performance by optimizing the user I/O re-
quests. Examples of this include MICRO [30], Work-
Out [28], Shaper [29], and VDF [24]. These optimization
approaches directly improve the user I/O performance
during reconstruction while simultaneously improving
the reconstruction performance by allocating much more
disk resources to the reconstruction I/O requests. MI-
CRO [30] is proposed to collaboratively utilize the stor-
age cache and the RAID controller cache to reduce the
number of physical disk accesses caused by RAID re-
construction. VDF [24] improves the reconstruction per-
formance by keeping the user requests belonging to the
failed disk longer in the cache. However, if the requested
data belonging to the failed disk have already been re-
constructed to the replacement disk, the access delays
of these user requests will not be further improved be-
cause they behave exactly the same as those of the data
blocks belonging to the surviving disks [13]. Therefore,
when VDF is incorporated into PRO [23], the improve-
ment achieved by VDF will be significantly reduced.
Both Shaper [29] and VDF [24] use the reconstruction-
aware storage cache to selectively filter the user I/O re-
quests, thus improving both the reconstruction perfor-
mance and user I/O performance. Different from them,
WorkOut [28] aims to alleviate the user I/O intensity on
the entire degraded RAID set, not just the failed disk,
during reconstruction by redirecting many user I/O re-
quests to a surrogate RAID set.

While optimizing the user I/O requests can also re-
duce the on-line RAID reconstruction time, the perfor-
mance improvement of the user-I/O-requests-optimized
approaches above is limited. For example, both Work-
Out and VDF only exploit the temporal locality of read
requests, ignoring the beneficial spatial locality existing
among read requests. Moreover, VDF gives higher pri-
ority to the user I/O requests addressed at the failed disk.
However, the RAID reconstruction process involves all
disks and the user I/O requests on the surviving disks also
affect the reconstruction performance. And most im-
portantly, the access locality tracking functions in these
schemes are all initiated after a disk fails, which is pas-
sive and less effective.

2.3 Reactive vs. Proactive

The existing reconstruction optimizations initiate the re-
construction process only after a disk failure occurs,
which we refer to as failure-induced or reactive opti-
mizations, and thus are passive in nature. For example,
PRO [23] and WorkOut [28] identify the popular data
during reconstruction, which may result in insufficient



20  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

identification and exploitation of popular data. Com-
pared with the normal operational state, the reconstruc-
tion period is too short to identify a sufficient amount
of popular data by the reconstruction optimizations, as
clearly evidenced by our experimental results in Sec-
tion 2.5.

If the user I/O requests are monitored in the normal
operational state, the popular data zones can be proac-
tively identified before and in anticipation of a disk fail-
ure. Once a disk failure occurs, the optimization works
immediately and efficiently by leveraging the data popu-
larity information already identified. We call this process
a proactive optimization, to contrast to its reactive coun-
terpart. Figure 2 shows a comparison of user I/O perfor-
mance between a reactive optimization and a proactive
optimization, where the performance is degraded by the
RAID reconstruction and returns to its normal level after
completing the recovery. We can see that the proactive
approach takes effect much faster than the reactive ap-
proach, shortening the reconstruction time. The reason is
that the proactive approach with its popular data already
accurately identified prior to the onset of the disk failure,
can start reconstructing lost data immediately without the
substantially extra amount of time required by the reac-
tive approach to identify the popular data blocks.







































 



 





 



Figure 2: Comparisons of user I/O performance and re-
construction time between (a) reactive optimization and
(b) proactive optimization. Note that 𝑇𝑇𝑟𝑟 and 𝑇𝑇𝑝𝑝 indicate
the period of hot data identification, 𝑇𝑇𝑟𝑟𝑟𝑟 and 𝑇𝑇𝑝𝑝𝑝𝑝 denote
the reconstruction time, and 𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑟𝑟𝑟𝑟. In general, 𝑇𝑇𝑟𝑟 ≪
𝑇𝑇𝑝𝑝 and 𝑇𝑇𝑟𝑟𝑟𝑟>𝑇𝑇𝑝𝑝𝑝𝑝.

In large-scale data centers consisting of hundreds of
thousands of disks, proactive optimization is very im-
portant because the disk-failure events are becoming the
norm rather than the exception, for which RAID recon-
struction is thus becoming a normal operation [5, 6].

2.4 Temporal locality vs. Spatial locality

In storage systems, access locality is reflected by the
phenomenon of the same storage locations or closely
nearby storage locations being frequently and repeatedly
accessed. There are two dimensions of access locality.
Temporal locality, on the time dimension, refers to the re-
peated accesses to specific data blocks within relatively
small time durations. Spatial locality, on the space di-
mension, refers to the clustered accesses to data objects
within small regions of storage locations within a short
timeframe. These two access localities are the basic de-
sign motivations for storage-system optimizations.

Previous studies on RAID-reconstruction optimiza-
tions, such as VDF and WorkOut, use request-based
optimization that only exploits the temporal locality of
workloads, but not the spatial locality to reduce user I/O
requests. PRO [23] and VDF [24] only focus on optimiz-
ing (i.e., tracking or reducing) the user I/O requests to the
failed disk, thus they ignore spatial locality and the im-
pact of the user I/O requests on the surviving disks that
also have notable performance impact on RAID recon-
struction. Moreover, given the wide deployment of large-
capacity DRAMs and flash-based SSDs as cache/buffer
devices above HDDs to exploit temporal locality, the vis-
ible temporal locality at the HDD-based storage level is
arguably very low. This is because of the filtering of
the upper-level caches, while the visible spatial local-
ity remains relatively high. The high cost of DRAMs
and SSDs relative to that of HDDs makes good design
sense for new system optimizations to put the large and
sequential data blocks on HDDs for their high sequential
performance, but cache the random and hot small data
blocks in DRAMs and SSDs for their high random per-
formance [4,19]. As a result, these new system optimiza-
tions will likely render the existing temporal-locality-
only RAID-reconstruction optimizations ineffective.

In order to capture both temporal locality and spatial
locality to reduce the user I/O requests during recon-
struction, we argue that zone-based, rather than request-
based, data popularity identification and data migration
schemes should be used. By migrating the “hot” and
popular data zones to a surrogate RAID set immedi-
ately after a disk fails, it enables the subsequent user I/O
requests to be serviced by the surrogate set during re-
construction. This improves the system performance by
fully exploiting the spatial locality of the workload. In
the meantime, the reconstruction process should rebuild
the hot zones, rather than sequentially from the begin-
ning to the end of the failed disk, to take the user I/O
requests into consideration. By reconstructing the hot
zones first, the data-migration overhead is reduced and
most of the subsequent user I/O requests can be serviced
by the surrogate set during reconstruction. In so doing,



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  21

the reconstruction workflow and the user I/O requests are
simultaneously optimized to take the full advantages of
both the temporal locality and spatial locality of work-
loads.

Figure 3 shows an example in which the request-based
approach works in a reactive way by migrating the re-
quested data on demand and thus fails to exploit the
spatial locality. In contrast, the zone-based approach
works in a proactive way by migrating the hot data
zones, proactively identified during the normal opera-
tional state, to allow subsequent user read requests hit
in the migrated data zones serviced by the surrogate set,
thus further reducing the user I/O requests to the de-
graded RAID set during reconstruction.



 











  



















   









Figure 3: The I/O requests issued to the degraded RAID
set with (a) a request-based approach and (b) a zone-
based approach.

2.5 IDO motivation

Because user I/O intensity directly affects the RAID-
reconstruction performance [28], we plot in Figure 4
the amount of user I/O traffic removed by a reactive
request-based optimization (Reactive-request), a reac-
tive zone-based optimization (Reactive-zone), a proac-
tive request-based optimization (Proactive-request) and a
proactive zone-based optimization (Proactive-zone), un-
der the three representative traces, WebSearch2.spc, Fi-
nancial2.spc and Microsoft Project. Each trace is divided
into two disjoint parts, one runs in the normal opera-
tional state and the other runs in the reconstruction state.
The reactive optimization, either request-based or zone-
based, exploits the locality of user I/O requests in the
reconstruction state and migrates the popular requests or
zones to a surrogate set to allow the subsequent repeated
read requests to be serviced by the surrogate set. The
proactive scheme, either request-based or zone-based,

exploits locality of user I/O requests by identifying the
popular requests or hot zones in the normal operational
state and migrating the hot requests or hot data zones to a
surrogate set immediately after a disk fails, allowing any
subsequent read requests that hit these migrated hot re-
quests or zones to be serviced by the surrogate set during
reconstruction.













  

































Figure 4: A comparison of the user I/O traffic removed
from the degraded RAID set by a reactive request-based
optimization (Reactive-request), a reactive zone-based
optimization (Reactive-zone), a proactive request-based
optimization (Proactive-request) and a proactive zone-
based optimization (Proactive-zone), driven by three rep-
resentative traces.

From Figure 4, we can see that the reactive-request
scheme only exploits the data temporal locality in the
reconstruction state, thus failing to remove a significant
amount of user I/O traffic from the degraded RAID set.
For traces with high spatial locality, such as the Mi-
crosoft Project trace, the reactive-zone scheme works
better than the reactive-request scheme by removing an
additional 30.5% of user I/O traffic from the degraded
RAID set. For traces with high locality, be it tempo-
ral locality or spatial locality, the proactive approach
removes much more user I/O traffic than the reactive
approach. For example, the proactive-request scheme
removes 41.4% and 21.2% more user I/O traffic than
the reactive-request scheme for the WebSearch2.spc and
Microsoft Project traces, respectively. By combining
the proactive and zone approaches, the proactive-zone
scheme removes the highest amount of the user I/O traf-
fic from the degraded RAID set, with up to 89.8%,
81.2%, and 61.9% of the user I/O traffic being removed
during reconstruction for the WebSearch2.spc, Finan-
cials.spc and Microsoft Project traces, respectively.

Clearly, the proactive optimization is much more effi-
cient and effective than its reactive counterpart. More-
over, exploiting both the temporal locality and spatial lo-
cality (i.e., zone-based) is better than exploiting only the
temporal locality (i.e., request-based), especially for the
HDD-based RAIDs in the new HDD/SSD hybrid storage
systems. If the hot data zones have been identified in the
normal operational state (i.e., without any disk failures)



22  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

and the data in these hot zones is migrated to a surrogate
set at the beginning of the reconstruction period, the on-
line RAID-reconstruction performance and user I/O per-
formance can be simultaneously significantly improved.

Table 1 compares IDO with state-of-the-art recon-
struction optimizations PRO, WorkOut and VDF based
on several important RAID reconstruction characteris-
tics. WorkOut [28] and VDF [24] only exploit the tem-
poral locality of workloads to reduce the user I/O re-
quests during reconstruction but ignore the spatial local-
ity. PRO [23] and VDF [24] only focus on optimizing
(i.e., tracking or reducing) the user I/O requests to the
failed disk but ignore the impact of the user I/O requests
to the surviving disks that also have notable performance
impact on RAID reconstruction. In contrast, IDO tracks
all the user I/O requests addressed to the degraded RAID
set in the normal operational state to obtain the data pop-
ularity information. Moreover, it exploits both the tem-
poral locality and spatial locality of user I/O requests to
both optimize the reconstruction workflow and alleviate
the user I/O intensity to the degraded RAID set. Thus,
both the RAID reconstruction performance and user I/O
performance are simultaneously improved.

Table 1: Comparison of the reconstruction schemes.
Characteristics PRO [23] WorkOut [28] VDF [24] IDO
Proactive ✓
Temporal Locality ✓ ✓ ✓ ✓
Spatial Locality ✓ ✓
User I/O ✓ ✓ ✓
Reconstruction I/O ✓ ✓

3 Intelligent Data Outsourcing

In this section, we first outline the main design objec-
tives of IDO. Then we present its architecture overview
and key data structures, followed by a description of the
hot data identification, data reconstruction and migration
processes. The data consistency issue in IDO is dis-
cussed at the end of this section.

3.1 Design objectives
The design of IDO aims to achieve the following three
objectives.

• Accelerating the RAID reconstruction performance
- By removing most of user I/O requests from the
degraded RAID set, the RAID reconstruction pro-
cess can be significantly accelerated.

• Improving the user I/O performance - By migrat-
ing the data belonging to the proactively identified
hot zones to a surrogate RAID set, most subsequent
user I/O requests can be serviced by the surrogate
RAID set that is not affected by the RAID recon-
struction process.

• Providing high extendibility - IDO is very simple
and can be easily incorporated into the RAID func-
tional module and extended into other background
RAID tasks, such as re-synchronization, RAID re-
shape and disk scrubbing.

3.2 IDO architecture overview

IDO operates beneath the applications and above the
RAID systems of a large data center consisting of hun-
dreds or thousands of RAID sets, as shown in Figure 5.
There are two types of RAID sets, working RAID sets
and surrogate RAID sets. A working RAID set, upon a
disk failure, becomes a degraded RAID set and is paired
with a surrogate RAID set for the duration of reconstruc-
tion. A surrogate RAID set can be a dedicated RAID
set that is shared by multiple RAID sets, or a RAID
set that is capacity-shared with a lightly-loaded working
RAID set. The dedicated surrogate RAID set improves
the system performance but introduces extra device over-
head, while the capacity-shared surrogate RAID set does
not introduce extra device overhead but affects the per-
formance of its own user applications. However, both
are feasible and available for system administrators to
choose from based on their characteristics and the system
requirements. Moreover, the surrogate RAID set can be
in the local storage node or a remote storage node con-
nected by a network.



































  























Figure 5: An architecture overview of IDO.

IDO consists of four key functional modules: Hot
Zone Identifier, Request Distributor, Data Migrator and
Data Reclaimer, as shown in Figure 5. Hot Zone Identi-
fier is responsible for identifying the hot data zones in
the RAID system based on the incoming user I/O re-
quests. Request Distributor is responsible for directing
the user I/O requests during reconstruction to the appro-
priate RAID set, i.e., the degraded RAID set or the surro-
gate RAID set. Data Migrator is responsible for migrat-
ing all the data in the hot zones from the degraded RAID
set to the surrogate RAID set, while Data Reclaimer is
responsible for reclaiming all the redirected write data to



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  23

the newly recovered RAID set, i.e., the previously de-
graded RAID set that has completed the reconstruction
process. The detailed descriptions of these functional
modules are presented in the following subsections.

IDO is an independent module added to an existing
RAID system and interacts with its reconstruction mod-
ule. In the normal operational state, only the Hot Zone
Identifier module is active and tracks the popularity of
each data zone. The other three modules of IDO re-
main inactive until the reconstruction module automat-
ically activates them when the reconstruction thread ini-
tiates. They are deactivated when the reclaim process
completes. The reclaim thread is triggered by the recon-
struction module when the reconstruction process com-
pletes. IDO can also be incorporated into any RAID
software to improve other background RAID tasks. In
this paper, we mainly focus on the RAID reconstruction,
but do include a short discusstion on how IDO works
for some other background RAID tasks. This discusstion
can be found in Section 4.4.

3.3 Key data structures
IDO relies on two key data structures to identify the hot
data zones and record the redirected write data, namely,
Zone Table and D Map, as shown in Figure 6. The
Zone Table contains the popularity information of all
data zones, represented by three variables: Num, Pop-
ularity and Flag. Num indicates the sequence number of
the data zone. Based on the Num value and the size of
a data zone, IDO can calculate the start offset and end
offset of the data zone to determine the target data zone
for the incoming read request. Popularity indicates the
popularity of the data zones. Its value is incremented
when a read request hits the corresponding data zone.
Flag indicates whether the corresponding data zone has
been reconstructed and migrated. It is initialized to “00”
and used by the Request Distributor module during the
reconstruction period. The different values of Flag rep-
resent different states of the corresponding data zones, as
shown in Figure 6.

 
 
 



 



 

 






Figure 6: Main data structures of IDO.

The user read requests addressed to the data zones al-
ready migrated to the surrogate RAID set are redirected
to it to reduce the user I/O traffic to the degraded RAID

set. Besides that, IDO also redirects all user write re-
quests to the surrogate RAID set to further alleviate the
I/O intensity on the degraded RAID set. The D Map
records the information of all the redirected write data,
including the following three variables. D Offset and
S Offset indicate the offsets of the redirected write data
on the degraded RAID set and the surrogate RAID set,
respectively. Len indicates the length of the redirected
write data. Similar to WorkOut [28], the redirected write
data is sequentially stored on the surrogate RAID set to
accelerate the write performance. Moreover, the redi-
rected write data is only temporarily stored on the surro-
gate RAID set and thus should be reclaimed to the newly
recovered RAID set after the reconstruction completes.

3.4 Hot data identification

IDO uses a dynamic hot data identification scheme, im-
plemented in the Hot Zone Identifier module, to exploit
both temporal locality and spatial locality of the user
I/O requests. Figure 7 shows the hot data identifica-
tion scheme in IDO. First, the entire RAID device space
is split into multiple equal-size data zones of multiple-
stripe size each. For example, in a 4-disk RAID5 set
with a 64KB chunk size (i.e., a stripe size of 3× 64KB
= 192KB), the size of a data zone should be multiple
times of 192KB. Therefore, a data zone is stripe aligned
and can be fetched together to reconstruct the lost data
blocks. Moreover, spatial locality of requests is also ex-
ploited since the tracking and migration unit of data is
a data zone, thus IDO can capture the spatial locality of
workloads by migrating data blocks prior to arrival of
user I/O requests for those blocks. A detailed evaluation
based on the selection of the different data zone sizes is
presented in Section 4.3.













  
  

  

  



Figure 7: Hot data identification scheme in IDO. Note
that the frequency of 𝑁𝑁∗ is defined as the number of user
I/O requests issued to the data zone in a time epoch.

Second, in order to effectively and accurately exploit
temporal locality of requests, the hot data zones in IDO
are aged by decreasing their popularity values with time.
More specifically, the popularity of a data zone in the
current time epoch is calculated by first halving its pop-
ularity value from the previous time epoch before adding
any values to it as more requests hit the zone in the cur-
rent epoch. For example, as shown in Figure 7, 𝑃𝑃2 is



24  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

equal to 𝑁𝑁2 plus half of 𝑃𝑃1 that is the popularity of the
same data zone in its former time epoch. When a time
epoch ends, the popularities of all data zones are halved
in value.

Third, in order to reduce the impact of the hot data
identification scheme on the system performance in the
normal operational state, IDO updates the Zone Table in
the main memory without any disk I/O operations. When
a read request arrives, IDO first checks its offset to locate
the data zone that it belongs to. Then, IDO increments
the corresponding Popularity in the Zone Table in the
main memory. Since the delay of the memory processing
is much smaller than that of the disk I/O operation, the
identification process in IDO has little performance im-
pact on the overall system performance. Moreover, with
the increasing processing power embedded in the stor-
age controller, some storage systems already implement
intelligent modules to identify the data popularity. Con-
sequently, IDO can also simply utilize these functionali-
ties to identify the hot data zones.

3.5 Data reconstruction and migration

Figure 8 shows the data reconstruction and migration
processes in IDO. When a disk fails, the RAID recon-
struction process is triggered with a hot spare disk in
the degraded RAID set. IDO first reconstructs data in
the hot data zones on the failed disk according to the
Zone Table. When the data blocks in the hot zones are
read, IDO reconstructs and concurrently migrates all the
data in these hot zones to the surrogate RAID set. Be-
cause the data is sequentially written on the surrogate
RAID set, the overhead of the data migration, i.e., writ-
ing the hot data to the surrogate RAID set, is minimal in
IDO. When a hot data zone has been reconstructed and
its data migrated to the surrogate RAID set, the corre-
sponding Flag in the Zone Table is set to “11”. After all
the hot data zones have been reconstructed, IDO begins
to reconstruct the remaining data zones. In order to re-
duce the space overhead on the surrogate RAID set, IDO
does not migrate the data in the cold data zones to the sur-
rogate RAID set. Moreover, migrating the cold data does
little to improve the overall system performance since
few subsequent user I/O requests will be issued to these
cold data zones. After a cold data zone has been recon-
structed, the corresponding Flag in the Zone Table is set
to “10”.

When all the data zones have been reconstructed, that
is, the RAID reconstruction process is completed, the re-
claim process for the redirected write data is initiated. In
IDO, the redirected write data on the surrogate RAID set
is protected by a redundancy scheme, such as RAID1 or
RAID5/6. The priority of the reclaim process is set to
be lower than the user I/O requests, which will not affect
















   

 

 

   

   ③ 

② ② ④







②




⑤
① 


  

  



Figure 8: Data reconstruction and migration in IDO.

the reliability of the RAID system [28]. Therefore, the
reclaim process for the redirected write data can also be
scheduled in the system idle period. When a redirected
write data block is reclaimed, its corresponding item in
the D Map is deleted. After all the items in the D Map
are deleted, the reclaim process completes.

During on-line RAID reconstruction, all incoming
user I/O requests are carefully checked. Upon the ar-
rival of a read request, IDO first determines its target data
zone according to the Zone Table and checks the second
bit of the corresponding Flag to determine whether the
data zone has been migrated or not (“1” indicates that the
data zone has been migrated, while “0” indicates the op-
posite). If the data zone has not been migrated, the read
request is issued to the degraded RAID set and the Popu-
larity of the corresponding data zone is updated. Other-
wise, the read request is issued to the surrogate RAID set.
In order to obtain the accurate location on the surrogate
RAID set, IDO checks the D Map to determine whether
the read request hits the previously redirected write data.
If so, the read request is issued to the surrogate RAID set
according to the S Offset in the D Map. Otherwise, the
read request is issued to the surrogate RAID set accord-
ing to the Zone Table.

When processing a write request, the write data is se-
quentially written on the surrogate RAID set and IDO
checks whether the write request hits the D Map. If the
write request hits the D Map, the corresponding item in
the D Map is updated. Otherwise, a new item for the
write request is added to the D Map.

3.6 Data consistency

Data consistency in IDO includes two aspects: (1) The
key data structures must be safely stored, (2) The redi-
rected write data must be reliably stored on the surrogate
set until the data reclaim process completes.

First, to prevent the loss of the key data structures in
the event of a power supply failure or a system crash,
IDO stores them in a non-volatile RAM (NVRAM).
Since the size of Zone Table and D Map is generally
very small, it will not incur significant extra hardware



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  25

cost. Moreover, in order to improve the write perfor-
mance by using the write-back technique, the NVRAM
is commonly deployed in the storage controllers. Thus,
it is easy and reasonable to use the NVRAM to store the
key data structures.

Second, the redirected write data must be safely stored
on the surrogate set. To prevent data loss caused by a disk
failure on the surrogate set, the surrogate set must be pro-
tected by a redundancy scheme, such as mirroring-based
(RAID1) or parity-based (RAID5/6) disk arrays, a basic
requirement for the surrogate RAID set. Our previous
study [28] provides a detailed analysis on how to choose
a surrogate set based on the requirements and character-
istics of the applications. Moreover, since the up-to-date
data for a read request can be stored on either the de-
graded RAID set or the surrogate set, each read request
is first checked in the D Map to determine whether it
should be serviced by the degraded RAID set, the sur-
rogate set or both (when the data is partially modified)
to keep the fetched data always up-to-date, until all the
redirected write data has been reclaimed.

4 Performance Evaluation

In this section, we present the performance evaluation of
the IDO prototype through extensive trace-driven exper-
iments.

4.1 Experimental setup and methodology
We have implemented an IDO prototype by embedding
it into the Linux software RAID (MD) as a built-in mod-
ule. IDO tracks the user I/O requests in the make request
function to identify the data popularity in the normal op-
erational state. When a disk fails and the reconstruction
thread is initiated by the md do sync function, the hot
data zones are first reconstructed and migrated to the sur-
rogate set. During reconstruction, the incoming user read
requests are checked in the make request function to de-
termine by which device the requests are to be serviced,
so as to avoid the degraded set whenever possible. All
user write requests are issued to the surrogate set and
marked as dirty for reclaim after the RAID reconstruc-
tion process completes.

The performance evaluation of IDO was conducted
on a server-class hardware platform with an Intel Xeon
X3440 processor and 8GB DDR memory. The HDDs are
WDC WD1600AAJS SATA disks that were used to con-
figure both the active RAID set and the surrogate RAID
set. While the active set assumed a RAID5/6 organiza-
tion, the surrogate set was configured as a RAID1 orga-
nization with 2 HDDs. Further, the surrogate set can be
located either in the same storage node as the degraded
RAID set or in a remote storage node in a data center.
The rotational speed of these disks is 7200 RPM, with a

sustained transfer rate of 60MB/s that is specified in the
manufacture’s datasheet. We used 10GB of the capacity
of each disk for the experiments. A separate disk was
used to house the operating system (Linux kernel ver-
sion 2.6.35) and other software (MD and mdadm). In our
prototype implementation, the main memory was used to
substitute a battery-backed RAM for simplicity.

The traces used in our experiments were obtained from
the UMass Trace Repository [15] and Microsoft [14].
The two financial traces (short for Fin1 and Fin2) were
collected from the OLTP applications running at a large
financial institution and the WebSearch2 trace (short for
Web2) was collected from a machine running a web
search engine. The Microsoft Project trace was col-
lected in a volume storing the project directories (short
for Proj). The four traces represent different access pat-
terns in terms of read/write ratio, IOPS and average re-
quest size, with the main workload parameters summa-
rized in Table 2.

Table 2: The key evaluation workload parameters.

Trace Trace Characteristic
Read Ratio IOPS Aver. Req. Size(KB)

Fin1 32.8% 69 6.2
Fin2 82.4% 125 2.2
Web2 100% 113 15.1
Proj 97.6% 29 57.8

To better examine the IDO performance under existing
RAID reconstruction approaches, we incorporated IDO
into MD’s default reconstruction algorithm PR. We com-
pared IDO with two state-of-the-art RAID reconstruction
optimizations, WorkOut [28] and VDF [24], in terms of
reconstruction performance and user I/O performance.
WorkOut tracks the user access popularity and issues all
write requests and popular read requests to the surrogate
set during reconstruction. VDF exploits the fact that the
user I/O requests addressed to the failed disk are expen-
sive by keeping the requested data previously stored on
the failed disk longer in the storage cache and choosing
data blocks belonging to the surviving disks to evict first.
Because VDF is a cache replacement algorithm, we ap-
plied it to the management of the surrogate set to make
the comparison fair.

4.2 Performance results
We first conducted experiments on a 4-disk RAID5 set
with a stripe unit size of 64KB while running WorkOut,
VDF and IDO, respectively. Figure 9 shows the recon-
struction time and average user response time under the
minimum reconstruction bandwidth of 1MB/s, driven by
the four traces. We configured a local 2-disk dedicated
RAID1 set as the surrogate set to boost the reconstruc-
tion performance of the 4-disk degraded RAID5 set. For
IDO, the data zone size was set to 12MB.



26  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

















   
























(a) Reconstruction Time















   




















 




(b) Average Response Time

Figure 9: The performance results of WorkOut, VDF
and IDO in a 4-disk RAID5 set with a stripe unit size of
64KB, 1MB/s minimum reconstruction bandwidth, and a
local 2-disk dedicated RAID1 set as the surrogate RAID
set, driven by the four traces.

From Figure 9(a), we can see that IDO speeds up
WorkOut by a factor of 1.1, 2.1, 2.2 and 2.6, and speeds
up VDF by a factor of 4.1, 2.5, 2.7 and 2.7 in terms
of the reconstruction time for the Fin1, Fin2, Web2 and
Proj traces, respectively. IDO’s advantage stems from
its ability to remove much more user I/O requests from
the degraded RAID set than WorkOut and VDF, as in-
dicated in Figure 11, which enables it to accelerate the
RAID reconstruction process. However, since the Fin1
trace has much more write requests than read requests
(as indicated in Table 2), IDO and WorkOut have sim-
ilar abilities to remove the write requests from the de-
graded RAID set, reducing IDO’s performance advan-
tage over WorkOut. For the read-intensive traces, Fin2,
Web2 and Proj, IDO removes much more read requests
from the degraded RAID set than WorkOut. This is be-
cause IDO proactively identifies both the temporal lo-
cality and spatial locality in the normal operational state
and migrates the hot data zones at the onset of recon-
struction, while WorkOut only reactively identifies the
temporal locality and migrates the user I/O requests after
a disk fails. In this case, most subsequent read requests
addressed to these hot data zones in IDO can be serviced
directly by the surrogate RAID set instead of the much
slower degraded RAID set. As a result, IDO’s advantage
margin over WorkOut is much wider under these three
read-intensive traces than under the write-intensive Fin1
trace. For example, IDO reduces the reconstruction time
much more significantly than WorkOut under the Proj
trace because the Proj trace has poor temporal locality
that leaves WorkOut much less room to improve than the
spatial-locality-exploiting IDO.

On the other hand, from Figure 9(a), we can see that
the performance of both WorkOut and IDO are better
than that of VDF. The reason is that both WorkOut and
IDO reduce not only the user I/O requests to the failed
disk, but also the popular read requests and all write re-
quests to the surviving disks. VDF keeps the data blocks
belonging to the failed disk longer in the storage cache
because servicing these data blocks is much more ex-

pensive than servicing the data blocks belonging to the
surviving disks. However, if the data blocks belonging
to the failed disk are already reconstructed, they will be-
have exactly the same way as the data blocks belonging
to the surviving disks because the read redirection tech-
nique will fetch these data blocks directly from the re-
placement disk rather than reconstructing them from the
surviving disks again. In the VDF evaluation reported
in [24], the experimental kernel is Linux 2.6.32 without
the read redirection function that has been implemented
in the Linux MD software since Linux 2.6.35 [13]. The
results also confirm the conclusion made in our previous
WorkOut study that the user I/O intensity has a signifi-
cant impact on the on-line RAID reconstruction perfor-
mance.

Figure 9(b) shows that IDO speeds up WorkOut by a
factor of 1.1, 1.3, 1.1 and 1.7, and speeds up VDF by
a factor of 3.7, 2.4, 1.4 and 1.8 in terms of the average
user response time (i.e., user I/O performance) during re-
construction for the Fin1, Fin2, Web2 and Proj traces, re-
spectively. The reason why IDO only improves WorkOut
slightly is that the minimum reconstruction bandwidth is
set to be the default 1MB/s, which gives the user I/O re-
quests a higher priority than the reconstruction requests.
However, the performances of both IDO and WorkOut
are better than that of VDF because IDO and WorkOut
remove much more user I/O requests from the degraded
RAID set than VDF, as revealed in Figure 11. Remov-
ing the user I/O requests from the degraded RAID set
directly improves the user response time for the follow-
ing two reasons. First, the response time of the redirected
requests is no longer affected by the reconstruction pro-
cess that competes for the available disk bandwidth with
the user I/O requests on the degraded RAID set. More-
over, the redirected write data is sequentially laid out on
the surrogate RAID set, thus further reducing the user
response time. Second, many user I/O requests are re-
moved from the degraded RAID set and the I/O queue
on the degraded RAID set is accordingly shortened, thus
reducing the response time of the remaining user I/O re-
quests still serviced by the degraded RAID set.

Figure 10 compares in more details the reconstruction
and use I/O performances of IDO, WorkOut and VDF
during the reconstruction process, highlighting the sig-
nificant advantage of IDO over WorkOut and VDF. Two
aspects of the significant improvement in the user re-
sponse time are demonstrated in these figures. First, the
onset of the performance improvement of IDO is much
earlier than that of WorkOut and VDF during reconstruc-
tion. The reason is that IDO has already captured the
data popularity before a disk fails, thus enabling it to
optimize the reconstruction process earlier and conse-
quently outperform both WorkOut and VDF in terms of
user response time during reconstruction. Second, IDO



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  27







   























  






(a) Financial1.spc







   

























  




(b) Financial2.spc











     





















  





(c) WebSearch2.spc









     























  





(d) MSR Project

Figure 10: A comparison of user response times of WorkOut, VDF and IDO during reconstruction in a 4-disk RAID5
set with a stripe unit size of 64KB, 1MB/s minimum reconstruction bandwidth, and a local 2-disk dedicated RAID1
set as the surrogate RAID set, driven by the four traces.

completes the reconstruction process much more quickly
than WorkOut and VDF, which translates into improved
reliability. The RAID reconstruction period is also called
a “window of vulnerability” during which a subsequent
disk failure (or a series of subsequent disk failures) will
result in data loss [23]. Thus, shorter reconstruction
time indicates higher reliability. Furthermore, user I/O
requests in the IDO reconstruction experience a much
shorter period of time in which they see increased re-
sponse time than in the WorkOut and VDF reconstruc-
tion.

To gain a better understanding of the reasons behind
the significant improvement achieved by IDO, we plot-
ted the percentage of redirected requests for the three
schemes under the minimum reconstruction bandwidth
of 1MB/s. From Figure 11, we can see that IDO moves
88.1%, 78.7%, 72.4% and 42.0% of user I/O requests
from the degraded RAID set to the surrogate RAID set
for the four traces respectively, significantly more than
either WorkOut or VDF does. This is because both
WorkOut and VDF only exploit the temporal locality of
user I/O requests and VDF only gives higher priority to
the user I/O requests belonging to the failed disk. In con-
trast, IDO exploits both the temporal locality and spatial
locality on all disks, reconstructs the hot data zones first
and migrates them to the surrogate RAID set. And, most
importantly, IDO uses a proactive optimization that is
superior to the reactive optimizations, such as WorkOut
and VDF. On the other hand, removing user I/O requests
from the degraded RAID set directly reduces both the re-

construction time and user response time [28], something
that IDO does much better than either WorkOut or VDF.













   






















 

Figure 11: Percentage of redirected user I/O requests for
WorkOut, VDF and IDO under the minimum reconstruc-
tion bandwidth of 1MB/s.

We also conducted experiments on a 6-disk RAID6 set
(4 data + 2 parity) with a stripe unit size of 64KB under
the minimum reconstruction bandwidth of 1MB/s. In the
RAID6 experiments, we configured a 2-disk dedicated
RAID1 set in the same storage node as the local surrogate
set. In the experiments, we measured the reconstruction
times and the average user response times when one disk
fails.

From Figure 12, we can see that IDO improves both
the reconstruction times and the average user response
times over the WorkOut and VDF schemes. In particular,
IDO speeds up WorkOut by a factor of up to 1.9 with an
average of 1.4 in terms of the reconstruction time, and
by a factor of up to 2.1 with an average of 1.5 in terms
of the average user response time. IDO speeds up VDF



28  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

by a factor of up to 2.2 with an average of 1.7 in terms of
the reconstruction time, and by a factor of up to 2.7 with
an average of 2.0 in terms of the average user response
time.















   

























(a) Reconstruction Time











   




















 



(b) Average Response Time

Figure 12: Reconstruction times and average user re-
sponse times of RAID6 reconstruction.

The reason behind the improvement on RAID6 is sim-
ilar to that for RAID5. Upon a disk failure, all the disks
in RAID6, as in RAID5, will be involved in servicing
the reconstruction I/O requests. In the meantime, all the
disks will service the user I/O requests. Thus, remov-
ing the user I/O requests can directly speed up the re-
construction process by allowing much more disk band-
width to service the reconstruction I/O requests. More-
over, the average user response times also decrease be-
cause most of the user I/O requests are serviced on the
surrogate RAID set without interfering with the recon-
struction I/O requests. IDO works in a proactive way and
exploits both the temporal locality and spatial locality of
the user I/O requests, thus removing much more user I/O
requests from the degraded RAID set to the surrogate set
(as similarly indicated in the Figure 11) and performing
better than Workout and VDF.

4.3 Sensitivity study
The IDO performance is likely influenced by several
important factors, including the available reconstruction
bandwidth, the data zone size, the stripe unit size, the
number of disks, and the location of the surrogate set.

Reconstruction bandwidth. To evaluate how the
minimum reconstruction bandwidth affects the recon-
struction performance, we conducted experiments to
measure reconstruction time and average user response
time as a function of different minimum reconstruction
bandwidths, 1MB/s, 10MB/s and 100MB/s, respectively.
Figure 13 plotted the experimental results on a 4-disk
RAID5 set with a stripe unit size of 64KB and a data
zone size of 12MB.

From Figure 13(a), we can see that the reconstruction
time generally decreases with the increasing minimum
reconstruction bandwidth. However, for the Fin1, Fin2
and Proj traces, the reconstruction times remain almost
unchanged when the minimum reconstruction bandwidth
changes from 1MB/s to 10MB/s. The reason is that when

the minimum reconstruction bandwidth is 1MB/s, the ac-
tual reconstruction speed is around 10MB/s due to the
low user I/O intensity on the degraded RAID set. In
contrast, From Figure 13(b), we can see that the user re-
sponse time increases rapidly with the increasing min-
imum reconstruction bandwidth. When the minimum
reconstruction bandwidth increases, much more recon-
struction I/O requests are issued, thus lengthening the
disk I/O queue and increasing the user I/O response time.















  




























(a) Reconstruction Time









  




















 







(b) Average Response Time

Figure 13: Reconstruction times and average user re-
sponse times of IDO as a function of different mini-
mum reconstruction bandwidths (1MB/s, 10MB/s and
100MB/s) under the four traces.

Data zone size. In IDO, the data zone size is a key fac-
tor in identifying the data popularity. In order to evaluate
the effect of the data zone size on the reconstruction per-
formance and user I/O performance during reconstruc-
tion, we conducted experiments on a 4-disk RAID5 set
with a stripe unit size of 64KB and different data zone
sizes of 384KB, 3MB, 6MB, 12MB and 24MB, under
the minimal reconstruction bandwidth of 1MB/s.

The results, shown in Figure 14, indicate that, with
a very small data zone in one extreme, both the recon-
struction time and the user response time are increased.
The reason is that the reconstruction sequentiality is de-
stroyed with a very small data zone. Moreover, the spa-
tial locality is somewhat weakened with a very small
zone size, although highly concentrated temporal local-
ity is still captured. In the other extreme, with a very
large data zone, the reconstruction performance and the
user response time are again both increased. The reason
is that with a very large data zone, IDO will likely mi-
grate much more rarely-accessed cold data blocks to the
surrogate set, thus wasting the disk bandwidth resources.
Our experiments, driven by the four traces, seem to sug-
gest that the data zone sizes between 3MB to 12MB are
consistently the best.

Stripe unit size. To examine the impact of the stripe
unit size on the RAID reconstruction, we conducted ex-
periments on a 4-disk RAID5 set with stripe unit sizes of
4KB, 16KB and 64KB, respectively. The experimental
results show that the reconstruction times and user re-
sponse times are almost unchanged, suggesting that IDO



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  29

















    





























(a) Reconstruction Time











    






























(b) Average Response Time

Figure 14: Reconstruction times and average user re-
sponse times of IDO as a function of different data zone
size (384KB, 3MB, 6MB, 12MB and 24MB) under the
four traces.

is not sensitive to the stripe unit size. The reason is that
most user I/O requests are performed on the surrogate
RAID set, thus the stripe unit size of the degraded RAID
set has no impact on these redirected user I/O requests
and very little impact overall. Accordantly, the RAID re-
construction speed is not affected. Due to space limits,
these results are not shown here quantitatively.

Number of disks. To examine the sensitivity of IDO
to the number of disks of the degraded RAID set, we con-
ducted experiments on RAID5 sets consisting of differ-
ent numbers of disks (4 and 7) with a stripe unit size of
64KB under the minimum reconstruction bandwidth of
1MB/s. From Figure 15, we can see that the reconstruc-
tion time decreases with the increasing number of disks.
The reason is that the I/O intensity on individual disks
will decrease when the RAID set has more disks, allow-
ing for a shorter reconstruction time. However, the user
I/O requests are not significantly affected since they are
mostly serviced by the surrogate RAID set. The remain-
ing user I/O requests still performed on the degraded
RAID set only slightly affect the total user response time.















   



















 


(a) Reconstruction Time

















   




















 



(b) Average Response Time

Figure 15: Reconstruction times and average user re-
sponse times of IDO as a function of different numbers
of disks (4 and 7) under the four traces.

Location of the surrogate device. In a large-scale
data center, the location of the surrogate set can also af-
fect the RAID reconstruction performance. To examine
the impact of the location of the surrogate set on the re-
construction performance, we conducted experiments to
migrate the hot data to a different storage node connected
with a gigabit Ethernet interface in a local area network.

Figure 16(a) shows that the reconstruction time is al-
most unchanged, which indicates that the reconstruction
time is not sensitive to the location of the surrogate set.
The reason is that no matter where the surrogate set
is, the total numbers of redirected user I/O requests are
the same, thus the reconstruction speed of the degraded
RAID set is similar. On the other hand, the average user
response time increases significantly with a remote sur-
rogate set, as shown in Figure 16(b). The reason is that
the response time of the redirected user I/O requests must
now include the extra network delay with a remote sur-
rogate set. However, compared with PR (the default re-
construction algorithm of Linux MD), IDO still signifi-
cantly reduces the user response time and the reconstruc-
tion time with a remote surrogate set. The results sug-
gest that in a large-scale data center, both the local and
remote surrogate devices are helpful in improving the re-
construction performance, which further validates the ef-
fectiveness and adaptivity of IDO in large-scale data cen-
ters.











   





















 
 

(a) Reconstruction Time















   




















 

 
 

(b) Average Response Time

Figure 16: Reconstruction times and average user re-
sponse times with respect to different surrogate set lo-
cations under the four traces.

4.4 Extensibility
To demonstrate how IDO may be extended to optimize
other background RAID tasks, we incorporated IDO into
the RAID re-synchronization module. We conducted
experiments on a 4-disk RAID5 set with a stripe unit
size of 64KB under the minimum re-synchronization
bandwidth of 1MB/s, driven by the four traces. We
configured a dedicated 2-disk local RAID1 set as the
surrogate set. The experimental results of the re-
synchronization times and average user response times
during re-synchronization are shown in Figure 17.















   




























(a) Re-synchronization Time











   




















 




(b) Average Response Time

Figure 17: The re-synchronization results of the default
re-synchronization function in the Linux MD software
without any optimization, WorkOut and IDO.



30  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Although the RAID re-synchronization process op-
erates somewhat differently than the RAID reconstruc-
tion process, the re-synchronization requests compete
for the disk resources with the user I/O requests dur-
ing the on-line re-synchronization period in a way sim-
ilar to the latter. By redirecting a significant amount
of user I/O requests away from the RAID set under-
going re-synchronization, IDO can reduce both the re-
synchronization time and user response time. The results
are very similar to those in the above RAID reconstruc-
tion experiments, as are the reasons behind them.

4.5 Overhead analysis

Besides the device overhead for the surrogate set in the
case of dedicated surrogate sets [28], we analyzed the
following two overhead metrics in this paper: the perfor-
mance overhead in the normal operational state and the
memory overhead.

Performance overhead. Since IDO is a proactive op-
timization designed to improve the RAID reconstruction
performance, it requires a hot data identification mod-
ule that may affect the system performance in the normal
operational state. In order to quantify how much the im-
pact is, we conducted experiments to evaluate the user
response times in the normal operational state with and
without the hot data identification module.

From the experimental results, we find that the user re-
sponse times in the two cases remain roughly unchanged
under any of the four traces. In the worst case, the perfor-
mance with the module activated degrades by less than
3% under the WebSearcch2.spc trace. The reason is that
the hot data identification module only adds one extra
operation (i.e., incrementing the in-memory popularity
value of the corresponding data zone by one) for each
request. Thus the performance overhead is negligible in
face of the high latency of the disk accesses.

Memory overhead. To prevent data loss, IDO
uses non-volatile memory to store the Zone Table and
D Map, thus incurring extra memory overhead. How-
ever, IDO uses less non-volatile memory capacity than
WorkOut. The reason is that WorkOut migrates the user
requested data to the surrogate set while IDO migrates
the hot data zones. In WorkOut, each migrated write re-
quest and read request requires a corresponding entry in
the mapping table. However, in IDO, only the migrated
write requests and hot data zones require corresponding
entries in the mapping information. Since the number
of migrated hot data zones in IDO is generally much
smaller than the number of hot read requests in Work-
Out, the memory overhead of IDO is lower than that of
WorkOut.

In the above experiments on the RAID5 set with in-
dividual disk capacity of 10GB, the maximum memory

overheads are 0.11MB, 0.24MB, 0.11MB and 0.06MB
for the Fin1, Fin2, Web2 and Proj traces, respectively.
With the rapid increase in the size of memory and de-
crease in the cost of non-volatile memories, this memory
overhead of IDO is arguably reasonable and acceptable
to the end users.

5 Conclusion
In many data-intensive computing environments, espe-
cially data centers, large numbers of disks are organized
into various RAID architectures. Because of the in-
creased error rates for individual disk drives, the dramat-
ically increasing size of drives, and the slow growth in
transfer rates, the performance of RAID during its recon-
struction phase (after a disk failure) has become increas-
ingly important for system availability. We have shown
that IDO can substantially improve this performance at
low cost by using the free space available in these envi-
ronments. IDO proactively exploits both the temporal lo-
cality and spatial locality of user I/O requests to identify
the hot data zones in the normal operational state. When
a disk fails, IDO first reconstructs the lost data blocks on
the failed disk belonging to the hot data zones and con-
currently migrates them to a surrogate RAID set. This
enables most subsequent user I/O requests to be serviced
by the surrogate RAID set, thus improving both the re-
construction performance and user I/O performance.

IDO is an ongoing research project and we are cur-
rently exploring several directions for future research.
One possible direction is to design and conduct more ex-
periments to evaluate the IDO prototype for other back-
ground tasks (such as RAID reshape and disk scrubbing)
and other RAID levels (such as RAID10). Another is to
build a power measurement module to evaluate the en-
ergy efficiency of IDO. By proactively migrating the hot
data to the active RAID sets, the local RAID set can stay
longer in the idle mode to save energy by redirecting read
requests and write requests to the active RAID sets.

Acknowledgments
We thank our shepherd Andrew Hume, our mentor
Nicole Forsgren Velasquez, and the anonymous review-
ers for their helpful comments. This work is supported
by the National Science Foundation of China under
Grant No. 61100033, the US National Science Foun-
dation under Grant No. NSF-CNS-1116606, NSF-CNS-
1016609, NSF-IIS-0916859, and NSF-CCF-0937993.

References

[1] R. Arnan, E. Bachmat, T. Lam, and R. Michel. Dy-
namic Data Reallocation in Disk Arrays. ACM-
Transactions on Storage, 3(1):2, 2007.



USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  31

[2] Storage at Exascale: Some Thoughts from Panasas
CTO Garth Gibson. Interview.
http://www.hpcwire.com/hpcwire/
2011-05-25/storage_at_exascale_
some_thoughts_from_panasas_cto_
garth_gibson.html. May. 2011.

[3] L. N. Bairavasundaram, G. R. Goodson, S. Pasupa-
thy, and J. Schindler. An Analysis of Latent Sector
Errors in Disk Drives. In SIGMETRICS’07, Jun.
2007.

[4] F. Chen, David A. Koufaty, and X. Zhang. Hys-
tor: Making the Best Use of Solid State Drives
in High Performance Storage Systems. In ICS’11,
Jun. 2011.

[5] Veera Deenadhayalan. GPFS Native RAID for
100,000-Disk Petascale Systems. In LISA’11, Dec.
2011.

[6] G. Gibson. Reflections on Failure in Post-Terascale
Parallel Computing. Keynote. In ICPP’07, Sep.
2007.

[7] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Fourth edi-
tion, 2006.

[8] M. Holland. On-Line Data Reconstruction in Re-
dundant Disk Arrays. PhD thesis, Carnegie Mellon
University, Apr. 1994.

[9] M. Holland, G. Gibson, and D. P. Siewiorek. Ar-
chitectures and Algorithms for On-Line Failure Re-
covery in Redundant Disk Arrays. Journal of Dis-
tributed and Parallel Databases, 2(3):295–335, Jul.
1994.

[10] IBM Easy Tier.
http://www.almaden.ibm.com/
storagesystems/projects/easytier.

[11] S. Kang and A. Reddy. User-Centric Data Migra-
tion in Networked Storage Systems. In IPDPS’08,
Apr. 2008.

[12] J. Lee and J. Lui. Automatic Recovery from
Disk Failure in Continuous-Media Servers. IEEE
Transactions on Parallel and Distributed Systems,
13(5):499–515, May. 2002.

[13] [MD PATCH 09/16] md/raid5: preferentially read
from replacement device if possible.
http://www.spinics.net/lists/raid/
msg36361.html.

[14] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. In FAST’08, Feb. 2008.

[15] OLTP Application I/O and Search Engine I/O.
http://traces.cs.umass.edu/index.
php/Storage/Storage.

[16] D. A. Patterson, G. Gibson, and R. H. Katz. A
Case for Redundant Arrays of Inexpensive Disks
(RAID). In SIGMOD’88, Jun. 1988.

[17] E. Pinheiro and R. Bianchini. Energy Conserva-
tion Techniques for Disk Array-Based Servers. In
ICS’04, Jun. 2004.

[18] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Fail-
ure Trends in a Large Disk Drive Population. In
FAST’07, Feb. 2007.

[19] M. Saxena and Michael M. Swift. FlashVM: Vir-
tual Memory Management on Flash. In USENIX
ATC’10, Jun. 2010.

[20] B. Schroeder and G. Gibson. Disk Failures in the
Real World: What Does an MTTF of 1,000,000
Hours Mean to You? In FAST’07, Feb. 2007.

[21] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Improving Storage System Availability
with D-GRAID. In FAST’04, Mar. 2004.

[22] L. Tian, Q. Cao, H. Jiang, D. Feng, C. Xie, and
Q. Xin. SPA: On-Line Availability Upgrades for
Parity-based RAIDs through Supplementary Par-
ity Augmentations. ACM Transactions on Storage,
6(4), 2011.

[23] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng,
J. Chen, Z. Wang, and Z. Song. PRO: A Popularity-
based Multi-threaded Reconstruction Optimization
for RAID-Structured Storage Systems. In FAST’07,
Feb. 2007.

[24] S. Wan, Q. Cao, J. Huang, S. Li, X. Li, S. Zhan,
L. Yu, C. Xie, and X. He. Victim Disk First: An
Asymmetric Cache to Boost the Performance of
Disk Arrays under Faulty Conditions. In USENIX
ATC’11, Jun. 2011.

[25] C. Weddle, M. Oldham, J. Qian, A. Wang, P. Rei-
her, and G. Kuenning. PARAID: A Gear-Shifting
Power-Aware RAID. In FAST’07, Feb. 2007.

[26] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scal-
able Performance of the Panasas Parallel File Sys-
tem. In FAST’08, Feb. 2008.



32  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

[27] S. Wu, D. Feng, H. Jiang, B. Mao, L. Zeng, and
J. Chen. JOR: A Journal-guided Reconstruction
Optimization for RAID-Structured Storage Sys-
tems. In ICPADS’09, Dec. 2009.

[28] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao.
WorkOut: I/O Workload Outsourcing for Boosting
RAID Reconstruction Performance. In FAST’09,
Feb. 2009.

[29] S. Wu, B. Mao, D. Feng, and J. Chen. Availability-
Aware Cache Management with Improved RAID
Reconstruction Performance. In CSE’10, Dec.
2010.

[30] T. Xie and H. Wang. MICRO: A Multilevel
Caching-Based Reconstruction Optimization for
Mobile Storage Systems. IEEE Transactions on
Computers, 57(10):1386–1398, 2008.

[31] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evalu-
ation of Distributed Recovery in Large-Scale Stor-
age Systems. In HPDC’04, Jun. 2004.


