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Abstract—To improve the performance of address translation
in applications with large memory footprints, techniques, such
as hugepages and HW coalescing, are proposed to increase the
coverage of limited hardware translation entries by exploiting
the contiguous memory allocation to lower Tanslation Lookaside
Buffer (TLB) miss rate. Furthermore, Page Table Caches (PTCs)
are proposed to store the upper-level page table entries to reduce
the TLB miss handling latency. Both increasing TLB coverage
and reducing TLB miss handling latency have proved to be
effective in speeding up address translation, to a certain extent.
Nevertheless, our preliminary studies suggest that the structural
separation between TLBs and PTCs in existing computer systems
makes these two methods less effective because they are exclusive-
ly used in TLBs and PTCs respectively. In particular, the separate
structures cannot dynamically adjust their sizes according to the
workloads, resulting in low resource utilization and inefficient
address translation. To address these issues, we propose a unified
structure, called Unified-TP, which stores PTC and TLB entries
together. Besides, Our modified LRU algorithm helps identify
the cold TLB and PTC entries and dynamically adjust the
numbers of TLB and PTC entries to adapt to different workloads.
Furthermore, we introduce a scheme of parallel search when
receiving memory access requests. Our experimental results show
that Unified-TP can reduce the numbers of TLB misses by an
average of 35.69% and improve the performance by an average
of 11.12% compared with separately structured TLBs and PTCs.

Index Terms—Virtual Memory, Translation Lookaside Buffers,
Page Table Caches

I. INTRODUCTION

With the increase of memory capacity and the emergence
of applications with large datasets, virtual-to-physical address
translation has become a critical performance bottleneck. First,
for a given page size, the number of address translation records
is directly proportional to the memory capacity. Thus, the
higher the memory capacity is, the larger the number of
address translation records will be. Since TLBs cover only
a portion of translations, increasing the number of translations
will decrease the TLB hit rate. The more TLB misses, the more
long-latency memory accesses for page table are required.
Therefore, the performance of address translation decreases
as memory capacity increases. Second, modern workloads
such as graph analytics and in-memory key-value stores use
large datasets and typically have non-uniform memory access

patterns with weak locality [1]. Specifically, data in these
workloads tend to have a long reuse distance, which means
that when a data item is accessed again, it is likely that the
address translation record for that data item has been deleted
from TLBs. As a result, these workloads have a lower TLB
hit rate than those with strong access locality.

Recent studies have generally focused on improving the
performance of address translation in two ways. The first is
to expand the translation coverage of TLBs. For example,
prior works [2]–[9] propose using translation contiguity and
hugepages to reduce TLB miss rate. The second focuses on
reducing the TLB miss handling latency. For example, the
studies [10]–[13] propose using Page Table Caches (PTCs) to
store upper-level page table entries to reduce long-latency page
table walks. Although these methods are efficient in speeding
up address translation, they manage TLBs and PTCs separate-
ly. In fact, we believe that the structural separation between
TLBs and PTCs limits the acceleration of address translation,
while judiciously unifying TLBs and PTCs offers promises to
further improve the performance of address translation.

Our preliminary studies found that the existing method of
separating fixed-size TLBs and PTCs has limited effectiveness
in accelerating address translation for two important reasons.
First, for modern workloads such as graph analytics and
in-memory key-value stores, data tend to have long reuse
distance, which leads to high TLB miss rate and incurs heavy
memory access overhead. Recent studies show that these
workloads can experience up to 50% execution-time overhead
due to the page table walks after TLB misses [9], [14]. In
addition, although existing methods can use PTCs to cache
frequently used upper-level entries of page tables, it still needs
at least one memory access to get the final physical address.
Therefore, in this case, if some PTC entries can be deleted
to shrink the PTC space and provide more space for the TLB
entries to accommodate the address translation of data with
long reuse distance, it will greatly reduce the memory access
overhead and improve the performance of address translation.

Second, for workloads that primarily contain sequential
read and write requests (e.g., time series databases and video
applications), TLBs are inefficient because there are almost no



repeat requests. But in this case, PTCs works well because of
the high spatial locality of these workloads. However, despite
of inefficiencies, existing methods retain the entire TLBs. In
this case, if we can delete useless TLB entries to reduce TLB
space and expand PTC space to store more PTC entries, it can
reduce a lot of memory access overhead.

The root cause of the above two problems is the physical
and logical separations of TLB and PTC structures that renders
its impossible to dynamically adjust their sizes according to the
workloads, resulting in low resource utilization and inefficient
address translation.

Given the root cause, we propose a unified structure, called
Unified-TP, which stores PTC and TLB entries together. By
combining PTCs and TLBs into a single structure, Unified-
TP can dynamically adjust the numbers of TLB and PTC
entries based on the access characteristics of workloads. In
addition, we design a scheme of parallel search of TLB and
PTC entries to improve the search performance. Unified-TP is
orthogonal to other address translation acceleration methods
such as translation contiguity and hugepages. It can be used
in conjunction with any of them to more effectively improve
the performance of address translation.

Our main contributions are listed as follows.
• We conduct in-depth investigation and the results show

that the structural separations of TLBs and PTCs prevent
them from adapting to different workloads, resulting in a
large number of memory accesses.

• We propose Unified-TP, which store TLBs and PTC
entries in a single structure and dynamically adjusts
the spaces of TLBs and PTCs based on the workload
characteristics to speed up address translation.

• We conduct a comprehensive evaluation of Unified-TP.
The results show that Unified-TP can reduce the numbers
of TLB misses by 35.69% and improve the performance
by 11.12% on average.

II. BACKGROUND AND MOTIVATION

A. Background

Address translation from the virtual address space to the
physical address space in memory systems is the main cause
of performance degradation, especially in the case of virtual-
ization and large working sets [5]. Researchers have generally
focused on two approaches to mitigate this cost.

The first aims to lower the TLB miss rate. For example,
by allocating contiguous physical pages to contiguous virtual
pages, superpages or hugepages [6]–[9] have been proposed
to replace hundreds to thousands of basic page translations
with a single superpage translation. In addition, recent research
[2]–[5] has proposed translation contiguity to expand the
translation coverage of TLBs. More sophisticated techniques,
such as TLB prefetching and scheduling [15]–[17], have also
been considered to increase the TLB hit rate.

The second focuses on reducing the number of memory
accesses after a TLB miss. For example, prior sudies [10]–[13]
have proposed using PTCs to store the upper-level page table

Fig. 1. An example of 64-bit x86 page table walk for virtual address (0ae,
0b1, 00c, 0c2, 035) and PTCs in AMD’s processes.

entries to reduce long-latency page table walks. As shown
in Fig.1, taking the x86-64 processor as an example, it uses
a four-level radix tree as its page table. When performing
virtual-to-physical address translation, four levels of memory
accesses are required to obtain the final physical address,
which can cause significant performance degradation. To avoid
long memory access latency, processor architects store L4,
L3 and L2 page table entries (PTEs) in PTCs to reduce the
overhead of TLB misses. Fig.1 (b) presents the PTC structure
in AMD’ processors. Unlike TLB which is index by virtual
address, PTCs in AMD’ processors is indexed by physical
address. And it caches PTC entries from any upper-level of
the radix tree. After a TLB miss, PTC first checks to determine
whether the corresponding PTC entries are stored. If so, MMU
can skip one to three memory accesses to get the final physical
address. Fig.1 (b) shows the PTCs state after accessing virtual
address (0ae, 0b1, 00c, 0c2, 035). If the MMU subsequently
translates the virtual address (0ae, 0b1, 00c, 0c2, 046), a L2-
PTC entry hit occurs. Thus, the page walker can skip two
upper-level searches and only one memory access is required
to get the translation.

Both approaches have shown to improve the performance
of address translation to a certain extent. However, they are
used exclusively either for TLBs (to increase TLB coverage)
or PTCs (to reduce TLB miss handling latency), because TLBs
and PTCs are implemented in separate structures in existing
computer systems. In the next subsection, we will explain the
limitations of structural separation between TLBs and PTCs
to motivate our proposed Unified-TP design.

B. Motivation

The physical and logical separations of TLB and PTC
structures renders its impossible to dynamically adjust their
sizes according to the workloads. Specifically, workloads may
have different memory access behaviors and different demands
on the numbers of TLB and PTC entries. However, such
numbers remain fixed in separately structured TLBs and
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Fig. 2. Distribution of TLB misses among all pages for four graph analytics workload. The x-axis represents the ranges of TLB misses per page, i.e.,
= 1;> 1& <= 10;> 10& <= 100; . . . ;> 1000. The y-axis shows the percentage of pages that fall into a given range, indicated by the height of the bar,
e.g., the bar on 500 in Graph Update indicates that 68.91% of pages are each missed less than or equal to 500 but more than 100 times. The orange line in
each figure plots the percentage each range contributes to the total TLB misses.

PTCs even though either TLBs or PTCs may be empty or
sparely populated, resulting in low cache space utilization and
inefficient address translation. In this subsection, we will focus
on two types of applications based on their memory access
behaviors and analyze the limitations of separately structured
TLBs and PTCs in face of these applications.

1) Memory accesses with long reuse distance: Many mod-
ern applications, such as graph analytics and in-memory key-
value stores, can be characterized by memory pages with long
reuse distance. Existing fixed-size TLBs cannot accommodate
memory pages with long reuse distance, because when refer-
ring to these memory pages, their PTEs have been evicted from
the TLBs due to the small capacity of TLBs, which leads to a
high TLB miss rate and incurs heavy memory access overhead.

Fig. 2 shows the TLB page miss distributions among all
pages for different graph analytics workloads. The x-axis
represents the ranges of TLB misses per page, i.e., misses
per page equal to 1, greater than 1 and less than or equal to
10, greater than 10 and less than or equal to 100, . . . , greater
than 1000. The y-axis shows the percentage of pages that fall
into a given range, indicated by the height of the bar, e.g., the
bar on 500 in Graph Update indicates that 68.91% of pages
are each missed less than or equal to 500 but more than 100
times. The orange line in each figure plots the percentage each
range contributes to the total TLB misses. As shown in Fig.2,
about 4.61% memory pages contribute 25.14% of the total
TLB misses in Graph Update and for other workloads, the
percentage of the total TLB misses contributed by about 5%
memory pages is up to about 50%.

The results of Fig.2 show that these frequently accessed
memory pages exhibit long reuse distance behaviors, because
when referring to these pages, their PTEs have been evicted
from the TLBs, resulting in low TLB miss rates. Although
existing methods can use PTCs to cache frequently used upper-
level entries of the page table, at least one memory access is
still required to get the translation record.

Therefore, due to insufficient TLB space and inflexibility
of fixed-size structures, the structural separation of TLBs and
PTCs in existing processor architectures causes a potential
performance bottleneck for this type of applications. If some
PTC entries can be deleted to shrink the PTC space and
provide more space for TLB entries to accommodate the

address translation of data with long reuse distance, it will
greatly reduce memory access overhead and improve address
translation performance.

2) Memory access with sequential pattern: The second
type of applications is characterized by sequential access of
memory pages. For example, sensor data is often organized
along the time dimension to form a large amount of time
series data for monitoring and analysis [18]. Similarly, many
common applications, such as time series databases, video and
senor applications, also have such memory access behavior.

When processing sequential memory accesses, there are
almost no repeat requests, so the utilization of TLBs is very
low. On the contrary, PTCs have a high hit rate, because most
of the upper-level PTC entries of these memory pages are
similar. In other words, the memory accesses have high spatial
locality. For example, if the granularity of sequential reads is
4KB, most virtual addresses have the same L4, L3 and L2
PTC entries. Storing them in PTCs can reduce large number
of memory accesses caused by TLB misses.

Fig.3 gives an example of 4KB granular sequential reads.
Because there are few reused entries, the entries stored in the
TLB cannot match subsequent requests, which results in a high
TLB miss rate. PTCs store three upper-level entries of V Ac

and V Af . This is because we assume that sequential reads
are conducted in two different regions that start with V Ac

and V Af . Therefore, most subsequent requests have the same
L4, L3 and L2 indexes of these two addresses. In this case,
because the hit rate of the PTC is high, PTC can function well,
but the TLB is not fully utilized, thereby reducing the space
utilization to a certain extent.

TLB

VAh

VAi

 L4 PTC VAc L4 VAf L4

 L2 PTC

 L3 PTC VAc L3 VAf  L3

VAc L2 VAf L2

MMUMemory Controller

TLB 
miss

PTC 
m

iss

Fig. 3. An example of memory access with sequential pattern. The upper-level
PTC entries of V Ac,V Af are frequently accessed.
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The separate TLB and PTC structures do not work well in
the second type of applications because TLB remains in its
entirety despite of its inefficiencies. If we can delete useless
TLB entries and expand PTC space to store more PTC entries,
it can reduce a lot of memory access overhead.

III. DESIGN OF UNIFIED-TP

The goal of this paper is to design an efficient address
translation support for workloads with different memory ac-
cess behaviors. After carefully analyzing the deficiency of
separately structured TLBs and PTCs in Section II, we pro-
pose a unified TLB-PTC structure, called Unified-TP. In the
following subsections, we are going to introduce the design
and implementation of Unified-TP in detail.

A. Unified-TP Structure

To meet the requirements of dynamically adjusting the
sizes of TLB and PTC structures according to the workloads,
Unified-TP combines TLB and PTC into a single structure.
In baseline system, the TLB and PTC are cache structures
with a tag array and a data array. The TLB tag array stores
virtual addresses while the PTC tag array stores physical
addresses. Both the TLB data array and the PTC data array
store the physical address corresponding to the virtual address
translation. The TLB and PTC have similar sized tag arrays
and data arrays which provide the opportunity to unify the
conventional TLB and PTC structures.

Fig.4 illustrates the structure of Unified-TP and contrasts it
to the baseline. In unified-TP, TLB and PTC entries are stored
together. For TLB entries, they are similar to those in the
baseline system. Specifically, they use Virtual Page Number
(VPN) as the tag field and Physical Page Number (PPN)
and protect bits (not shown in Fig.4) as the data field. For

PTC entries, unlike PTCs in AMD where entries are indexed
by physical addresses, they adopt the same indexing scheme
(indexed by virtual address) as TLB entries to make it easier
to design and implement in hardware. As shown in Fig.4 (c),
the tag of a PTC entry, L2, L3, L4, is a portion of VPN.
Specifically, the leftmost 9, 18 and 27 bits of VPN are used
as the tag of L4, L3 and L2 PTC entries respectively, and PPN
of the corresponding page tables and protect bits are stored in
the data field. For simplicity, we do not show the data field
when discussing about Unified-TP in the remainder of this
section. Furthermore, Unified-TP mixes PTC entries from any
upper-level of the page table instead of using distinct caches
for each level of the tree structure (Intel’s Paging Structure
Caches [19]). This is because distinct caches maintain fixed
number of entries for each level even though some levels may
be empty or sparsely populated, resulting in low cache space
utilization.

Set N

Set 1

Set 0

Unified-TP

L4 VPN2 ...

L3 VPN1 ... L2

way 0 way 1 way m...

...

L4/L3/L2/VPN
0Log2N

indexTag

=?

VPN3 L2 ... L4

... ... ... ...

Fig. 5. Illustration of set-associative of Unified-TP.

Like the baseline system, Unified-TP can also store TLB



and PTC entries in a set-associative way. Unified-TP does
not distinguish between TLB and PTC entries during an
insert operation. When Unified-TP stores a TLB entry, the
set selection is similar to what the baseline system does.
To simplify the implementation of hardware, we treat PTC
entries in the same way as we do TLB entries. Specifically,
for a N -set Unified-TP, the rightmost log2 N bits of L4/L3/L2
are used to locate the corresponding set and the rest of bits
are compared with the tags stored in the ways to determine
whether the entry is stored in the Unified-TP, as shown in
Fig.5. The uniform scheme of set selection for TLB and
PTC entries makes Unified-TP a hardware-friendly structure.
This is because set selections and insertion operations are the
same as conventional TLBs in the baseline system, making
the Unified-TP implementation straightforward with minimum
modifications to the hardware design.

We now discuss the lookup and fill operations of Unified-
TP. When CPU sends a memory access request, it consults
the Unified-TP to determine if the corresponding TLB or PTC
entries are stored. If there is a TLB entry hit, the translation
is returned to the CPU directly. Otherwise, PTW needs to
walk the page table to retrieve the missing translation no
matter the corresponding PTC entries hit or miss. Then the
missing translation and corresponding PTC entries are inserted
into Unified-TP (for further use) based on LRU replacement
algorithm.

B. Parallel Search in Unified-TP

Since structural separation of TLBs and PTCs in the
baseline system enables the respective circuitries of TLBs
and PTCs to each separately search entries and maintain
replacement policies, searching TLB and PTC entries can
be executed in parallel. In contrast, Unified-TP stores all
entries into a single structure, which may limit its ability
to search entries in parallel. Specifically, when receiving a
memory access request, the corresponding TLB entry and L2
to L4 PTC entries are checked in a sequential order if there
is only one circuitry of Unified-TP. In this subsection, we
propose a parallel search scheme to achieve the same effect
of parallelism as the baseline system.

The basic idea of parallel search scheme is to provide more
circuitries. In this way, when receiving a memory request, each
circuitry check one of corresponding entry among TLB and
L2 to L4 entries to accelerate the process of checking entries.
However, when there are multiple entries hit, updating the re-
placement states of each hit entry should be carefully designed.
Otherwise, data consistency issues may occur when multiple
circuitries modify the replacement information simultaneously.
To have a better understanding of parallel search scheme,
we divide a search operation into two parts, (1) checking if
the corresponding entry is stored in the Unified-TP and (2)
modifying the replacement information according to the check
results. Then we discuss how the parallel search scheme works
in each part in the following.

First, for checking entries, Unified-TP finds the set number
based on the index field and compares each way with the tag.
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Fig. 6. Parallel search of Unified-TP.

In this part of the search operation, only read operations are
involved. We provide the same number of circuitries (e.g., 4
corresponding to one TLB and three PTCs) as in the baseline
system to check entries in parallel. In other words, for each
entry in Unified-TP, it can be read by all the circuitries at
the same time. For example, Fig.6 presents a Unified-TP
with 4 circuitries (C1 to C4). When receiving a memory
access request, C1 is used to check whether the corresponding
TLB entry is stored in Unified-TP and C2 through C4 check
the corresponding L2 through L4 PTC entries respectively.
Therefore, all the circuitries can work in parallel in terms of
checking entries.

Second, replacement information should be modified, which
consists of updating replacement states when Unified-TP hits
and inserting new entries when Unified-TP misses, according
to the result of checking entries. Specifically, if the TLB
entry hits, only update the replacement information of TLB
entry. If the TLB entry miss and PTC entry hits, besides the
replacement information of PTC entry, PTW needs to walk the
page table from the corresponding level to get the translation
and insert upper-level PTC and TLB entries into Unified-TP.
Otherwise, PTW walks the page table from the root as baseline
system does.

Not that for Unified-TP hits, multiple circuitries hits may
incur data consistency issues, because multiple writes are
executed to update replacement states simultaneously. To avoid
this problem, among the circuitries whose check results are



hits, we choose the circuitry that checks the longest tag to
update the replacement state of the corresponding entry. This
is because the longer the tag is, the fewer memory accesses are
required. For Unified-TP misses, PTW walks the page tables
from the root to get the translation and inserts TLB and PTC
entries into Unified-TP. Since page tables are accessed level by
level, insert operations on TLB and PTC entries are executed
sequentially, which does not incur data consistency issues.

Fig.6 illustrates how the replacement information is mod-
ified in detail. Cases a© through d© represent that the hit of
the longest tag is from TLB to L4-PTC entries respectively.
For example, a© represents the case that a TLB entry hits.
Even though PTC entries checked by C2 through C4 may
also hit, only C1 is responsible for updating the replacement
information of the corresponding TLB entry. This is because
the TLB entry has the longest tag among hit entries. b©
represents the case that a TLB entry misses and a L2-PTC
entry hits. In this case, only C2 updates the replacement
information of the corresponding L2-PTC entry. Similarly, C3
and C4 update the information in cases c© and d© respectively.
Case e© represents that there is a Unified-TP miss. In this
case, Unified-TP utilizes our modified replacement policy to
find victims and inserts L4-PTC to TLB entries sequentially.

Based on the above analysis, Unified-TP can achieve par-
allel search by providing multiple circuitries and simplifying
the procedure of modifying replacement information. For the
baseline system, there are two differences from Unified-TP.
First, TLBs and PTCs of the former have the respective
circuitries to search entries and to maintain the information of
replacement policy separately. Second, when there are multiple
hits of TLB and PTC entries in the former (like cases a©
through d© of the latter), all the hit structures need to update
replacement information which results in more write opera-
tions than Unified-TP. Although Unified-TP reduce the number
of updating the replacement information, it works efficiently
with LRU algorithm to dynamically adjust the TLB and PTC
sizes according to the workloads. Specifically, for the first type
of applications in motivation, replacement information of TLB
entries are updated frequently which stores at MRU position
for further use. For the second type of applications, even
though we do not insert the upper-level entries at the MRU
position at first, these entries will be promoted to the MRU
position when accessed again. Finally, useless TLB entries are
stored in the LRU position and are more likely to be evicted
in Unified-TP.

IV. EVALUATION

A. Methodology

We simulated our work on a trace-based simulator that
models the TLB and PTC structures. We used the Pin binary
instrumentation tool [21] to generate the memory access trace
as in the prior work [4]. The configuration of the hardware
components is shown in the Table I.

Besides Unified-TP, we also simulate separate TLB and PTC
structure as the baseline structure. The baseline structure uses
distinct PTCs for each level of the page table, like Intel’s

TABLE I
SYSTEM CONFIGURATION

Component Configuratioin

TLB 64 entries, 4-way, 4-cycle access latency

PTC 32 entries, fully-associative, 10-cycle access latency

Unified-TP 96 entries, 4-way, 4-cycle access latency

PTW 50 cycle page table walk latency

Paging Structure Cache (PSC) [19]. Therefore, one TLB and
three PTCs are included in this structure, which we refer to
as PSC-Baseline (PSC B).

To provide a quantitative evaluation, we use a wide range
of benchmarks. First, we pick two kernels, which are known
to be memory-intensive workloads and two applications from
the PARSEC 3.0 suite [22]. In addition, we evaluate graph500,
one of the most popular graph benchmarks. Furthermore, we
also evaluate a big data benchmark, the GraphBIG suite [23].
GraphBIG benchmarks are based on IBM System G frame-
work, a widely-used comprehensive industrial graph comput-
ing toolkit. GraphBIG gives us the diversity of real-world
graph benchmarks that cover a variety of graph computation
problems. The suite consists of three main categories: graph
update, graph analysis, and social media analysis. We evaluate
benchmarks from all three categories in order to span a diverse
selection of modern graph workloads. A brief description of
each application is specified in Table II.

B. Impact on TLB Misses

Fig.7 shows the TLB miss rate, normalized to that of the
baseline structures PSC B. For the PARSEC 3.0 suite includ-
ing two memory intensive workloads and two applications
workloads, the TLB miss rate reduction ranges from 42.95%
to 60.85%. These workloads benefit from Unified-TP due to its
ability to store more TLB entries than PSC B. This is because
Unified-TP combines TLBs and PTCs to offer an elastically
larger capacity by adapting to workload characteristics with its
improved replacement algorithm. Therefore, more TLB entries

TABLE II
THE DIFFERENT WORKLOADS USED IN THE STUDY

Workload Description

Canneal Kernel from Parsec 3.0

Streamcluster Kernel from Parsec 3.0

Blackscholes Applications from Parsec 3.0

Swaptions Applications from Parsec 3.0

Graph500 BFS Kernel

Graph Update (GUp) Delete and Update Vertices

Degree Centrality (DCentr) Social Media Analysis

Connected Component (CComp) Graph Analysis and Traversal

Page Rank Monte Calo Mini-App
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Fig. 7. TLB miss rate, normalized to that of PSC B for all benchmarks.
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Fig. 9. Execution time, normalized to that of PSC B for all benchmarks.

can be stored in Unified-TP, improving TLB hit rate. That is,
when a TLB miss occurs, a new TLB entry can be inserted
in Unified-TP owing to its elasticity. An old TLB entry in
PSC B must be evicted every time to make room for the
new entry when TLB is full, possibly leading to further TLB
misses. For graph workloads, the TLB miss rate reduction
ranges from 21.41% to 25.85%. The TLB miss rate of these
workloads is 3 times that of workloads of the PARSEC 3.0
suite because of the weak locality. Thus, Unified-TP’s ability
to store TLB entries is also weaker for memory pages with
long reuse distance, leading to lower TLB miss reductions
for these workloads. Unified-TP reduces TLB misses rate by
35.69% on average for all benchmarks.

C. Impact on Memory Accesses

Fig.8 shows the number of memory accesses to PTC entries,
normalized to that of the baseline structure PSC B. For

workloads in PARSEC 3.0, Unified-TP reduces the number of
memory accesses from 38.41% to 61.59%. For graph work-
loads, the reduction of memory accesses ranges from 18.79%
to 28.94%. Unified-TP outperforms PSC B because the latter
has higher TLB miss rate than the former, which leads to more
PTCs lookup operations and thus larger number of memory
accesses in PWC B than in Unified-TP. Moreover, PTC hits in
different levels incur different numbers of memory accesses.
We observe that Unified-TP has higher L1-PTC entry hit rate
than PSC B on most of the workloads, resulting in fewer
memory accesses. In other words, most of the PTCs lookups
only need one memory access in Unified-TP. In summary,
Unified-TP can reduce the number of memory accesses by
an average of 65.39% for all the benchmarks.



D. Impact on performance overhead

Fig. 9 shows the execution time based on the latencies
in Table I of different workloads, normalized to that of the
baseline structure PSC B. Unified-TP achieves performance
improvements ranging from 7.49% to 14.60%. The perfor-
mance overhead of Unified-TP and PSC B can be divided
into two parts based on the TLB hits or misses. Since Unified-
TP and PSC B have the same overhead of per TLB hit, the
performance mainly depends on the penalty of a TLB miss.
For graph workloads, Unified-TP’s performance improvements
over PSC B range from 8.06% to 14.61% because of the fewer
TLB misses in the former than the latter. For workloads in
the PARSEC 3.0 suite, even though the TLB miss reduction
is higher than that of graph workloads, the performance
improvement ranges from 7.46% to 13.71% due to the lower
TLB miss rate (about one third) than the latter. In summary,
Unified-TP achieves performance improvements by 11.12% on
average for all benchmarks.

V. CONCLUSION

The emergence of memory-intensive workloads with large
memory footprints increases the demand on MMU to deliver
better performance in computer systems. In this paper, we
investigate the impact of separately structured TLBs and
PTCs in existing methods and find that they are inflexible
for different requirements of workloads, thereby limiting the
performance of address translation. We propose Unified-TP,
which is a novel structure that can mitigate the cost of large
number of memory accesses. Unified-TP unifies TLBs and
PTCs to improve cache efficiency and to adapt to different
workloads. Besides, we provide a parallel search scheme to
improve the performance of checking entries when a memory
access request is sent. We evaluate Unified-TP and separately
structured TLB and PTC and our results show that Unified-TP
reduces TLB misses and improve the performance by 35.69%
and 11.12% on average for all the workloads, respectively.
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