
HOLNET: A Holistic Traffic Control Framework
for Datacenter Networks

Zhijun Wanga Akshit Singhala Yunxiang Wub Chuwen Zhangc Hao Chea Hong Jianga Bin Liuc and C. Lagoad
aUniversity of Texas at Arlington, USA bPurple Mountain Laboratories, China

cTsinghua University, China dPennsylvania State University, USA

Abstract—In this paper, we put forward a HOListic traf-
fic control framework for datacenter NETworks (HOLNET).
HOLNET reformulates the network utility maximization (NUM)
framework into a HOLNET NUM framework that fully harnesses
the potential of the existing NUM-based solutions to allow
large families of traffic control protocols of various degrees of
sophistication to be developed, i.e., host-based, single or multiple
Class-of-Service (CoS) enabled, single or multi-path congestion
control, with or without in-network load balancing. Unlike the
existing solutions that are largely empirical and point by design,
HOLNET is a principled, systematic framework. All the protocols
in a family developed under HOLNET share a common, user-
defined global optimization objective and fairness criterion. As
a result, the protocols in a family can be fairly compared and
carefully selected to fully explore the performance, scalability and
design complexity tradeoffs. Case studies, based on both a single
and a multi-path host-based solutions, demonstrate the viability
and flexibility in HOLNET design space exploration. To further
test the backward compatibility and performance with respect to
some existing lightweight solutions, we develop HOLNET-UTA,
an integrated congestion control and load balancing protocol,
achieving TCP-fair resource allocation. HOLNET-UTA is found
by simulation to improve the average flow completion time (FCT)
by more than 20%, compared to DRILL with DCTCP.

I. INTRODUCTION

Traffic control in today’s loosely controlled public Internet
has been largely limited to end-to-end TCP congestion control
[1] and static, equal-cost-multipath (ECMP) load balancing
[2]. In contrast, in a well controlled environment like a
datacenter network, more sophisticated traffic control solutions
become viable. This has led to the proliferation of a wide spec-
trum of congestion control solutions for datacenter networks
in recent years, ranging from congestion control protocols
with minimum involvement of in-network nodes, like DCTCP
[3] and D2TCP [4] based on Explicit Congestion Notification
(ECN), all the way to those using the link load information
for the control, e.g., FCP [5], or even clean-slate solutions
requiring network architectural redesign, e.g., NUMFabric [6].
Meanwhile, various dynamic load balancing solutions have
emerged, exploring path diversity to further improve datacenter
network resource utilization. Again, the input for the control
ranges from purely local, e.g., DRILL [7], all the way to the
path load, e.g., CONGA [8].

However, there are two major drawbacks of the existing
traffic control solutions for datacenter networks. First, the
solutions are mostly point by design, focusing on one aspect of

the traffic control only, e.g., single-path or multi-path conges-
tion control, or in-network load balancing, but not both in an
integrated fashion, with various performance targets and input
requirements. More often than not, a point solution has to co-
exist with some other point solutions in practice, e.g., a newly
developed congestion control protocol coexisting with a load
balancing solution and/or a legacy TCP congestion control pro-
tocol. This, however, may adversely impact the effectiveness
of all protocols involved. Indeed, it has been widely recognized
[8]–[13] that independently developed traffic control solutions,
especially at different layers, may adversely interact with one
another, leading to suboptimal, unexpected performance, or
even network instability. Moreover, as point solutions, they
cannot easily adapt to software/hardware capability changes
and hence, cannot fully explore the performance, scalability
and design complexity tradeoffs.

Second, most of the existing solutions are empirical by
design, without provable convergence, stability, and optimality
properties. Although optimization-based traffic control proto-
cols underpinned by the Network Utility Maximization (NUM)
framework exist, they are all point solutions with limited
scope, applicable to elastic, rate adaptive traffic only. Notable
examples are the two earlier traffic engineering (i.e., load
balancing) solutions, i.e., MATE [14] and TeXCP [15], and
three more recent datacenter network solutions, i.e., NUM-
Fabric [6] and FCP [5] for congestion control, and LocalFlow
[16] for load balancing. The difficulty lies in the fact that
the current NUM framework is incapable of providing perfor-
mance guarantee for inelastic flows with diverse performance
requirements (see Section II for details).

To address the above drawbacks of the existing solutions,
in this paper, we put forward a HOListic traffic control
framework for datacenter NETworks (HOLNET). The ap-
proach taken by HOLNET is principled and systematic. At
the core of HOLNET is the introduction of the notion of
center-of-utility fairness and the reformulation of the NUM
framework into what we call, HOLNET NUM. HOLNET
NUM fully harnesses the potential of the existing NUM
solutions, allowing a whole new spectrum of traffic control
protocols to be developed. The protocols developed under
HOLNET can provide (soft) minimum flow rate guarantee and
center-of-utility fair sharing of network resources for diverse
applications. Hence, HOLNET makes a key contribution to
bridge the gap between the existing solutions to NUM and
their practical application to the design of traffic control978-1-7281-6992-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

protocols in support of diverse applications. More specifically,
HOLNET possesses the following salient features,
• It allows large families of congestion control and load bal-

ancing protocols of various degrees of sophistication to be
developed, with all the protocols in a family achieving a
common global objective and fairness criterion. Protocols
from a given family can be selected to fully explore the
performance, scalability and design complexity tradeoffs
and adapt to various possible software/hardware capabil-
ity changes.

• All the protocols developed under HOLNET enjoy prov-
able convergence, stability and optimality properties by
design.

• It allows fully integrated host-based (multipath) conges-
tion control and in-network load balancing protocols to be
developed, making fair resource allocation in the presence
of both congestion control and load balancing a reality;

• With proper design, HOLNET leads to protocols that
are backward compatible with TCP and hence are TCP
friendly by design.

In this paper, the flexibility for the HOLNET protocol
design space exploration is demonstrated by the design of two
protocols, i.e., an end-to-end multi-Class-of-Service (CoS),
single-path congestion control protocol and an end-to-end
single-CoS multipath congestion control. To further test the
backward compatibility, scalability, extensibility, and the per-
formance of HOLNET-based solutions, we introduce a family
of protocols, called HOLNET with Utility-of-TCP-based flow
rate Allocation (HOLNET-UTA) and we study one member
of this family, a congestion control protocol with in-network
load balancing. HOLNET-UTA is TCP-friendly by design and
backward compatible with TCP Reno [1]. It is found by
simulation to reduce average FCT by more than 20% compared
to DRILL [7] with DCTCP [3].

II. BACKGROUND, RELATED WORK AND MOTIVATIONS

Traffic Control Design Space: The existing traffic control
solutions for datacenter networks can be broadly classified into
two categories, i.e., host-based transport congestion control
and host-based multipath or in-network load balancing. A
partial list of the existing solutions (including some earlier
ones which are not datacenter specific) is given in Table I (note
that this list is not meant to be exhaustive, but to illustrate the
overall traffic control design space). For each solution listed,
the performance target(s) and required input information for
the control are also given.

First, we note that the listed solutions are point by design
with respect to the following aspects: (a) except for some
host-based solutions, such as MPTCP [32] and NDP [33],
congestion control and load balancing solutions are developed
independently; (b) the required input for the control can be
quite different from one solution to another, ranging from
purely local, all the way to path-utilization-based ones; and
(c) the performance targets are also quite diverse, e.g. average
flow completion time (FCT), throughput (TP), flow deadline
(FD), NUM, and utility min-max. Moreover, some solutions,

Fig. 1. Normalized user utilities for four CoSes.

e.g., pFabric [19], PIAS [24], and D3 [31], are clean-slate and
require architectural redesign. Clearly, it is difficult to com-
bine such solutions to fully explore performance, scalability,
and design complexity tradeoffs and to allow adaptation to
software/hardware capability changes for datacenter networks
at large. Moreover, as mentioned earlier, such solutions, when
coexist with one another, may adversely interact with one
another, leading to suboptimal, unexpected performance, or
even network instability [8]–[13].

Second, most solutions listed in Table I are empirical
by design. Although some solutions are NUM-based, e.g.,
[5], [6], [16], they are again point solutions with limited
scope, applicable to elastic traffic only and deal with either
congestion control or load balancing, but not both. Since
HOLNET is also rooted in NUM, in what follows, we first
give a background overview of NUM. Then we identify its
three major drawbacks, which motivates our work and also
helps to explain why the existing NUM-based solutions are
point by design and has limited scope.

NUM and NUM Solutions: NUM can be formally
stated as follows,

max{V (x) =

n∑
i=1

wiui(xi)}, (1)

subject to link bandwidth constraints (i.e., the total flow rate
for flows sharing a link must not exceed the link bandwidth),
where n is the number of active flows, ui(xi) and wi are the
normalized user utility function of the allocated flow rate xi
and the weight for flow i, respectively, and V (x) is the sum of
the weighted user utilities for all active flows. Here ui(xi)’s
are meant to be used to characterize Quality of Experience
(QoE) in terms of bandwidth demand for users of diverse
applications. Note that QoE or how a user feels about a service
is, in general, a complex function of many factors, e.g., TP,
FCT, packet delay and delay jitter, and even price paid for
using the service. Meeting bandwidth demand of a user may
be viewed as the first order approximation of meeting QoE.

For example, in his seminal work [46] back in 1995,
Shenker discussed protocol design challenges for the future
Internet in the context of NUM and defined four broad
CoSes to meet diverse application requirements, in terms of
four different types of user utilities, as illustrated in Figure
1, i.e., uNRE , uRDA, uRRA, and uHRT , for Non-Realtime
Elastic (NRE), Realtime Delay Adaptive (RDA), Realtime
Rate Adaptive (RRA), and Hard RealTime (HRT) CoSes,
respectively. Rs in Figure 1 is defined as the saturated flow rate
that maximizes the user utility, e.g., the highest encoding rate

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXISTING DESIGN SPACE

Solution Transport Host-based LB In-network LB Input Information Performance Target (QoS)
DCTCP [3]

√
× × ECN FCT&TP

FCP [5]
√

× × budget/link price NUM
DX [17]

√
× × latency queuing Delay

HULL [18]/DCTCP
√

× × ECN/QL mean & tail PL
D2TCP [4]

√
× × ECN/FDL FD (

√
)

pFabric [19] (clean-slate)
√

× × FD FCT (
√

)
ExpressPass [20] (clean-slate)

√
× × credit-based signaling FCT (

√
)

pHost [21]
√

× spraying token FCT, TP
NUMFabric [6]

√
× × Weights NUM

RC3 [22]
√

× × double loop FCT
XCP [23]

√
× × ECN TP

PIAS [24] (clean-slate) DCTCP/TCP × × AQM FCT
PASE [25] (clean-slate) DCTCP/D2TCP × × FD/AQM FCT (

√
)

L2DCT [26]
√

× × ECN FCT
DCQCN [27]/PFC [28], [29]

√
× × ECN, Pause PL

TIMELY [30]/PFC (opt)
√

× × RTT, Pause (opt) packet TL/TP
Karuna [9]/DCTCP

√
× × ECN/RTT FD/FCT (

√
)

D3 [31] (clean-slate)
√

× ECMP min-rate FD (
√

)
MPTCP [32]

√ √
× source inferred TP

NDP [33]
√ √

× Packet trimming FCT/TP
PDQ [34]/RCP [35] (clean-slate)

√ √
ECMP FD,Pause FCT,FD (

√
)

Presto [36] ×
√

× path weights TP
DRB [37] TCP

√
× ECN FCT/TL

FlowBender [38] TCP
√

(rerouting) ECMP ECN FCT/TL
HERMES [39] ×

√
× ECN/RTT/Timeout FCT

Clove [40]/ECMP ×
√ √

ECN/path-utilization FCT
HULA [41] × ×

√
per-hop utilization FCT/TP

LocalFlow [16] TCP ×
√

local NUM
RBS [42] × ×

√
path-ECMP Flow paths FCT/TP

MATE [14] × ×
√

edge-based path utilization/delay Min-Cost
TeXCP [15] × ×

√
edge-based path utilization utility Min-Max

Flare [43] × ×
√

local TP
LetFlow [44] × ×

√
none FCT

CONGA [8] × ×
√

edge-based path congestion FCT
Expeditus [45] × ×

√
local/path combined FCT/TL

DRILL [7] × ×
√

local FCT
ECMP [2] × ×

√
none TP

FCT: Flow Completion Time; TP: Throughput; TL: Tail Latency; PL: Packet Latency; FD: Flow Deadline; RTT: Round Trip Time
AQM: Active Queue Management; NUM: Network Utility Maximization; ECN: Explicit Congestion Notification

for an application of RRA CoS or maximum link bandwidth
for an application of NRE CoS. In general, any flow i with
rate xi, is associated with a given user utility function, Ui(xi),
and the corresponding normalized user utility, ui(xi), where,

ui(xi) = Ui(xi)/Ui(Rs,i), (2)

and Rs,i is the saturated rate for flow i. Clearly, ui(xi) is a
more convenient measure of the degree of user satisfaction
than Ui(xi)1.

To design the Internet protocols on the basis of the above
NUM, the first thing one must do is to find distributed
solutions to NUM. The first breakthrough came along in 1998
when Kelly, et. al. [47] showed that the utility function of
logarithm form, i.e., ui(xi) = log(xi) ∈ uNRE , for ∀i, results
in a solution in the form of a distributed flow rate adaptation al-
gorithm that resembles the distributed TCP congestion control,
achieving the so called proportional fairness. This encouraging

1NUM is traditionally defined in terms of unnormalized user utility
functions Ui(xi)’s, i.e., max{V (x) =

∑n
i=1 Ui(xi)}, subject to link

bandwidth constraints, which is a special case of the current definition, when
wi = Ui(Rs,i), for i = 1, ..., n.

result has stimulated the research interests in finding more
general distributed solutions to NUM. In particular, Low [48],
[49] proposes a distributed primal-dual congestion control
solution to NUM with arbitrary concave user utilities in uNRE

CoS. This solution requires that the flow rate at the source
of a flow and a variable, called price (a function of the
link load), at each and every link along the flow path are
iteratively updated and exchanged. This solution provided the
theoretical underpinning for all the aforementioned NUM-
based datacenter network traffic control protocols of the NRE
CoS, including NUMFabric [6] and FCP [5] for flow rate
control, and LocalFlow [16] for load balancing.

Another line of research based on Sliding Mode in con-
trol theory [50] has culminated in the finding of distributed
solutions spanning a large design space, allowing for flow
multipath and in-network flow load balancing with minimum
information exchange, and admitting flow rate constraints and
both concave (e.g., uNRE) [51], [52] and nonconcave [53]
(e.g., uRRA, uRDA and uHRT) user utilities.

Although promising, so far, we have seen no application of

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

the above NUM solutions as the theoretical underpinning for
the design of traffic control protocols for inelastic datacenter
applications. The root cause lies in the fact that NUM in the
current formulation is not suitable to support multiple CoSes
for three main reasons.

Three Drawbacks of NUM: First, NUM cannot provide
user utility guarantee. NUM is purely a ”social-welfare”
based framework, striving to maximize the sum of user
utilities, with no regards to application-specific requirements,
nor meaningful fairness among users of distinct CoSes.
Under this framework, the achievable individual user utilities,
regardless of which CoSes they belong to, are strong functions
of traffic load and traffic mix, which, however, may change
over time. For example, for a single-link network with
bandwidth, C, the sum of user utilities, nu(C/n), for n NRE
flows with the same concave utility function, u(x), where
u(x) ∈ uNRE , is an ever increasing function of n [46]. This
means that if a RRA, RDA, or HRT flow shares the same
link bandwidth with these NRE flows and as n increases, to
maximize V (x), its share of link bandwidth will eventually
diminish, resulting in unbearably low user utility. This means
that a flow of a realtime CoS may experience unpredictable
and poor performance, as the traffic load fluctuates and/or
flow mix pattern changes.

Second, in general, a solution to NUM with more than one
distinct user utility or even a single user utility but more than
one distinct saturated rate may not provide meaningful fair
flow rate allocation. For instance, a widely studied family of
concave α-fairness user utilities [54]2, is given as,

Uα(α, x) = x1−α/(1− α), for α ∈ (0,∞). (3)

Now, consider the user utility function, Uα(0.5, x) = 2
√
x

shared by two NRE applications with two distinct saturated
rates, i.e., Rs,1 = 400 Mbps and Rs,2 = 100 Mbps, re-
spectively. If two flows, one from each application, share a
100 Mbps link, the optimal flow rate allocation for NUM
with wiui(xi) = Uα(0.5, xi) in Eq. (1) is to give 50 Mbps
to each flow. It can be easily calculated from Eq. (2) that
the degrees of user satisfaction for the two flows at this
flow rate allocation are quite different, i.e., 0.354 and 0.707,
respectively, which also change drastically as the available link
bandwidth changes. Also it can be easily shown that using
ui(xi) with wi=1 for i=1, 2 in Eq. (1) results in even worse
rate allocation with user utilities, 0.224 and 0.894 for the first
and second flows, respectively. Clearly, it would be even harder
to predict how NUM would allocate the flow rates if flows with
more than one distinct user utility share a link bandwidth.

Third, it is, in general, difficult, if not impossible, to
accurately quantify, u(x), as it is just one of many important
factors that determine QoE.

Implications: The above stated mismatches between

2In particular, it is found that uα(∞, x) and uα(α → 1, x) → log(x)
provide the flow rate max-min and proportional fairness, respectively [54].

what NUM is intended to accomplish and what it is actually
capable of doing explain why, to date, NUM has been used
only as a tool to enforce a given fairness criterion among
elastic flows sharing the same user utility and saturation rate.
More specifically, all the existing NUM-based solutions [5],
[6], [16] for datacenter networks are exclusively focused on
flows sharing a single utility function of NRE CoS only, for
which the fairness criterion can be established, e.g., a given
user utility in the α-fairness family, rather than flows with
diverse user utilities or CoSes.

In conclusion, the existing NUM-based solutions fall short
of what NUM sets out to accomplish – supporting applications
of diverse CoSes. In fact, the ability to accommodate inelastic-
ity of applications should be a basic requirement of the future
protocol design for datacenter applications, simply because
almost all the predominant datacenter workloads today call
for some sort of minimum user utility guarantee, in the form
of a minimum flow rate or flow deadline, e.g., for user-facing
applications, such as adaptive video streaming. This then begs
the following fundamental question that motivates the current
work: Can NUM be reformulated in such a way that its full
potential, in terms of its existing, rich distributed solutions,
e.g., [51]–[53], can be harnessed to enable large families of
traffic control protocols for applications?

III. HOLNET

In this section, we attempt to provide a definitive answer
to the above question. We first introduce HOLNET NUM that
overcomes the three drawbacks of NUM. Then we characterize
the design space of HOLNET solutions.

A. HOLNET NUM

As discussed above, NUM fails to provide: (a) user utility
guarantee; (b) meaningful fairness in the presence of flows
with different user utilities and/or saturated rates; and (c)
faithful characterization of user utility. HOLNET NUM
directly addresses (a) and (b) by providing minimum user
utility guarantee and center-of-utility fairness, respectively,
which together capture the essential characteristics of user
utility, hence, to a great extent, achieving (c).

Minimum User Utility Guarantee: We note that a
user utility is generally composed of two parts, i.e., a
non-concave lower part and a concave higher part, e.g., the
parts below and above the inflection points XRRA (XRDA)
for RRA (RDA) as shown in Fig. 1. For instance, XRRA

may be the lowest level encoding rate for an adaptive video
stream. NRE and HRT are two extreme cases, one without
a lower part and the other without a higher part. While
offering more bandwidth or user utility beyond the lower part
may make a user happier, which however, is not critically
important, satisfying the lower part of the user utility, called
the minimum user utility in this paper, is likely to be essential
to the user satisfaction of the service and hence, cannot be
compromised.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

The minimum user utility for a datacenter service is often
spelled out by datacenter service providers in terms of a given
service level objective (SLO), e.g., a tail-latency SLO for a
user-facing interactive service. Since an SLO, in turn, can be
translated into given flow rates or flow deadlines [31], many
existing traffic control solutions aim at providing minimum
flow rate or the flow deadline guarantee [19], [25], [34]
without having to explicitly construct the user utility function.
Likewise, HOLNET aims at providing minimum flow rate
guarantee, assuming that the minimum flow rate required to
achieve the minimum user utility is already known.

To this end, HOLNET NUM simply extends NUM to
allow the minimum flow rate, e.g., θ, to be enforced as a
flow rate constraint, i.e., x ≥ θ. Clearly, any feasible solution
to HOLNET NUM provides the minimum flow rate, or
equivalently, the minimum user utility guarantee, regardless
of the traffic load and flow mix pattern.

Center-of-Utility Fairness: HOLNET NUM aims to
enable a meaningful user-utility-aware fairness criterion for
flow rate allocation among flows with different user utilities,
called the center-of-utility fairness.

First, we define center-of-utility, xci , for flow i, that captures
the average user utility of flow i, as follows,

xci =

∫ Rs,i
0

xi
dUi(xi)
dxi

dxi

Ui(Rs,i)
=

∫ Rs,i

0

xi
dui(xi)

dxi
dxi. (4)

The concept for the center-of-utility is borrowed from mechan-
ics in physics. More specifically, if we view the user utility
density, dUi(xi)/dxi, as the mass density at xi for an uneven
bar of length, Rs,i, and total mass, Ui(Rs,i), then the center
of mass [55] of the bar is xci , hence the name. xci is the center,
to which the user utility, Ui(xi), is concentrated. Hence, xci is
the exact measure of the average bandwidth demanded by the
users of flows with user utility, Ui(xi).

We then propose to enable the so called center-of-utility fair
flow rate allocation, i.e.,

xi
xj

=
xci
xcj
, (5)

for any pair of flows i and j sharing a bottleneck link. As a
result, HOLNET aims to achieve center-of-utility fair flow rate
allocation, provided that the minimum flow rates to sustain the
minimum user utilities are satisfied.

The rationale behind the use of the above fairness criterion
can be best illustrated by example. Consider an adaptive audio
flow and an adaptive video flow sharing a bottleneck link. It
is clear that both the average bandwidth demands (i.e., the
center-of-utilities) and the minimum encoding rates (i.e., the
flow rates to sustain the minimum user utilities) for the audio
and video applications are quite different, say, 50 Kbps versus
5 Mbps, and 10 Kbps versus 1 Mbps, respectively. With the
center-of-utility fairness, the video flow will then be allocated
100 times of the additional link bandwidth than the audio flow,
provided that the minimum encoding rates for the two flows,
i.e., 10 Kbps and 1 Mbps, are satisfied. Clearly, this flow

rate allocation solution captures the QoE in terms of user
bandwidth demand well, i.e., the guaranteed minimum user
bandwidth and additional bandwidth allocation in proportion
to the relative bandwidth demands.

However, as we mentioned earlier, it is generally difficult
to exactly quantify Ui(xi), which, in turn, makes it difficult
to quantify xci , as it is derived from Ui(xi). Fortunately,
however, with the minimum user utility guaranteed, it is no
longer essential to allocate the additional resource among flows
perfectly in proportion to the relative bandwidth demands,
which by itself, is difficult to define. So, in practice, xci may
be roughly estimated in terms of the order of the bandwidth
demand of the underlying application without having to know
the exact Ui(xi). For example, assume that an adaptive audio
application has several encoding levels in the range of 10Kbps-
100Kbps. It suffices to set xci at around 50Kbps to capture the
order of the overall bandwidth demand of this application.

Now what is left to be done is to recast NUM in Eq. (1)
in such a way that it will indeed lead to the fair flow rate
allocation defined in Eq. (5). To this end, we define HOLNET
NUM as follows,

max {V (x) =

n∑
i=1

wiUc(xi)}, (6)

subject to both link bandwidth constraints and flow rate
constraints for flows with minimum user utility requirements,
where Uc(x) is a concave user utility, called the base utility,
shared by all the flows3. In other words, our design goal of
HOLNET NUM is no longer to maximize the sum of the user
utilities, but to achieve center-of-utility fair flow rate allocation
via careful design of wi and Uc(x) as follows.

Consider flows sharing a bottleneck link. With the La-
grangian multiplier technique [56], it can be easily shown that
to maximize the sum of wiUc(xi) for all the flows sharing this
link, we must have,

wi
wj

=
dUc(xj)/dxj
dUc(xi)/dxi

, ∀i, j, (7)

for any pair of flows i and j bottlenecked at this link. Now
let Uc(x) = Uα(α, x) defined in Eq. (3), we have,

wi/wj = (xi/xj)
α, ∀i, j. (8)

Here, the weight, wi, for any user utility, Ui(xi), can be
calculated against the weight, w0 = 1, for the base utility,
U0(x0) = Uc(x0), with a base center-of-utility, xc0, calculated
from Eq. (4). Here, w0 is set to 1, without loss of generality.
By substituting Eq. (5) into Eq. (8), we have,

wi = (xci/x
c
0)α, ∀i. (9)

Then, substituting the above wi and Uc(xi) = Uα(α, xi)
into Eq. (6), we arrive at a new NUM, called HOLNET

3While on the surface, using a single concave utility with weights in
NUM is not new [6], HOLNET uses it in a completely different way
than the traditional one, i.e., realizing the center-of-utility fair flow rate
allocation, rather than achieving some network-centric performance target,
e.g., minimizing average FCT [6]

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

NUM, achieving center-of-utility fair flow rate allocation with
minimum user utility guarantee. It can be easily shown that
(the proof is not given due to the page limit) HOLNET NUM
also works for the case where each flow xi can be split into
L subflows, xi,l, for l = 1, ..., L, with each subflow taking
different paths to the same destination.

A nice property of HOLNET NUM is that it only deals
with a single concave user utility. As such, all the existing
solutions to NUM with concave user utilities can be applied
to HOLNET NUM, hence harnessing the potential of NUM,
to be described in the next section.

Finally, we note that in HOLNET, the user utility informa-
tion for a given flow i, including the minimum user utility and
center-of-utility fairness, is incorporated in HOLNET NUM
only through a pair of parameters, θi and wi. This means
that HOLNET can also be used to enable user-utility-agnostic
traffic control solutions, as long as this pair is properly defined.
For example, this pair may be tied to a pricing model to
achieve price-proportional flow rate allocation and fairness.

B. HOLNET Design Space

In this section, we first formally state the problem and its
solutions. Then we outline the design space of the solutions.

Consider a network with a set of nodes (i.e., switches) B.
Let Lb be the set of all links l connected to node b; Lbsi be
the set of all outgoing links l of a source node Si; and xi,l
be the subflow rate of flow i through link l. Namely, flow i is
split into ni subflows, which are mapped to different first-hop
nodes and we have,

xi =

ni∑
l∈Lbsi

xi,l, ∀i. (10)

This setup allows for host-based multipath or multi-next-hop
congestion control and load balancing. Now HOLNET NUM
is to achieve the global objective given in Eq. (6), subject to
the network link bandwidth constraints and the following flow
rate constraints,

θi ≤ xi ≤ Θi, ∀i. (11)

Different values of lower bound θi and upper bound Θi can be
used to provide minimum user utility guarantee for different
CoSes. For example, for NRE, θi = 0 and Θi =∞; for HRT,
θi = Θi > 0; for RRA and RDA, θi > 0, and Θi =∞.

HOLNET is underpinned by the family of optimal, dis-
tributed traffic control solutions to NUM with concave user
utilities given by Su, et. al. [52], rather than the family
of primal-dual solutions [48], [49], which underpin all the
aforementioned datacenter NUM-based protocols. The former
one is adopted because it is most sophisticated one that
(a) accommodates flow rate constraints; (b) covers a large
design space, including integrated (multi-path) congestion
control and load balancing; and (c) allows for the exploration
of performance, scalability and design complexity tradeoffs
and adaption to hardware/software changes. In other words,
HOLNET NUM fully harnesses the potential of the most

TABLE II
VALUES OF rini,b AND rout

i,(b),l
(IT REPRESENTS BOTH routi,l AND routi,b,l)

Congested
next hop local rini,b rout

i,(b),l

yes yes rmax rmin
yes no rmax rmin
no yes rmax 1
no no 1 1

sophisticated NUM solutions for the design of a whole new
set of families of traffic control protocols.

In its most general form, these families of solutions are
applicable to a multidomain environment. However, due to
the page limitation, in this paper, we limit the description
of these families of solutions in the context of a single
domain. The families of solutions are generally composed of
a set of user-utility-based, multi-next-hop-enabled congestion
controllers running at hosts (i.e., servers) and a set of
in-network load balancers running at network nodes.

Multi-next-hop-enabled congestion controller: The
families of optimal congestion controllers for flow i at source
host Si can be generally written as [52],

ẋi,l = zi(t, xi, cgl, r
out
i,l)[fi(xi)− (1− cglrirouti,l)], (12)

where
fi(xi) = 1− e−∂Ui(xi)/∂xi , (13)

where Ui(xi) can be any concave function and for HOLNET
NUM, Ui(xi) = wiUc(xi), where each Uc(xi) defines a
family of congestion controllers; cgl is a local congestion
indicator, taking value 1 if the outgoing link l is congested and
0 otherwise; cgl is the logic negation of cgl; zi(.) is a user-
defined piecewise continuous positive scalar function; and ri
is determined by the CoS as follows,

ri =

 rCoSmax if xi < θi
1 if θi ≤ xi ≤ Θi

rCoSmin if xi ≥ Θi,
(14)

an extension to the results in [52]. Here rCoSmax > 1 and
rCoSmin < 1 are tunable constants; and routi,l is determined
by the congestion information fed back from the first hop
node (i.e., a top-of-rack (ToR) switch in the context of a
datacenter network), a per-flow-based single-hop signaling. It
is calculated based on Table II, where rmax > 1 and rmin < 1
are design parameters.

Now, we highlight some salient features of the above
families of congestion controllers. First, a congestion
controller for any given flow i is dependent on the user
utility function, Ui(xi), or in the case of HOLNET, θi
and wiUc(xi), for flow i only (see Eq. (13)). As we shall
see shortly, the in-network load balancers are user-utility
agnostic. This means that flows belonging to a new CoS with
a new user utility function can be added by simply activating
a new congestion controller with its minimum flow rate
and weight value properly set at runtime. Second, the only
nonlocal information is the congestion feedback, routi,l , from
the first-hop nodes, making the congestion control highly

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

scalable. Third, with multi-next-hop flow load balancing
capability, these families of congestion controllers enable
host-based load balancing features, as well as both host
and in-network-based load balancing features by working
seamlessly with in-network load balancers, to be introduced
shortly. Fourth, each base utility, Uc(x), defines a family of
congestion controllers. Each family is composed of congestion
controllers of various degrees of sophistication. Different
congestion controllers may take as input different information
for the control, by engineering zi(.) as a function of various
additional information, ranging from the local information,
all the way to the entire path information for performance
enhancement, without changing the global design objective
and fairness criterion. Last but not least, the above families
of congestion controllers degenerate to families of transport
congestion controllers [51] by simply setting routi,l to 1, if
the in-network nodes are not involved. cgl now represents
the congestion indicator for path l from the source to the
destination host, which may be (a) inferred by the source
host, resulting in highly scalable end-to-end solutions, similar
to the end-to-end TCP congestion control; (b) acquired
explicitly using ECN [57], leading to lightweight ECN-based
solutions, similar to DCTCP and D2TCP; or (c) explicit link
load or even path information.

In-network load balancer: At each node b, the outgoing
data rate xouti,b,l from node b through link l (l = 1, 2, ..., ni,b)
is given by,

ẋouti,b,l = zi,b(t, xi, cgl, r
in
i,b, r

out
i,b,l)[−1 + cglr

in
i,br

out
i,b,l], (15)

where ni,b is the number of next-hop nodes for flow i,
which may be determined locally by node b; zi,b(.) is again
a piecewise continuous positive scalar function. routi,(b),l and
rini,b are determined by the local and next-hop congestion
information, respectively, as given in Table II. Again, routi,(b),l

enables per-flow-based congestion feedback. This family of
load balancers can be directly applied to HOLNET NUM
without further modification.

The above load balancers possess the following salient fea-
tures. First, they are independent of the user utilities. Second,
they are flow rate constraint unaware. These two features make
the load balancing user-utility agnostic and hence, scalable.

To further improve the scalability, [52] introduces a percent-
age based destination-node-based load balancer that further
reduces the total number of load balancers per node to be
the number of edge nodes. Let pi,b,l be the percentage of all
incoming traffic (

∑
j x

in
i,b,j) at node b routed to outgoing link l

towards destination i. The control law for the outgoing traffic
(xouti,b,l) through l is given by,

xouti,b,l = pi,b,l
∑
j∈Lb

xini,b,j (16)

and
ṗi,b,l = zi,b(t, xi, cgl, r

in
i,b, r

out
i,b,l)

(ẋouti,b,l

∑
j∈Lb;j 6=l

pi,b,j − pi,b,l
∑

j∈Lb;j 6=l

ẋouti,b,j).
(17)

with

ẋouti,b,l = −1 + cglr
in
i,br

out
i,b,l (18)

HOLNET design space: The above HOLENET-NUM-
based families of solutions span a large design space, as shown
in Table III, from single-path rate adaptive congestion control
to the most comprehensive ones involving both multi-CoS,
multipath congestion control and in-network load balancing.

First, CC and MCC on the top of the list are the two simplest
solutions among all, which are rate adaptive congestion control
solutions without and with multipath, respectively. CC-CoS
and MCC-CoS further enable services with minimum user-
utility guarantee. All four types of solutions are host-based
and can be end-to-end (as scalable as end-to-end TCP), ECN-
based (as scalable as DCTCP), link-load-based, or even path-
load-based, leading to a wide range of solutions of various
degrees of sophistication, allowing for full exploration of the
performance, scalability and design complexity tradeoffs.

The next four solutions take advantage of path diversity
to further improve the flow performance via in-network load
balancing. In addition to the congestion controllers running at
hosts, these solutions require that a network node implement
a set of load balancers with per-hop signaling for flow
aggregates at some given granularities, e.g., ToR-to-ToR or
destination-ToR based. These congestion controllers and load
balancers use the local and next-hop congestion information
as input for the control4.

Practical Applicability of HOLNET: As stated at the
beginning of the introduction section, sophisticated traffic
control solutions, such as those with QoS features derivable
from HOLNET (i.e., the types of protocols involving CoS
features listed in Table III), clean-slate and flow-deadline-
aware protocols listed in Table I become viable only in
a well-controlled environment like a datacenter. This is
simply because in a loosely controlled environment, such
as the public Internet, selfish users can cheat the system by
using protocols with better QoS features or more aggressive
user utilities than needed. In contrast, in a well-controlled
environment, what user utility, or equivalently, what HOLNET
protocol may be used by a host (e.g., a server in a datacenter)
in that environment is under the full control of the network
operator/service provider in that environment. Moreover, to
support users of the applications/services that require strict
minimum user utility guarantee, some additional mechanisms,
such as a call admission or a network resource monitory
mechanism, must be in place, which is feasible only in a
well-controlled environment.

4The proposed four solutions are the most lightweight and hence the most
scalable optimal solutions possible. Indeed, it is shown by example [8] that
load balancing with pure local information can result in worse performance
than a traffic-oblivious solution, like ECMP. This means that to achieve
optimal control, the input for the control must be at least per-hop based,
which is the case for the current solution.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III
HOLNET DESIGN SPACE

Solution Host-based Host-based LB In-network LB Multi-CoS Comments
CC yes no no no Elastic Congestion Control (CC)
MCC yes yes no no Multipath CC (MCC)
CC-CoS yes no no yes CC and multi-CoS
MCC-CoS yes yes no yes multipath CC-CoS
CC-LB yes no yes no CC with in-network load balancing (LB)
MCC-LB yes yes yes no Multi-next-hop CC-LB
CC-CoS-LB yes no yes yes CC-CoS with LB
MCC-CoS-LB yes yes yes yes MCC-CoS with LB

IV. CASE STUDIES

This section aims to demonstrate the viability and flexibil-
ity for HOLNET design space exploration. Specifically, we
develop a family of CC-CoS congestion controllers and an
MCC congestion controller and test them by ns-3 simulation.

A. A Family of CC/CC-CoS Controllers

To limit the exposure, we skip the subscription, i, for flow
i in the rest of paper. The families of optimal CC/CC-CoS
controllers using Uc(x) = Uα(α, x) as the base utility with
z(.) = γxα can be easily derived from Eq. (12) with routl = 1,
as follows,

ẋ =

{
γxα(r − e−wx−α

) if cg = 0

−γxαe−wx−α
if cg = 1.

(19)

where r is the same as ri defined in Eq. (14), and we set rCoSmax

at 3 for all the case studies in this paper. These controllers are
then turned into window-based congestion control protocols,
not shown here for the lack of space (the same for the rest
of the case studies). In this case study, we only consider end-
to-end control, meaning that the controllers use only source
inferable information for the control, i.e., the three replicated
acknowledgements (ACKs) and timeout, similar to TCP Reno.
The only difference is that for the current controllers, the rate
adjustment is the same for both timeout and three duplicated
ACKs. These controllers are as scalable as TCP Reno.

We first apply a CC controller in the above families of
controllers with base utility, Uc(x) = Uα(0.5, x) or α = 0.5,
to two NRE flows (i.e., θ = 0 and r = 1) with the same user
utility, U1(x) = U2(x) = Uα(0.5, x), which share a 100 Mbps
link, as shown in Figure 2 (a). The saturated rates, Rs’s, for
the two are set at 400 Mbps and 100 Mbps, respectively. The
center-of-utility ratio for the two flows can then be calculated
(i.e., Eq. (4)), which turns out to be 4, resulting in the weight
ratio of 2 (i.e., Eq. (8)). In other words, the optimal flow rate
allocation should be 4:1, or 80 Mbps and 20 Mbps for flow
1 and flow 2, respectively, in order to achieve the center-of-
utility fairness.

Figures 3 (a) and (b) depict the achieved normalized V(x)
in Eq. (6) and flow rate allocations against their respectively
optimal ones. As one can see, both converge to near optimal
values quickly, resulting in the flow rate ratio of 3.61, close
to, but lower than the optimal ratio of 4. This is because flow
x1, which has higher flow rate than flow x2 generally senses
more congestions and hence achieves lower than expected flow

Fig. 2. Network topologies for (a) CC-CoS controllers; (b) MCC controller.

0 5 10 15 20

Time (s)

0.5

0.6

0.7

0.8

0.9

1

O
v
e

ra
ll
 U

ti
li
ty

alpha=0.5-Opt

alpha=0.5-Sim

alpha=0.75-Opt

alpha=0.75-Sim

(a)

0 5 10 15 20

Time (s)

0

20

40

60

80

100

R
a

te
 (

M
b

p
s
)

X
1
-Sim

X
1
-Opt

X
2
-Sim

X
2
-Opt

(b)

0 5 10 15 20

Time (s)

0

20

40

60

80

100

R
a

te
 (

M
b

p
s
)

NRE-Sim

NRE-Opt

RRA-Sim

RRA-Opt

(c)
Fig. 3. (a) Overall utility; Rate allocation for (b) α = 0.5 and (c) α = 0.75.

rate. Note that the aggregated flow rate is less than the link
bandwidth of 100 Mbps, due to discrete time window-based
control that cannot fully utilize the link bandwidth.

Now we apply a different family of the CC-CoS controllers,
i.e., the α-utility with α = 0.75 as the base utility. Consider
an NRE flow, x1, with UNRE(x1) = log(1 +x1), and a RRA
flow, x2, with URRA(x2) = (x2 − xRRA2)1/3 + (xRRA2)1/3

and xRRA2 = θ = 20 Mbps sharing a 100 Mbps link, as
shown in Figure 2 (a), and flows have the same saturated rate
Rs,1 = Rs,2 = 100 Mbps. The center-of-utility ratio for the
two flows is then 5.59 (resulting in the weight ratio of 3.63)
and hence the optimal flow rates for NRE and RRA flows
should be 15.2 Mbps and 84.8 Mbps, respectively.

As one can see from Figures 3 (a) and (c), the simulated
utility and flow rate allocation well match with the optimal
ones. The flow ratio is 5.24, close to the optimal value, 5.59.
Since the overall rate is higher than the minimum required
rate 20 Mbps for the RRA flow, the minimum rate does not
play a role for the rate allocation.

B. MCC: Multipath Congestion Control

Now we develop a scalable elastic, NRE (i.e., r=1), end-
to-end multipath congestion controller. More specifically, we
assume that all the flows have the same center-of-utility and
saturated rate. This means that all the flows have the same
weight, which can then be set to 1, without loss of generality.
We let, Uc(x) = εlog(x) = εlog(

∑L
l=1 xl), where xl is the

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20

Time (s)

0

20

40

60

80

100
R

a
te

 (
M

b
p

s
)

X
1,1

-Sim

X
1,1

-Opt

X
1,2

-Sim

X
1,2

-Opt

X
2
-Sim

X
2
-Opt

(a)

0 5 10 15 20

Time (s)

0

20

40

60

80

100

R
a

te
 (

M
b

p
s
)

X
1,1

-Sim

X
1,1

-Opt

X
1,2

-Sim

X
1,2

-Opt

X
2
-Sim

X
2
-Opt

(b)
Fig. 4. Rate Allocation: (a) MCC Controller; (b) MPTCP

flow rate of the subflow l, x =
∑L
l=1 xl is the flow rate and

ε is a constant. We set, z(.) = γxl, where γ is a constant.
The values for γ and ε are chosen such that the control
law degenerates to the TCP AIMD (i.e, additive increase and
multiplicative decrease) control in the case of a single-path
flow. Then the optimal controller for subflow l can be readily
derived from Eq. (12) with r = 1 and routl = 1, as follows,

ẋl =

{
γxl(1− e−ε/x) if cg = 0
−γxle−ε/x if cg = 1.

(20)

The above controller can be understood as follows. When
x>>ε, Eq. (20) can be approximated as ẋl≈γεxl/x at cg = 0
and ẋl≈−γxl at cg = 1. Namely, when congestion is detected,
which is source inferred, flow decrease rate is similar to that
of TCP congestion control. In the absence of congestion, on
the other hand, the flow increase rate is inversely proportional
to its overall flow rate x, meaning that a subflow increase rate
becomes smaller if the overall flow rate becomes larger. This
controller is similar to and as scalable as MPTCP [32], [58],
allowing all flows to evenly share network bandwidths.

Consider a multipath flow with two subflows x1,1 and x1,2
and a single-path flow x2 that share a network, shown in Figure
2 (b). Subflow, x1,1, takes a path with bandwidth of 60 Mbps,
and subflow x1,2 and x2 share a 100 Mbps link. With these
network and flow path configurations, it can be easily shown
that the optimal flow rate allocation for this HOLNET NUM
problem is: x1,1 =60 Mbps, x1,2 = 20 Mbps and x2 = 80
Mbps, i.e., to equalize the flow rates. The performance of
the MCC controller is tested against this optimal flow rate
allocation (for this and all the rest of the case studies, we
only show flow rate allocation, not V(x), as the latter is just
a means to achieve the former). It is also compared against
MPTCP based on the ns-3 open source code [59].

Figure 4 presents the performance results. As one can
see, overall both MCC controller and MPTCP are able to
allocate flow rates evenly between the two flows. For the MCC
controller, x2 is slightly lower than the optimal one (73 vs 80
Mbps) while the other two subflows are nearly equal to their
respective optimal ones. The reason is the same as the previous
case. Namely, a flow with higher rate (i.e., x2) generally senses
more congestions than a flow with lower rate (i.e., x1,2), thus
resulting in more reduced rate, compared to the optimal one.
Since MPTCP is empirically designed, its flow rate allocation
cannot be easily interpreted with reference to the optimal one.
Indeed, for MPTCP, x2 actually achieves higher rate than the
optimal one, whereas x1,2 is lower than the optimal one.

V. HOLNET-UTA
While the previous section demonstrates both viability

and flexibility of HOLNET in design space exploration, this
section develops a pragmatic family of lightweight traffic
controllers, called HOLNET with Utility-of-TCP-based flow
rate Allocation (UTA), or HOLNET-UTA in short. HOLNET-
UTA is TCP-friendly and backward compatible with TCP
Reno. Since in HOLNET, both minimum user utility and the
center-of-utility are factored into the congestion controller in
terms of θ and w, in this study, we assume θ and w are given,
and focus on the testing of traffic controller performance. Since
HOLNET-UTA is lightweight, requiring only per-hop feedback
from network nodes, it is only compared against some well-
known lightweight transport and in-network load balancing
solutions. Furthermore, since all the solutions to be compared
against aim at achieving network-centric performance targets,
such as FCT, we adopt the same performance targets.

First, to be TCP-friendly by design, HOLENET-UTA uses
TCP utility as the base utility. We adopt the following TCP
utility function and its z-function for TCP Reno, derived
in [60]. Let ρx and βx be the multiplicative increase rate
and multiplicative decrease rate, respectively. The TCP utility
function in the SSP is then given by,

Utcp(x) = xlog(1 +
ρ

β
), (21)

and in the congestion avoidance phase (CAP) is given by,

Utcp(x) = (
µ

β
+ x)[log(µ+ βx)− 1]− x[log(βx)− 1], (22)

where µ is the additive-increase rate. The z-function of the
TCP control law is derived in [60] as,

z(t, x, cg, z) =

{
(ρ+ β)x for SSP
µ+ βx for CAP (23)

With Uc(x) being the TCP utility function in Eqs. (21) and
(22) and z(.) given above, Then the HOLNET-UTA family of
congestion controllers are readily derived from Eq. (12) as,

ẋ =

{
(rrout − (1 + ρ

β)−w)(ρ+ β)x if cg = 0

−21−wβx if cg = 1,
(24)

for the SSP, and

ẋ =

{
[−(βx

µ+βx)w + rrout](µ+ βx) if cg = 0

−(βx
µ+βx)w(µ+ βx) if cg = 1,

(25)

for the CAP. Here r is given by Eq. (14) for flows with
minimum user utility requirements. Otherwise, r = 1. The
corresponding in-network load balancers are given by Eq. (17).

HOLNET-UTA covers a large part of the HOLNET design
space, i.e., CC/CC-CoS and CC-LB/CC-CoS-LB, in Table III.
It is minimalistic, meaning that it uses the minimal information
feedback (i.e., source inferred or per-hop) and simplest possi-
ble queuing mechanism, i.e., a single FIFO queue per output
port and enabling soft CoS features without call admission
control. Hence, the HOLNET-UTA family is highly scalable.

Due to the limited space, we only derive an example CC-
LB controller from the above family, i.e., by simply setting

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

r = 1 (i.e., θ = 0) and w = 1 in Eqs. (24) and (25), and
compare its performance against some well-known lightweight
transport and in-network load balancing solutions using a
widely adopted realistic workload, i.e., data-mining [61].

In our design, each source host runs a set of congestion
controllers for its flows and each datacenter network node
runs a set of load balancers for flow aggregates (i.e., Eq. (16)).
Now we discuss some important design aspects in more detail.

Congestion Detection: In our design, the congestion
for any given output port is detected, when the queue
level for the buffer corresponding to that port reaches a pq%
threshold. In our case, pq = 80. This does not mean that when
congestion is detected, the incoming packets are blocked. In
fact, they are still allowed to enter the output buffer until
buffer overflow, when the incoming packets are dropped.

Load balancing: In a two-tier leaf-spine datacenter network,
to be used for our case study, load balancing is done only by
the source host side leaf nodes. The load balancing is coarse-
grained, with only one load balancer per destination-leaf flow
aggregate, regardless of flow types. The flow aggregate rate
allocation to the multi-path is based on the percentage-based
load balancers given in Eq. (17) by setting z(.) = 1. Initially,
the percentage of each outgoing port in the multi-path is
assigned proportional to their bandwidth capacities. For
example, with n outgoing ports, each has bandwidth Bi, for
i = 1, 2, ..., n, the initial percentage assignments are set at,
pi = Bi/

∑n
j=1Bj . After that, the percentages are updated

periodically at a given time interval, which is set at RTT/4.
At each update epoch, a leaf node checks if any outgoing
port or its next hop is congested. If yes, then the percentage
is updated according to Eqs. (16)-(18).

Packet loss recovery: Since HOLNET-UTA can sense
congestion before buffer overflow, the packet drop rate is
very low, particularly in the spine and sender side leaf
nodes. So, we turn off the fast retransmission feature of TCP
(i.e., retransmission upon receiving three duplicated ACKs)
and solely rely on retransmission timeout for packet loss
recovery. When a timeout occurs, for simplicity, the source
host retransmits all the packets from the timed out packet
(similar to go back N). In our solution, a timeout will not
trigger congestion control. Instead, it solely relies on the local
and the next hop feedback information for the control.

We compare the performance of UTA by simulation against
DCTCP, combined with one of the two load balancing solu-
tions, i.e., ECMP [2] or DRILL [7]. DRILL is found [7] to
offer better performance than most of the existing schemes,
including CONGA [8] that uses global information.

A widely adopted performance metric for load balancing is
FCT. So we use average FCT as the main performance metric
in the context of overall flows, small flows (size <100K),
and huge flows (size >10M bytes), and the 99th FCT for
overall flows. A 6x6 leaf-spine network topology with 24
hosts per rack is simulated. The bandwidth/propagation delay

(a) (b)
Fig. 5. Performance Comparison (Data-ming)

is set at 10Gps/10µs between a host and a leaf node, and
at 20Gbps/30µs between a leaf and a spine node. The queue
size in a leaf/spine node is 150/300 Kbytes. The ECN marking
threshold is set at 65% of queue size, the typical value used in
DCTCP [3]. The control parameters are set at rmin = 0.1 and
rmax = 1.5. Flows arrive following a Poisson process. The
network load is adjusted with the change of flow arrival rate.
When a flow arrives, a host is randomly selected as the send
host and then a host in a different rack is randomly selected
as the destination host.

Figure 5 gives the results (normalized to DRILL) for the
data-mining workload case (similar results are obtained for
the web-search workload [3], which is not shown here for
the lack of space). UTA outperforms both DRILL and ECMP
for most cases studied. Particularly, for the heavy load case,
UTA outperforms DRILL (ECMP) by more than 20% (60%)
in terms of average FCT, average FCT for huge flows and
99th percentile and it is on par with DRILL for the small flow
case. This is because with per-hop congestion feedbacks and
integrated congestion control and load balancing, UTA can
respond to network congestions much faster and allow better
balanced load than both ECMP with DCTCP and DRILL with
DCTCP, which are not integrated solutions.

VI. CONCLUSIONS

This paper presents HOLNET, a holistic traffic control
framework for datacenter networks. HOLNET allows large
families of traffic control protocols of various degrees of
sophistication to be developed. Unlike the existing solutions
that are largely empirical by design, HOLNET is a principled,
systematic solution. Protocols in each family developed under
HOLNET share a common, user-defined global optimization
objective. As a result, the protocols in each family can be
fairly compared and carefully selected to fully explore the
performance, scalability and design complexity tradeoffs. As
an example, we develop HOLNET-UTA, a family of integrated
congestion controllers and load balancers, maximizing the sum
of weight TCP utilities. The large-scale simulation demon-
strates the backward compatibility and flexibility of HOLNET.

VII. ACKNOWLEDGMENTS

We would like to thank our shepherd, Richard T. B. Ma,
and the anonymous reviewers for their insightful feedbacks.
This work is supported by the US NSF under Grant No. CCF
XPS-1629625 and CCF SHF-1704504.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
TCP Reno performance: a simple model and its empirical validation,”
IEEE/ACM Transactions on Networking, vol. 8, pp. 133–145, 2000.

[2] C. E. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” in RFC
2992.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proceedings of ACM SIGCOMM, 2010.

[4] B. Vamana, J. Hasan, and T. Vijakumar, “Deadline-Aware Datacenter
TCP (D2TCP),” in Proceedings f ACM SIGCOMM, 2012.

[5] D. Han, R. Grandl, A. Akella, and S. Seshan, “Fcp: A flexible transport
framework for accommodating diversity,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 135–146, 2013.

[6] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, “ NUMFabric: Fast and Flexible Bandwidth Allocation in
Datacenters,” in Proceedings of the 14th ACM SIGCOMM, 2014.

[7] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro Load Balancing for Low-latency Data Center Net-
works,” in Proceedings of ACM SIGCOMM, 2017.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“ CONGA: Distributed Congestion-Aware Load Balancing for Datacen-
ters,” in Proceedings of ACM SIGCOMM, 2014.

[9] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling Mix-flows
in Commodity Datacenters with Karuna,” in Proceedings of ACM
SIGCOMM, 2016.

[10] D. Acemoglu, R. Johari, and A. Ozdaglar, “Partially Optimal Routing,”
IEEE Journal of Selected Areas of Communications, vol. 25, pp. 1148–
1160, 2007.

[11] L. Qui, Y. R. Yang, Y. Zhang, and S. Shenker, “On Relfish Routing in
Internet-like Environments,” in Proceedings of ACM SIGCOMM, 2003.

[12] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint
routing and rate control,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 2, pp. 5–12, 2005.

[13] Y. Liu, H. Zhang, W. Gong, and D. F. Towsley, “On the interaction
between overlay routing and underlay routing,” in Proceedings of IEEE
INFOCOM, 2005.

[14] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering,” in Proceedings of IEEE INFOCOM, 2001.

[15] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the Tightrope
: Responsive Yet Stable Traffic Engineering,” in Proceedings of ACM
SIGCOMM, 2005.

[16] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow
routing in datacenters via local link balancing,” in Proceedings of ACM
CoNEXT, 2013.

[17] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-based
congestion feedback for datacenters,” in Proceedings of USENIX ATC,
2015.

[18] M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is More:
Trading a little Bandwidth for Ultra-Low Latency in the Data Center,”
in Proceedings of USENIX NSDI, 2012.

[19] M. Alizadeh, S. Yang, M. Sharif, and S. Katti, “pFabric: Minimal Near-
Optimal Datacenter Transport,” in Proceedings of ACM SIGCOMM,
2013.

[20] I. Cho, K. Jang, and D. Han, “Credit-Scheduled Delay-Bounded Con-
gestion Control for Datacenters,” in Proceedings of ACM SIGCOMM,
2017.

[21] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “ pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proceedings of ACM CoNEXT, 2015.

[22] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, “Recursively Cau-
tious Congestion Control,” in Proceedings of the 14th ACM Workshop
on Hot Topics in Networks, 2014.

[23] D. Katabi, M. Handkwy, and C. Rohrs, “ Congestion control for high
bandwidth-delay product networks,” in Proceedings of ACM SIGCOMM,
2002.

[24] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun, “PIAS: Practical
Information-Agnostic Flow Scheduling for Data Center Networks,” in
Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
2014.

[25] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar,
“Friends, Not Foes: Synthesizing Existing Transport Strategies for Data
Center Networks,” in Proceedings of ACM SIGCOMM., 2014.

[26] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing Flow Completion Times in Data Centers,”
in Proceedings of IEEE INFOCOM, 2013.

[27] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. Haj, and Y. Ming, “Congestion Control for Large-Scale
RDMA Deployments,” in Proceedings of ACM SIGCOMM, 2015.

[28] IEEE, “DCB. 802.1Qbb - Priority-based Flow Control,” 2011. [Online].
Available: http://www.ieee802.org/1/pages/802.1bb.html

[29] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over Commodity Ethernet at Scale,” in Proceedings of ACM
SIGCOMM, 2016.

[30] R. Mittal, U. C. Berkeley, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. G. Microsoft, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“TIMELY : RTT-based Congestion Control for the Datacenter,” in
Proceedings of ACM SIGCOMM, 2015.

[31] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never
than Late: Meeting Deadlines in Datacenter Networks,” in Proceedings
of ACM SIGCOMM, 2011.

[32] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proceedings of ACM SIGCOMM, 2011.

[33] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Noore,
G. Antichi, and M. Wojcik, “Re-architecting datacenter networks and
stacks for low latency and high performance,” in Proceedings of ACM
SIGCOMM, 2017.

[34] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proceedings of ACM SIGCOMM, 2012.

[35] N. Dukkipati and N. Mckeown, “Why Flow-Completion Time is the
Right metric for Congestion Control and why this means we need
new algorithms,” ACM SIGCOMM Computer Communication Review,
vol. 36, pp. 59–62, 2006.

[36] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based Load Balancing for Fast Datacenter Networks,” in
Proceedings of ACM SIGCOMM, 2015.

[37] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet Load-balanced , Low-Latency
Routing for Clos-based Data Center Networks Categories and Subject
Descriptors,” in Proceedings of ACM CoNEXT, 2013.

[38] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender:
Flow-level Adaptive Routing for Improved Latency and Throughput in
Datacenter Networks,” in Proceedings of ACM CoNEXT, 2014.

[39] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
Datacenter Load Balancing in the Wild,” in Proceedings of ACM
SIGCOMM, 2017.

[40] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-Aware Load Balancing at the Virtual
Edge,” in Proceedings of ACM CoNEXT, 2017.

[41] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA: Scal-
able Load Balancing Using Programmable Data Planes,” in Proceedings
of ACM SOSR, 2016.

[42] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the Impact
of Packet Spraying in Data Center Networks,” in Proceedings of ACM
INFOCOMM, 2013.

[43] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, p. 51, 2007.

[44] E. Vanini, R. Pan, M. Alizadehand, P. Taheri, and T. Edsall, “Let It
Flow : Resilient Asymmetric Load Balancing with Flowlet Switching,”
in Proceedings of ACM NSDI, 2017.

[45] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, “Expeditus : Congestion-
aware Load Balancing in Clos Data Center Networks,” in Proceedings
of ACM SoCC, 2016.

[46] S. Shenker, “Fundamental design issues for the future internet,” IEEE
Journal of Selected Areas in Communications, vol. 13, pp. 1176–1188,
1995.

[47] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 1, pp. 237–252,
1998.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

[48] S. H. Low and D. E. Lapsley, “Optimization Flow Control I: Basic
Algorithm and Convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[49] S. H. Low, “A Duality Model of TCP and Queue Management Al-
gorithms,” IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp.
525–536, 2003.

[50] S. Korovin and V. Utkin, “Using sliding modes in static optimization
and nonlinear programming,” Automatica, vol. 10, no. 5, pp. 5250–532,
1974.

[51] B. A. Movsichoff, C. Lagoa, and H. Che, “End-to-End Optimal Algo-
rithm for Integrated QoS, Traffic Engineering, and Failure Recovery,”
ACM/IEEE Transactions on Networking, vol. 15, no. 4, pp. 813–823,
2007.

[52] W. Su, C. Liu, C. Lagoa, H. Che, K. Xu, and Y. Cui, “A Family of Op-
timal, Distributed Taffic Control Laws in a Multidomain Environment,”
IEEE Transactions on Control System Technology, vol. 23, no. 4, pp.
1373–1386, 2015, The initial idea of this paper was documented in H.
Che, W. Su, C. Lagoa, K. Xu, C. Liu, and Y. Cui, “An Integrated,
Distributed Traffic Control Strategy for the Future Internet,” The ACM
SIGCOMM INM Workshop, 2006.

[53] M. Ashour, J. Wang, C. M. Lagoa, N. Aybat, and H. Che, “Non-Concave
network utility maximization: A distributed optimization approach,” in
Proceedings of IEEE INFOCOM, 2017.

[54] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” pp. 556–567, 2000.

[55] “Center of mass,” https://en.wikipedia.orgwikiCenter of mass.
[56] “Lagrange multiplier,” https://en.wikipedia.orgwikiLagrange multiplier.
[57] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in Multi-Service

Multi-Queue Data Centers,” in Proceedings of ACM NSDI, 2016.
[58] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,

implementation and evaluation of congestion control for multipath TCP,”
in Proceedings of USENIX NSDI, 2011.

[59] M. Kheirkhah, I. Wakeman, and G. Parisis, “Multipath-TCP in ns3,” in
Proceedings of ACM Workshop on ns-3, 2014.

[60] L. Ye, Z. Wang, H. Che, and C. M. Lagoa, “TERSE:A Unified End-
to-End Traffic Control Mechanism to Enable Elastic, Delay Adaptive,
and Rate Adaptive Services,” IEEE Journal on Selectied Areas in
Communications, vol. 29, no. 5, pp. 938–950, 2011.

[61] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of ACM SIGCOMM, 2009.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 02,2020 at 17:06:24 UTC from IEEE Xplore. Restrictions apply.

