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ABSTRACT
TLC flash has three types of pages to accommodate the three bits
in each TLC physical cell exhibiting very different program laten-
cies, LSB (fast), CSB (medium), and MSB (slow). Conventional TLC
SSD designs on page allocation to write requests do not take page
types and their latency difference into consideration, missing on
an important opportunity to exploit the potentials of fast writes.

This paper proposes PA-SSD, a page-type aware TLC SSD design,
to effectively improve the overall performance by judiciously and
coordinately utilizing the three types of pages on TLC flash when
serving user write requests. The main idea behind PA-SSD is to
coordinately allocate the same type of pages for sub-requests of
any given user write request, to mitigate the potential program
latency imbalance among the sub-requests. We achieve the PA-
SSD design goal by addressing two key research problems: (1) how
to properly determine page-type for each user write request and
(2) how to allocate a physical page for each sub-request with an
assigned page type from (1). For the first problem, seven page-type
specifying schemes are proposed to investigate their effects under
different workloads. On the other hand, we approach the second
problem by redesigning the page allocation strategy in TLC SSD to
uniformly and sequentially determine pages for allocation following
the programming process of TLC flash. Under a wide range of
workloads, our experiments show that PA-SSD can accelerate both
the write and read performance without any sacrifice to storage
capacity. Particularly, our proposed queue-depth based page-type
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specifying scheme improves write performance by 2.4 times and
read performance by 1.5 times over the conventional TLC SSD.
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1 INTRODUCTION
TLC (Triple-Level Cell) flash is gradually becoming a dominant
storage media in Solid-State Drives (SSDs) because of its higher
storage capacity and lower price per gigabyte than SLC (Single-
Level Cell) flash and MLC (Multi-Level Cell) flash. However, TLC,
which stores three data bits in each physical cell, requires finer-
grained program steps, resulting in higher program latency than
SLC and MLC flash [14, 19]. This increased program latency leads
researchers and developers to propose new SSD designs to boost
the TLC SSD performance.

Because the three bits in a TLC cell, LSB (Least Significant Bit),
CSB (Central Significant Bit) and MSB (Most Significant Bit), exhibit
very different program latencies, the TLC SSD design separates
these bits into three types of pages with diverse program latencies,
i.e., LSB pages, CSB pages, and MSB pages [7, 19]. Specifically, an
LSB page has the shortest program latency (e.g., 500µs), a CSB page
has the medium program latency (e.g., 2000µs), and an MSB page
has the longest program latency (e.g., 5500µs) [7]. Due to the high
program latencies of CSB and MSB pages, write requests served
with CSB and MSB pages usually have much longer response times
than with LSB pages (up to 10x). To boost TLC write performance,
many proposals suggest enabling the SLC mode in which only
LSB pages are used when serving user write requests [3, 9, 11, 19,
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(a) A majority of user write requests are
served with MSB pages in conventional
SSD design.
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(b) The proportion of user write requests
served with MSB pages is reduced in PA-
SSD design.

(c) The write performance over time. (d) The cumulative distribution function
of write response time.

Figure 1: Simulation results on DAP workload. The "SLC
Mode" corresponds to TLC SSD that all flashes are used in
SLC mode.

21]. However, these methods waste some of the storage capacity
provided by the CSB and MSB pages that account for up to 2/3 of
the total capacity. On the other hand, the conventional SSD design
allocates pages for user write requests without differentiating page
types. As each user write request greater than a page in size is
partitioned into multiple page-sized sub-requests that are then
allocated pages independently of page types [20], a large proportion
of user write requests are actually served with at least one MSB
page in a conventional TLC SSD, as shown in Fig. 1(a), resulting in
considerable write inefficiency. This motivates us to redesign the
page allocation strategy so that it takes page type into consideration
to improve write performance of TLC SSD without sacrificing any
storage capacity.

In this paper, we present a Page-type Aware design of TLC
SSD, or PA-SSD, to coordinately allocate pages of the same type
for the sub-requests of a given user write request, so as to signif-
icantly lower the percentage of write requests served with MSB
pages and thus improve the write performance. In other words,
PA-SSD always attempts to use the same type of pages to serve
all sub-requests of any single write request. To make this possible,
two challenging questions must be answered: Q1. How to deter-
mine which type of page to use for a given user write request?
Q2. How to allocate pages to sub-requests of a user write request
whose page-type has been specified (by an answer to Q1). For the
first challenge, we propose seven page-type specifying schemes
in PA-SSD, namely, the US (Uniformly Specification) scheme that
uniformly (round-robin) assigns a page type to a request, the HGS
(Host-Guided Specification) scheme that assigns a page type to a
request according to response time requirement provided by the
host, the LFS (LSB-First Specification) scheme that always assigns

the LSB pages to any requests, the SBS (Size-based Specification)
scheme that assigns a page type to a request according to the re-
quest size, the QDS (Queue-Depth-based Specification) scheme that
assigns a page type to a request according to the device-level I/O
queue depth, theWBS (Write-Buffer-based Specification) scheme
that assigns a page type to a request according to the write buffer
utilization, and the UBS (Utilization-based Specification) scheme
that assigns page types according to their respective free capacities.
For the second challenge, while the conventional TLC SSD allows
a single candidate page and a single active block within a plane
(i.e., no choice), PA-SSD provides more than one candidate page
and three active blocks within each plane, and uses a redesigned
page allocation strategy to select suitable candidate pages for write
sub-requests according to their assigned page types. As shown in
Fig. 1(b) (with more details in Section 6), the proportion of user
write requests served with at least one MSB page in PA-SSD is much
lower than that of the conventional TLC SSD (Fig. 1(a)), leading to
lower write response time, as illustrated in Fig. 1(c) and Fig. 1(d).

In summary, in proposing and studying PA-SSD, we aim to make
the following contributions in this paper:

(1) We analyze the drawbacks of type-blind page allocation
strategy of the conventional TLC SSD that allocates pages
for the sub-requests of a user write request regardless of
page types.

(2) We present PA-SSD, a page-type aware TLC SSD design
that first determines a proper page type for serving a given
user write request and then coordinately allocates pages of
the required type for all sub-requests of the request. Seven
schemes are designed in PA-SSD to determine page types
for user write requests, while the page allocation strategy
in the conventional TLC SSD is redesigned by appropriately
relaxing the program constraints within planes to realize the
coordinated, type-specified page allocation to sub-requests
of any write request.

(3) We simulate PA-SSD with SSDSim and evaluate its perfor-
mance in terms of write/read response times on eight typical
real-world workloads. Our experimental results show that
PA-SSD significantly improves both the write and read per-
formances of the conventional TLC SSD without any sacri-
fice to storage capacity and P/E cycle endurance. Especially,
by using the combination of the QDS and UBS page-type
specifying schemes, PA-SSD improves the write and read
performances of the conventional TLC SSD by 2.4x and 1.5x
on average, respectively.

The remainder of this paper is organized as follows. In Section 2,
we present the necessary background of TLC SSD and related works
on improving write performance of TLC SSD. Section 3 motivates
the PA-SSD proposal with insightful observations and analysis.
The detail design of PA-SSD is presented in Section 4. In Section
5 and Section 6, we present our experimental setups and results
for demonstrating the efficacy of PA-SSD. Finally, we conclude this
paper in Section 7.
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Figure 2: Architecture of SSD.

2 BACKGROUND AND RELATEDWORKS
2.1 TLC SSD Preliminary
SSD architecture. As shown in Fig. 2, an SSD is composed of
three components, i.e., host interface, SSD controller, and flash chip
array [20]. The host interface supports communication between the
host system and SSD controller, and maintains the device-level I/O
queue [10]. The SSD controller, usually containing an embedded
processor and DRAM, is responsible for handling I/O requests and
managing SSD resources by executing a set of flash translation layer
(FTL) functions, e.g., address translation and garbage collection. The
SSD controller also communicates with the flash chip array through
the flash controller. The flash chip array composed of multiple flash
chips is connected to the flash controller via channels and provides
the actual storage capacity. Flash chips are composed of dies, each
of which has its own address register and command register. Dies
are further divided into planes. Within a plane, pages, the atomic
units for read and program (write) operations, are grouped into
blocks to form the atomic units for the erase operation. Importantly,
page read and program operations can be striped across channels,
chips, dies, and planes for parallel processing [8, 10, 20].

Write request execution workflow. In Fig. 3, we illustrate the
write request execution workflow within a conventional SSD. Upon
the arrival of a write request from the host at the host interface of
SSD, the latter first queues the request in the device-level I/O queue
(I/O queue for short) and then partitions the request into page-sized
sub-requests, each with a specific LPA (logical page address) [3].
These sub-requests are then sent to the SSD controller for address
translation, which is an important function of FTL that translates
the LPA to PPA (physical page address). The address translation for
write sub-requests is also referred to as page allocation. The page
allocation selects free pages for sub-requests via two primitives,
the PLAlloc primitive that allocates channel ID, chip ID, die ID, and
plane ID, and the BLAlloc primitive that allocates block ID and page
ID [20]. Finally, a PPA is determined by the combination of these six
IDs, and the mapping pair (LPA, PPA) is stored into the page-level
mapping table for future read operations. With page allocation
accomplished, the sub-requests are delivered to flash controllers
where they are striped across channels/chips/dies/planes for par-
allel programming [20]. When handling a program operation, the
flash controller transfers the command and address information
to the target die and the user data to the target plane. The user
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Figure 3: Write request execution workflow in a conven-
tional SSD.

data is cached in the data register of the target plane before being
programmed to the target page. In this study, a page-sized sub-
request is considered finished when its corresponding user data is
physically programmed 1, and a user write request is considered
completed when all of its sub-requests are finished.

Page-types in TLC flash and their diverse program laten-
cies. TLC flash stores three bits with different program latencies,
namely, LSB (Least Significant Bit), CSB (Central Significant Bit),
and MSB (Most Significant Bit) within each flash cell. The bits of
the same type (program latency) in cells of a wordline form a page.
Therefore, pages in TLC flash are of three different types of LSB,
CSB, and MSB. Conventionally, the three differently typed pages
within awordline are programmed separately page-by-page [12, 19],
and pages can be read before the wordline is fully-programmed (i.e.,
all three pages are programmed). Many existing studies revealed
that the three types of pages have significantly diverse program
latencies [7, 19]. Typically, for the 25nm TLC flash, LSB, CSB, and
MSB pages exhibit 500µs, 2000µs, and 5500µs program latencies,
respectively [7]. In addition, programming a(n) CSB(MSB) page
requires that the associated LSB(LSB and CSB) page(s) be accessed
first, resulting in even longer program latency. To mitigate the
performance impact of this requirement of physically reading ex-
tra pages when programming CSB and MSB pages, the LSB and
CSB pages within an un-fully-programmed wordline are usually
buffered in DRAM in conventional TLC SSD.
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Figure 4: Program order of pages within a TLC block [1] [7].

Design of a lone candidate page per plane in conventional
SSD. In the conventional SSD design, each plane maintains only one
active block for serving subsequent page-sized write sub-requests.
Furthermore, the pages within a TLC block should be programmed
sequentially according to their IDs [1], as depicted in Fig. 4, for
1In some studies, a sub-request is regarded finished when its corresponding data
is cached in the data register of the target plane, resulting in lower response time.
However, the data actually is not permanently stored until it is programmed.
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the purpose of reducing cell-to-cell program interference to fully-
programmed wordlines. Therefore, during page allocation, after the
target plane is determined by the PLAlloc primitive, there is actually
only one candidate page — the only next free page of the active
block can be allocated by the BLAlloc primitive as the target page.
This design of a lone candidate page per plane can significantly
simplify the management of blocks and pages, however, at the
expense of reduced flexibility of allocating a desired type of page.

2.2 Related Works
Because of the long program latencies of MLC and TLC flash, there
have been many studies on improving the write performance of
MLC/TLC SSD. We categorize related techniques for improving the
SSD write performance into three major classes as follows.

1○ Exploiting parallelism. The resources within the flash chip
array are organized in a highly parallel architecture. It is benefi-
cial to exploit this parallelism for improving write performance
of SSD. Existing techniques generally exploit parallelism in two
ways, improving the PLAlloc primitive to stripe sub-requests across
channels, chips, dies, and planes [8, 20] and scheduling user write
requests to increase flash resource utilization [6, 10, 13]. These tech-
niques actually are compatible with and orthogonal to our proposed
PA-SSD on improving write performance.

2○ Using SLC flash as buffer. As the write latency of SLC
flash is much lower than that of MLC/TLC flash, many researchers
and developers suggested employing SLC flash in MLC/TLC SSD
as a write buffer to improve the write performance. This can be
done in one of two approaches, i.e., introducing extra SLC flash
chips [4, 15] or enabling the SLC mode in part of the MLC/TLC
flash [3, 9, 11, 19, 21]. While the first approach increases the total
SSD cost, the second reduces the total effective storage capacity.
More importantly, the introduction of an SLC buffering layer in
SSD can noticeably complicate the FTL implementation due to data
migration between the SLC area and the MLC/TLC area [5]. In
addition, the limited size of the SLC area can be filled up quickly
during write intensive periods, leading to degraded performance
for subsequent write requests. Our proposed PA-SSD improves
write performance without either sacrificing any storage capacity
or significantly complicating the FTL implementation.

3○ Taking advantage of LSB pages. The low program latency
of the LSB pages in MLC/TLC flash is exploited for improving write
performance. In [7], Grupp et al. proposed a technique that proac-
tively uses LSB pages to serve burst writes for improving peak
performance. However, constrained by the strict program order
within MLC/TLC flash blocks, the benefit of this technique is lim-
ited. In [16], Park et al. proved that the strict program order within
anMLC flash block is an over-provision for reducing cell-to-cell pro-
gram interference, and further proposed flexFTL that uses relaxed
program constraints within MLC flash blocks to provide more flex-
ible use of LSB and MSB pages. The flexFTL technique adaptively
allocates LSB pages for write sub-requests according to the write
buffer utilization to improve write performance. Our technique,
PA-SSD, also relies on relaxed program constraints within TLC
flash blocks to provide flexible use of LSB, CSB, and MSB pages. In
addition, some of our page-type specifying schemes also try to take

advantage of LSB pages for improving write performance. How-
ever, there are two major differences between flexFTL and PA-SSD.
First, PA-SSD coordinately allocates pages of the same type for
the sub-requests of a given user write request, while flexFTL does
not consider the dependence and correlation among sub-requests,
which results in inefficient mixed-type page allocation (detailed in
Section 3); Second, PA-SSD provides a rich set of schemes to satisfy
various performance requirements (detailed in Subsection 4.2).

3 MOTIVATION
In TLC SSD, a user write request greater than a page in size is
first partitioned into multiple page-sized sub-requests that are then
allocated pages by the page allocation strategy and striped across
channels/chips/dies/planes for parallel processing [20]. A user write
request completes when all of its constituent sub-requests are fin-
ished. Thus, the response time of a user write request is determined
by its slowest sub-request. As the program latency of MSB page is
far longer than those of LSB page and CSB page in TLC flash, the
response time of a user write request with at least one MSB page in-
volved will be much longer than one without, particularly one with
all its sub-requests allocated LSB pages. We categorize user write re-
quests in TLC SSD into three distinctive groups, i.e., LSB dominated
writes, CSB dominated writes, andMSB dominated writes, in order of
increasing response time. Unfortunately, a large proportion of user
write requests actually are MSB dominated writes in conventional
TLC SSD, as illustrated in Fig. 1(a), leading to considerable write
inefficiency of TLC SSD.

The main reason for the MSB write dominance is that, in con-
ventional SSD design, the page allocation strategy allocates pages
for the sub-requests of a user write request independently of the
page type. In other words, each sub-request has a 1/3 probability of
being served by an MSB page. Accordingly, for a user write request
with n sub-requests involved, the probability of at least one of its
sub-requests being served by an MSB page (MSB dominated write),
denoted as Pslow , is equal to (1−( 23 )

n
). On the other hand, the prob-

ability of all sub-requests being served by LSB pages (LSB dominated
write), denoted as Pf ast , is equal to ( 13 )

n . In addition to these two
cases, the sub-requests also may be served by at least one CSB page
but no MSB pages (CSB dominated write), and the probability of
this happening, denoted as Pmedium , is equal to (( 23 )

n
− ( 13 )

n
). For

user write requests with only one sub-request involved (n = 1), the
three probabilities are the same and equal to 1/3. However, Pslow
increases with n very quickly while the other two probabilities

Figure 5: The probabilities of LSB dominated write (Pf ast ),
CSB dominated write (Pmedium ), and MSB dominated write
(Pslow ) as a function of n (the number of sub-requests).
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decrease with n, as illustrated in Fig. 5. For instance, when n = 4,
Pslow = 80%, meaning that most of the user write requests areMSB
dominated writes. On the contrary, at n = 4, Pf ast and Pmedium
decrease to 1% and 19%, respectively, diminishing the desirable
impacts of LSB/CSB dominated writes.

This lopsided negative performance impact of MSB write domi-
nance in conventional TLC SSD, where the undesirable MSB dom-
inated write increases rapidly while the desirable LSB dominated
write decreases rapidly with the request size n (number of sub-
requests), motivates us to design a new page allocation strategy
that minimizes MSB dominated writes while maximizes LSB domi-
nated writes. In other words, the new strategy should keep Pslow
low and Pf ast high as n increases. To this end, we suggest a coordi-
native page allocation scheme that allocates the same type of pages
for the sub-requests of a given user write request. Furthermore,
we propose to proactively and judiciously specify the type of page
used to serve each user write request. In so doing, we hope to be
able to control the Pslow , Pmedium , and Pf ast values to improve
the write performance of TLC SSD. Therefore, we present our novel
page-type aware TLC SSD design, PA-SSD, to be elaborated next.

4 PA-SSD
4.1 Overview
The proposed PA-SSD is a Page-type Aware TLC SSD design, at-
tempting to use the same type of pages for serving sub-requests
of any single user write request. In Fig. 6, we illustrate the write
request execution workflow in PA-SSD. There are two major dif-
ferences between the write request execution workflow in PA-SSD
design and that in conventional SSD design (illustrated in Fig. 3).
First, the host interface in PA-SSD proactively assigns a type of page
for each user write request according to specific page-type specify-
ing schemes, detailed in Subsection 4.2. Second, PA-SSD allocates
block IDs and page IDs for the page-sized sub-requests according to
their assigned page-types with a redesigned pa-BLAlloc primitive,
detailed in Subsection 4.3.
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Figure 6: Write request execution workflow in PA-SSD. For
each user write request, the host interface of PA-SSD proac-
tively assigns a page-type that is inherited by all of its con-
stituent page-sized sub-requests. TheBLAlloc primitive is re-
placed by pa-BLAlloc that allocates pages for sub-requests
according to their assigned page-types.

4.2 Page-type Specifying Schemes
The host interface in PA-SSD is responsible for determining and
assigning the page type for each user write request. Note that as-
signing page type for a user write request actually only entails
adding some attributes to its sub-requests, informing the page al-
location strategy which type of pages should be allocated to these
sub-requests. In the next subsection, we detail the type-specified
page allocation strategy in PA-SSD that is responsible for actu-
ally allocating pages for sub-requests according to their assigned
page-types.

A user write request assigned with the LSB(CSB/MSB) page is
expected to be an LSB(CSB/MSB) dominated write. Thus, proactively
determining the page-types for user write requests has the potential
to adjust the ratios of LSB/CSB/MSB dominated writes to optimize
the write performance of TLC SSD. To accommodate various per-
formance requirements, we propose the following seven schemes
in PA-SSD to determine the page-types for user write requests.

Uniformly Specification (US).With this scheme, PA-SSD as-
signs the three page-types, i.e., LSB, CSB, and MSB, for user write
requests in a round-robin style. Therefore, a write request will be
assigned any of these three page types equally likely with a prob-
ability of 1/3, leading to a uniform distribution of LSB dominated
writes, CSB dominated writes, and MSB dominated writes.

Host-Guided Specification (HGS). For a write command in
the NVMe policy, the host can specify the requirement of response
time by setting the two-bits long attribute ’Access Latency’ [22].
Accordingly, with the HGS scheme, PA-SSD assigns LSB, CSB, and
MSB pages for write requests requiring short, medium, and long
response times, respectively. When the ’Access Latency’ of a write
request is omitted by the host, PA-SSD will assign its page-type
according to other schemes, such as the US scheme. By employing
HGS, PA-SSD effectively provides an interface for the host to lever-
age the diverse program latencies within TLC flash, improving the
QoS (quality of service) of different applications.

LSB-First Specification (LFS). With LFS, PA-SSD always as-
signs the LSB pages to any user write requests. The insight behind
this scheme is to use the LSB pages to maximally and greedily im-
prove the write performance [7, 16]. However, when this scheme is
employed, LSB pages tend to be used up very quickly, leaving only
CSB pages and MSB pages to serve subsequent write requests (with
more details in Subsection 6.2). Thus, LFS is suggested as a turbo
mode to improve write performance during write-intensive bursts.

Size-Based Specification (SBS). In most cases, small-sized user
write requests are expected to have shorter response times while
large-sized requests are less sensitive to response time [13]. Ac-
cordingly, with the SBS scheme, PA-SSD assigns LSB pages for
small-sized requests (e.g., requests smaller than 8KB). On the other
hand, for large-sized requests (e.g., requests larger than 8KB), PA-
SSD determines their page-type by other schemes, e.g., US.

Queue-Depth-based Specification (QDS). The I/O intensity
of a SSD can be sensed by the length of the device-level I/O queue,
which is maintained in the host interface. During busy times when
the queue is long, the response times of requests (both read and
write requests) are dominated by their waiting time. By shortening
the program latency of each user write request, the waiting time can
be greatly reduced, resulting in high write and read performance.
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Accordingly, PA-SSD with the QDS scheme assigns LSB pages for
all write requests when the device-level I/O queue is longer than
a preset threshold, e.g., 10 requests. On the other hand, when the
queue is shorter than the threshold, another scheme is employed for
assigning page-types, e.g., US and UBS schemes. The QDS scheme
is regarded as a dynamic-LFS scheme that activates and deactivates
LFS dynamically according to the I/O queue depth. In fact, QDS
with queue depth threshold of 0 is reduced to the LFS scheme.

Write-Buffer-based Specification (WBS). In [16], Park et al.
presented the idea of proactively allocating LSB pages for sub-
requests according to the utilization of write buffer (DRAM) within
MLC SSD. It allocates LSB pages for sub-requests when the write
buffer is full. This idea can also be applied to determining page-types
for user write requests in PA-SSD, resulting in the WBS scheme
that assigns the LSB pages for user write requests when the write
buffer is full. Compared with the QDS scheme that senses both write
and read intensity from the device-level I/O queue depth, the WBS
scheme can only sense write intensity, missing the opportunity to
improve read performance by speeding up write requests during
read intensive periods. In addition, the write buffer may be filled
by latency-insensitive large-sized writes, leading to a waste of LSB
pages when WBS is employed. In fact, when the write buffer is very
small, the WBS scheme actually becomes the LFS scheme.

Utilization-Based Specification (UBS). The extremely imbal-
anced use of the three types of pages can result in inefficient garbage
collection because some blocks may be reclaimed before all pages
are programmed (e.g., all MSB pages are not programmed). By as-
signing page types for requests according to the respective free
capacities of the three page types, UBS-based PA-SSD can effectively
balance their utilizations. With UBS, PA-SSD determines page-types
for write requests according to three probabilities PL , PC , and PM ,
namely, those of assigning a write request with LSB, CSB, and
MSB page types respectively. To accommodate the utilization of
the three page types, the UBS scheme sets PL : PC : PM = #LSB :
#CSB : #MSB, in which #LSB, #CSB, and #MSB are the numbers
of free LSB, CSB, and MSB pages within the SSD during the run-
time, respectively. The UBS scheme is always used as a complement
to other non-utilization-based schemes, e.g., HGS, SBS, and QDS.
Besides, the UBS scheme is also used as default scheme to specify
page-types for write requests generated by garbage collection in
PA-SSD.

4.3 Type-Specified Page Allocation
In PA-SSD, the user write requests are assigned appropriate page-
types by the host interface according to the page-type specifying
schemes described above. The assigned page-types to user write
requests are inherited by their page-sized sub-requests in the subse-
quent page allocation process. This is in contrast to the type-blind
page allocation strategy in the conventional TLC SSD.Moreover, the
design of a lone candidate page per plane in conventional TLC SSD
(with more details in Subsection 2.1) greatly limits the flexibility
of allocating a desired type of page for a sub-request. Accordingly,
in this subsection, we first discuss how PA-SSD provides multiple
candidate pages with different page-types within each plane, then
we present the redesigned BLAlloc primitive in PA-SSD, namely
pa-BLAlloc, to realize type-specified page allocation.

4.3.1 Providing multiple candidate pages within a plane.
In the conventional SSD design, there is only one active block in
each plane, and there is only one candidate page in the active block
because of the strict program order within a block [1], which leads
to the design of a lone candidate page per plane. While this design
significantly simplifies the management of flash resources, it se-
verely limits the ability to allocate type-specified pages. In fact, after
the PLAlloc primitive determines the channel ID, chip ID, die ID,
and plane ID used for serving a write sub-request, there is no other
choice but the one single candidate page in the candidate plane
that can be allocated for serving the sub-request. To address this
problem, one possible solution is to modify the PLAlloc primitive to
first select a candidate plane that has the assigned type of page as
candidate page to meet the page-type requirement. This solution,
however, means a fix path from channel all the way to plane, which
severely limits the selection of channel, chip, die, and plane for the
purpose of exploiting hardware parallelism [8, 20], significantly
confining performance potentials. Thus, we prefer providing more
candidate pages within each and every plane to searching a suitable
plane to match the page-type requirement of sub-requests in design-
ing PA-SSD, by appropriately relaxing program constraints within
blocks and provides multiple active blocks within each plane.

The strict program order within blocks in the conventional TLC
SSD design is necessary to minimize the inter-page (inter-cell)
program interference by guaranteeing that a fully-programmed
wordline is interfered by only one adjacent page programming.
For instance, in Fig. 4, before programming page 11 inWordline2,
all pages adjacent except page 14 have been programmed, thus,
the fully-programmedWordline2 only suffers from adjacent page
programming by page 14. Another benefit of the strict program
order is that LSB page is guaranteed to be programmed the first
while MSB page is guaranteed to be programmed the last within a
wordline. But, the strict program order is not essential for providing
these two guarantees or benefits [2] [16].

For purpose of providing multiple candidate pages within a plane
while still providing the two guarantees, PA-SSD uses the follow-
ing three program constraints within blocks to replace the strict
program order:

• LSB, CSB, and MSB pages are programmed in order of their
respective IDs, respectively;

• A CSB page can be programmed only when LSB pages in
adjacent wordlines have been programmed;

• An MSB page can be programmed only when CSB pages in
adjacent wordlines have been programmed.

By using these program constraints instead of the strict program
order, PA-SSD is able to provide more than one candidate page
with different types within an active block in the vast majority of
cases, as illustrated by the examples shown in Fig. 7. However, there
are two main concerns with employing these relaxed program con-
straints in TLC blocks, namely, the cell-to-cell program interference
and the memory space required for buffering un-fully-programmed
wordlines. For the first concern, similar studies presented in [2]
and [16] have experimentally demonstrated that using relaxed pro-
gram constraints to approximate the two guarantees within MLC
blocks does not significantly increase program interference errors.
Because of the very similar characteristics of cell-to-cell program
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Figure 7: Candidate pages within an active block in PA-SSD.
In (a), only the next LSB page is a candidate page; in (b), both
the next LSB page and CSB page are candidate pages; in (c),
both the next LSB page andMSB page are candidate pages; in
(d), all of the next LSB page, CSB page, andMSB page are can-
didate pages; in (e), the LSB pages are used up, leaving only
CSB and MSB pages for serving subsequent sub-requests; in
(f), both the LSB and CSB pages are used up, leaving only the
slowest MSB pages for serving subsequent sub-requests.

interference in TLC flash to that in MLC flash, we propose to use
such similar relaxed program constraints in TLC flash with the
justifiable stipulation that program interference errors will not
be significant and acceptable. On the other hand, as discussed in
Subsection 2.1, conventional TLC SSD usually buffers the LSB and
CSB pages within un-fully-programmed wordlines to shorten the
latency of programming of CSB and MSB pages. In the PA-SSD de-
sign, as pages within a block are programmed with relaxed program
constraints, multiple wordlines are un-fully-programmed during
the runtime, which makes it costlier, if not impractical, to use a very
large buffer for these un-fully-programmed wordlines. Therefore, in
PA-SSD, the un-fully-programmed wordlines are not buffered, but
at the possible expense of increased program latencies for CSB and
MSB pages. Fortunately, our tests show that the negative impact
is negligible primarily because of the significantly reduced MSB
dominated writes in PA-SSD.

Generally, in the conventional TLC SSD design, each plane
maintains only one active block for serving subsequent write sub-
requests. Only when the free pages within the active block are
exhausted, the block is deactivated and another block with free
pages is activated as the new active block. This design of one ac-
tive block per plane is simple and effective but not optimal when
the strict program order within blocks is replaced by our relaxed
program constraints. For instance, when the active block runs out
of the fast pages, it can serve subsequent sub-requests only with
the slow pages, as illustrated in both Fig. 7(e) and 7(f).

To further increase the flexibility of allocating a desired type
of page within a candidate plane, the PA-SSD design maintains
up to three active blocks per plane, which correspond to active
blocks with free LSB pages, free CSB pages, and free MSB pages,
respectively. In some cases, the three active blocks may actually

be the same block, as our example depicted in Fig. 7(d), the block
has free LSB pages, CSB pages, and MSB pages simultaneously. For
the block depicted in Fig. 7(d), if page 12 as the last LSB page of
the block is programmed, then it cannot provide LSB pages (just
like the case depicted in Fig. 7(e)), therefore, another block in the
plane should be activated for providing LSB pages while this block
remains active for providing CSB pages and MSB pages. This multi-
ple active blocks per plane design, which is similar to the multiple
write points per chip design presented in [7], slightly complicates
the FTL design and introduces storage overhead because more than
one active blocks must be tracked by recording their runtime sta-
tus. However, thanks to the powerful processor used in modern
SSDs, this increased complexity is arguably negligible. On the other
hand, as LSB, CSB, and MSB pages within a block in PA-SSD are
programmed in order of their IDs, respectively, it is sufficient to
track free pages by recording the IDs of the most recently pro-
grammed pages in each page-type, leading to at most 1152Bytes
(=384block*3Bytes/block) storage overhead per plane.

By combining the design of multiple active blocks per plane and
the design of multiple candidate pages per block, PA-SSD is able
to provide up to three candidate pages with different types within
a candidate plane, increasing the flexibility to allocate pages for
sub-requests with respect to their assigned page-types.

4.3.2 pa-BLAlloc primitive. In conventional SSD design, the
BLAlloc primitive of the page allocation strategy selects the lone ac-
tive block within the candidate plane as the target block, and selects
the lone candidate page within the block mandated by the strict
program order as the target page. In PA-SSD design, in contrast,
there are up to three active blocks within a plane and up to three
candidate pages within an active block. This provision of PA-SSD
makes it possible for its redesigned primitive to select candidate
pages for sub-requests according to their assigned page-types. To
this end, PA-SSD proposes the pa-BLAlloc primitive that repurposes
the conventional BLAlloc primitive to allocate block IDs and page
IDs for write sub-requests. Specifically, after the channel ID, chip
ID, die ID, and plane ID are determined by the PLAlloc primitive,
a candidate plane for serving the write sub-request is determined.
Then, pa-BLAlloc parses the sub-request to obtain the assigned
page-type, and selects a corresponding active block as the target
block. Finally, it selects the specified type of candidate pages in the
target block and returns their IDs.

Though the design of multiple candidate pages per plane in PA-
SSD makes it more likely to allocate a specified-type of page for
serving a write sub-request, there is no guarantee that the page-
type requirement will be met. For instance, if the candidate active
block of a plane for providing MSB pages is in the state depicted in
Fig. 7(b), and a sub-request with the specified page-type of MSB is
supposed to be served by this plane, then the requirement cannot
be met because no MSB candidate page is available. Although our
experimental results reveal that over 98% write sub-requests are
successfully allocated with their specified-type of pages in PA-SSD
(detailed in Subsection 6.1), pa-BLAlloc also must be able to handle
the rare exceptions where a required type of page is not available.

When the required page type of a sub-request is not available, pa-
BLAlloc allocates another type of candidate page within the plane
for serving the sub-request based on the exception handling policy
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Figure 8: Exception handling. When a specified type of page
is not available in the candidate plane, pa-BLAlloc allocates
the first alternate type of page if it is available, otherwise, it
allocates the last alternate type of page.

described in Fig. 8. That is, pa-BLAlloc allocates the first alternate
type of page if it is available, otherwise, it allocates the last alternate
type of page. Especially, MSB page is always the last alternate for
the other two page-types due to its long program latency.

5 EXPERIMENTAL SETUPS
5.1 Simulator
We implement PA-SSD based on SSDSim, which is a popular simu-
lator whose accuracy has been validated against a real hardware
platform [8]. To accommodate our requirement for evaluating the
performance of PA-SSD, we have made the following major modifi-
cations to SSDSim:

• Wemodified the write latency calculation method to support
the diverse program latencies in TLC flash.

• We introduced page-type specifying schemes to assign page-
types for user write requests.

• We modified the page allocation strategy to support type-
specified page allocation.

• We introduced a multi-run mode for replaying the same
trace multiple times to observe long-term performance.

In our experiments, we simulated a 288GB TLC SSD with 8 chan-
nels. In Table 1, we list the configuration details of the simulated
SSD. In PA-SSD, the program latencies of CSB and MSB pages are
lengthened by the amount of time taken to read one and two pages
respectively, as the cost of not using un-fully-programmedwordline
buffer. Besides, to reflect the impact of garbage collections, before
replaying traces, the simulated SSD is aged to that with 70% of its
capacity being used (corresponds to the GC threshold as 30%).

Table 1: Configurations of the Simulated SSD Device

Parameters Values Parameters Values
Flash Type TLC

St
ru
ct
ur
al

Chips per Channel 2

La
te
nc
ie
s

Transfer 3ns/Byte Planes per Chip 16
Read 100µs Blocks per Plane 384

Program
500µs (LSB) Pages per Block 384
2000µs (CSB) Page Size 8KB
5500µs (MSB) Over-Provision 15%

Erase 15ms GC Threshold 30%

5.2 Workloads
To fully evaluate the performance of PA-SSD, we use 8 real applica-
tion workloads in our experiments. These workloads are collected

from [18] and [17], and their statistical characteristics are listed in
Table 2. When a write request involves more than one page-sized
sub-request, we regard the request as a large write. Accordingly,
we record the ratio of large write of the workloads as the number of
large write requests divided by the total number of write requests.

Table 2: Characteristics of the Tested Workloads

Name Request Write Read Write Average Large

Count Request (GB) (GB) Write Size Write
Ratio (page) Ratio

Fin 5,334,987 77% 2.7 14.6 0.5 6%
RA 2,214,073 90% 2.3 15.6 1.0 12%
DAP 1,086,729 44% 36.2 44.1 12.1 32%
RBESS 5,250,996 82% 97.0 47.9 1.5 30%
DTR 18,195,701 32% 252.1 176.1 3.9 53%
Exch 7,450,837 46% 37.4 41.3 1.6 17%
MSFS 29,345,085 33% 200.9 102.3 1.4 10%
BS 11,873,555 49% 149.8 166.2 3.7 67%

5.3 Evaluated Page-type Specifying Schemes
In our experiments, we evaluated six page-type specifying schemes,
namely, US, LFS, SBS+US, SBS+UBS, QDS+US, and QDS+UBS.
The details of these schemes are presented in Subsection 4.2. Specif-
ically, the notations SBS+US, SBS+UBS, QDS+US, and QDS+UBS
indicate paired-schemes, in which the second scheme is used as
a complement to the first scheme. Take QDS+UBS as an example,
PA-SSD assigns LSB pages for write requests when the device-level
I/O queue is longer than a preset threshold; Otherwise, it assigns
page-types for write requests according to the UBS scheme. The
queue depth threshold of the QDS scheme is set to 10 requests
in our experiments. For the SBS scheme, requests with only one
sub-request involved are assigned the LSB pages while large writes
are assigned by a complementary scheme, e.g., the US scheme for
SBS+US. The HGS scheme is not evaluated because the tested traces
do not offer response time requirement of the requests. In addition,
as no write buffer is utilized in our simulated SSD, the WBS scheme
is in fact reduced to the LFS scheme.

The conventional SSD design that allocates pages without con-
sidering the page-types is used as the baseline system for evaluating
the performance of PA-SSD based on these page-type specifying
schemes.

6 EXPERIMENTAL RESULTS
In this section, we report and discuss the experimental evaluation
results of PA-SSD.

6.1 Average Response Time
In this subsection, we use the average response time, normalized
to that the baseline, as a measure to evaluate the performance of
PA-SSD with various page-type specifying schemes. The results on
the average write response time and read response time are shown
in Fig. 9. The workloads on the x-axis are sorted in their relative
intensity increasing from light (left) to heavy (right).

The PA-SSDwith US scheme reduces the write response time and
read response time by 10% and 18% respectively on average. This
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(a) Average write response time, normalized to that of the baseline.

(b) Average read response time, normalized to that of the baseline.

Figure 9: Performance evaluation of PA-SSD. Note thatwork-
loads on the x-axis are ordered in their relative intensity
from light (left) to heavy (right).

performance improvement is attributed to a balanced proportion
of MSB dominated writes and LSB dominated writes as PA-SSD with
US effectively increases the LSB dominated writes to 34% while
decreases the MSB dominated writes to 33%, as shown in Fig. 10

By prioritizing the LSB pages in allocation, LFS achieves sig-
nificantly lower write and read response time than the baseline,
by 85% and 42% respectively on average. The LFS scheme has the
lowest write response time under most workloads except for the
two heaviest workloads, i.e., MSFS and BS, where the LSB pages
are rapidly depleted. We further analyze the reasons behind this in
the next subsection.

The SBS+US scheme preferentially allocates LSB pages for small
writes. Thus, for workloads with high proportions of small writes
(low large write ratio), e.g., Fin and MSFS, SBS+US can greatly
reduce the write response time. On average, SBS+US reduces write
response time and read response time of the baseline by 54% and
36%, respectively. On the other hand, the SBS+UBS scheme tends to
allocate CSB and MSB pages for large writes because the LSB pages
have been depleted for serving small writes, resulting in longer
average response time than the baseline in some cases.

The QDS+US scheme dynamically monitors the I/O intensity
according to the length of I/O queue, and temporarily reduces
waiting time for all requests by assigning LSB pages to all write
requests during I/O bursts. For light workloads, e.g., Fin and RA,
the QDS+US scheme has an average write response time similar to
the US scheme because the I/O queue in these workloads seldom
exceeds the threshold. But for heavy workloads, especially for MSFS
and BS, the QDS+US scheme achieves extremely low write and read
response times. In short, QDS+US reduces write response time and
read response time by 60% and 45% on average across these eight
tested workloads, leading to 2.5 times and 1.8 times write and read
performance over the baseline design, respectively. The QDS+UBS
scheme achieves still lower write response time on the two heaviest

workloads. Especially for MSFS, QDS+UBS reduces write response
time of the baseline by 99%. Noticeably, the write response time of
QDS+UBS is 6% higher than that of QDS+US under light workloads
(i.e., from Fin to Exch), while its write response time is 56% lower
than that of QDS+US under heavy workloads (i.e., MSFS and BS).
This performance difference between QDS+US and QDS+UBS is
explained in the next subsection.

Besides, our results also demonstrate that all tested page-type
specifying schemes and the baseline design experience the nearly
same numbers of garbage collections with less than 1% differences.

Figure 10: The distribution of LSB/CSB/MSB dominated
writes under the DAP workload.

The performance improvement of PA-SSD over the baseline
stems from its ability to effectively adjust the proportions of LSB
dominated writes, CSB dominated writes, and MSB dominated writes.
Fig. 10 illustrates the distribution of requests belonging to these
three groups of write requests under the DAP workload for the
baseline design and the main PA-SSD schemes. In the baseline de-
sign, the proportion of MSB dominated writes is much higher than
those of the other two groups (explained in Section 3). On the con-
trary, because of the type-specified page allocation for sub-requests,
PA-SSD consistently keeps the proportion of MSB dominated writes
the lowest among the three groups (not higher than 1/3). By em-
ploying non-utilization-based page-type specifying schemes, e.g.,
LFS, SBS, and QDS, PA-SSD further improves write performance by
promoting the proportion of LSB dominated writes and reducing the
proportion of MSB dominated writes. Besides, using UBS instead of
US as a complement to SBS and QDS always leads to more uniform
distributions of the three groups.

Figure 11: The success rate of PA-SSD on allocating specified-
type of pages for sub-requests.

We also demonstrate the efficiency of the type-specified page
allocation strategy in PA-SSD by evaluating the success rate of
PA-SSD on allocating specified-type of pages for sub-requests with
various page-type specifying schemes. As shown in Fig. 11, the
success rate is higher than 98% for five of the six evaluated schemes.
The low success rate of PA-SSD with LFS is due to its greedy on
using LSB pages, detailed in the next subsection.
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(a) Fin

(b) MSFS

Figure 12: Write performance over time.

6.2 Write Performance Over time
In this subsection, we analyze the write performance over time
under two typical workloads, i.e., Fin (light) and MSFS (heavy), to
better understand the write performance characteristics of different
page-type specifying schemes.

We first analyze the write response time under Fin, which is
depicted in the left diagram of Fig. 12(a). Because of the low I/O
intensity and small ratio of large writes, even the baseline design
can obtain a response time 21% higher than the average program
latency in TLC flash (2.6ms in our simulated SSD). By allocating
pages for sub-requests with pages of the specified page-type, US
scheme reduces the write response time of the baseline by 13%.
As the I/O queue under Fin seldom reaches the threshold of the
QDS+US and QDS+UBS schemes, their performances are very close
to that of US. On the contrary, the LFS scheme greatly reduces
the write response time by fully benefiting from the LSB pages.
However, it also makes the number of free LSB pages within the
SSD decrease very fast, as shown in the right diagram of Fig. 12(a).
Especially, during the last hour of the simulation, there are no
free LSB pages left. Although the garbage collection in SSD can
continuously reclaim LSB pages in runtime, the pace with which
the LFS scheme allocates the LSB pages is much faster than that of
garbage collection to reclaim the LSB pages, resulting in significant
degradation in write performance at the end of the simulation.

For MSFS, the LFS scheme achieves among the lowest response
time during the first seven quarters (15mins/quarter) of the simu-
lation, which then gives way to quickly increased response time
once free LSB pages are exhausted for the rest of the simulation,
as shown in Fig. 12(b). On the contrary, both the QDS+US and
QDS+UBS schemes maintain low write response times for a long

period of time. Especially, QDS+UBS retains the low write response
time for 22 quarters, which is three times that of the LFS scheme.

All of the PA-SSD schemes of LFS, QDS+US, and QDS+UBS
improve the write performance by effectively leveraging the LSB
pages. Among them, LFS, as the most radical scheme, can drastically
reduce write response time once free LSB pages become available.
However, once all free LSB pages are used up, the performance of
subsequent I/O requests degrades noticeably. By dynamically moni-
toring and leveraging the I/O request queue depth, the QDS+US and
QDS+UBS schemes are able to use LSB pages judiciously and effi-
ciently. As a result, althoughQDS+US andQDS+UBS cannot achieve
write response times as low as LFS on light workloads, they are
capable of maintaining lower response times for longer periods of
time under heavy workloads than the LFS scheme, achieving better
overall performance. Additionally, by combining the UBS scheme
that proactively reserves LSB pages during relative idle times, the
QDS+UBS scheme performs even better than the QDS+US scheme
under the extremely heavy workloads, e.g., MSFS and BS.

6.3 Performance in Long-term
As described above, the performance of LFS, QDS+US, andQDS+UBS
is highly sensitive to the number of free LSB pages within the SSD.
When the free LSB pages are used up and even though garbage
collection reclaims LSB pages in the runtime, the write performance
of PA-SSD with these three schemes degrades. It is possible to in-
troduce some methods to avoid or mitigate the condition in which
free LSB pages are used up, for example, triggering background
garbage collections during idle time to proactively reclaim LSB
pages. A challenging question is, however, can these three schemes
still provide a better write performance than the baseline if the free
LSB pages are used up during busy time periods? To answer this
question, we present the long-term performances of these schemes
here to provide some insight.

Figure 13: Performance in Long-termunderMSFSworkload.

We replay the MSFS workload multiple times continuously and
observe that the free LSB pages in PA-SSD with the LFS, QDS+US,
and QDS+UBS schemes are all used up before the third simulation.
Therefore, we use the performance in the third simulation under
MSFS to demonstrate the long-term performance of PA-SSD, which
is illustrated in Fig. 13. As the figure shows, even when the free
LSB pages are used up, PA-SSD with LFS, QDS+US, and QDS+UBS
still outperforms the baseline significantly. Specifically, PA-SSD
with the LFS, QDS+US, and QDS+UBS schemes achieve 66%, 79%,
and 93% lower write response times than the baseline, respectively.
Particularly, this long-term performance analysis suggests a great
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potential of the PA-SSD with the QDS+UBS scheme in providing
high and stable write performance in I/O-intensive environments.

7 CONCLUSION
In this paper, we first demonstrated the write inefficiency of the
type-blind page allocation design in conventional TLC SSD. To
eliminate this write inefficiency, we presented PA-SSD, a page-type
aware TLC SSD design that allocates pages with the same type
for sub-requests of any single user write request. Specifically, PA-
SSD first assigns the page-types for user write requests according
to seven proposed page-type specifying schemes, and then allo-
cates pages for the corresponding sub-requests according to their
assigned page-types. The program constraints within planes and
the BLAlloc primitive are redesigned to realize the type-specified
page allocation in PA-SSD. We implemented PA-SSD with SSD-
Sim and evaluated its performance with various page-type speci-
fying schemes. Our simulation results show that PA-SSD with the
QDS+UBS scheme improves write and read performance by 2.4
times and 1.5 times over the conventional SSD design.
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