
GraBi: Communication-Efficient and Workload-Balanced
Partitioning for Bipartite Graphs

Feng Sheng
KLISS, WNLO, HUST
Wuhan, Hubei, China
shengfeng@hust.edu.cn

Qiang Cao∗
KLISS, WNLO, HUST
Wuhan, Hubei, China
caoqiang@hust.edu.cn

Hong Jiang
University of Texas at Arlington

Arlington, TX 76019, USA
hong.jiang@uta.edu

Jie Yao∗
Sch. of Computer Sci. & Tech., HUST

Wuhan, Hubei, China
jackyao@hust.edu.cn

ABSTRACT
Machine Learning and Data Mining (MLDM) applications, such
as recommendation and topic modeling, generally represent their
input data in bipartite graphs with two disjoint vertex-subsets con-
nected only by edges between them. Despite the prevalence of bi-
partite graphs, existing graph partitioning frameworks have rarely
sufficiently exploited their unique structures, especially the highly
lopsided subset sizes and extremely skewed vertex degrees. As a
result of poor partitioning quality, problems, particularly of high
communication cost and severe workload imbalance, arise during
subsequent computation over these bipartite graphs in distributed
environments such as datacenters or HPC systems, significantly
hampering the performance of MLDM applications.

In this paper, we approach these problems by communication-
efficient and workload-balanced partitioning of bipartite graphs,
which fully exploits the vertex vectorization in MLDM algorithms
and inherent asymmetry in bipartite graphs. To this end, we present
GraBi, a two-stage partitioning framework that partitions a bipartite
graph first vertically and then horizontally. The first partitioning
stage divides each vectored vertex into multiple vertex-chunks such
that the bipartite graph is vertically partitioned into multiple layers,
to strike an appropriate tradeoff between inter- and intra-vertex
communication. In the second partitioning stage, for each layer,
the vertex-chunks in the larger vertex-subset are first assigned to
nodes, to minimize vertex replicas. To be specific, these vertex-
chunks are horizontally decomposed into one or more sub-chunks
with an upper-bounded number of edges, and then the sub-chunks
are evenly assigned over nodes of a distributed system using a set of
hash functions, to achieve workload balance among all computing
nodes. GraBi is a lightweight partitioning framework for bipartite
∗Qiang Cao and Jie Yao are the joint corresponding authors. Key Laboratory of Infor-
mation Storage System (KLISS), Ministry of Education. Wuhan National Laboratory for
Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404453

graphs, and can be generalizable to most MLDM applications. Our
evaluation, driven by real-world bipartite graphs processed in an
8-node cluster, shows that GraBi significantly improves the parti-
tioning quality for bipartite graphs. Particularly, it decreases the
computation time of MLDM algorithms by up to 5.41x, 4.32x, 1.89x
over three state-of-the-art partitioning frameworks Hybrid-cut,
Bi-cut, and 3D-partitioner respectively.

CCS CONCEPTS
•Computer systems organization→Distributed architectures.

KEYWORDS
Distributed graph processing, graph partitioning, bipartite graphs

ACM Reference Format:
Feng Sheng, QiangCao, Hong Jiang, and Jie Yao. 2020. GraBi: Communication-
Efficient and Workload-Balanced Partitioning for Bipartite Graphs. In 49th
International Conference on Parallel Processing - ICPP (ICPP ’20), August
17–20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3404397.3404453

1 INTRODUCTION
Large-scale graph processing has become increasingly important
for a broad range of applications, such as recommendation [19] and
topic modeling [20]. In essence, these problems can be encoded as
vertex-centric programs following the "think-like-a-vertex" philos-
ophy [18], where vertices update their respective values concur-
rently and communicate with one another through edges. Although
a number of remarkable projects [14, 25] have been developed to ac-
commodate graph processing on a single node for cost-effectiveness,
their performance and scalability are severely challenged by the
rapid growth of graph datasets. As an alternative, many distributed
graph processing systems [4, 9, 10] have recently emerged to per-
form graph computation on a cluster of nodes.

For distributed processing of large-scale graphs, graph parti-
tioning is a mandatory preprocessing step before computation. It
distributes vertices and edges in the graph onto all nodes, and cre-
ates replicas of vertices and edges to generate a local consistent
subgraph on each node. During subsequent graph computation, the
replicas synchronize with their masters in every update iteration, in-
evitably leading to often costly cross-node communication. Besides

https://doi.org/10.1145/3404397.3404453
https://doi.org/10.1145/3404397.3404453

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

the replicas, graph partitioning also determines the number of ver-
tices and edges assigned to each node, thus impacting the balance
(or lack thereof) of workload among nodes. Therefore, graph parti-
tioning plays a vital role in distributed graph processing, directly
affecting the communication cost and workload distribution.

Bipartite graphs, as an important class of graphs, have been
widely used in Machine Learning and Data Mining (MLDM) appli-
cations. In a bipartite graph, the vertices are separated into two
disjoint subsets, and every edge connects exactly one vertex each
from the two subsets. Many complex relationship networks in real
life can be abstracted as bipartite graphs, such as the user-item
relationships in a recommendation system. MLDM algorithms are
then executed on these bipartite graphs to update vertex values
iteratively, and finally provide the computational results to users.

Despite the prevalence of bipartite graphs, existing partitioning
frameworks in distributed graph processing systems are oblivious
to some of their unique graph structures. For example, many frame-
works [9, 10] do not distinguish the vertices from different subsets,
and apply a uniform partitioning strategy to all vertices, thus in-
curring high communication cost and workload imbalance during
graph computation. Although some works have considered design-
ing tailored partitioning frameworks for bipartite graphs, they are
usually inefficient in three key aspects. First, they [7] require prior
knowledge of the entire graph or a time-consuming multi-round
repartitioning stage (i.e., not lightweight), making them unscalable
to large-scale graphs; Second, they [8] propose partitioning strate-
gies suitable only for a specific type of MLDM algorithms (i.e., not
generalizable), rendering their applicability severely limited; And
third, they (e.g., Hybrid-cut [4], Bi-cut [5], and 3D-partitioner [23])
exploit only parts of the structures of bipartite graphs, failing to
fully exploit useful features of the graphs.

In this paper, we attempt to propose a lightweight and gener-
alizable partitioning framework for bipartite graphs, which com-
prehensively exploits the structures of bipartite graphs to improve
overall performance. For this purpose, we investigate and analyze
many real-world bipartite graphs and popular MLDM algorithms,
explicitly revealing three important observations that can be lever-
aged to improve the partitioning quality of bipartite graphs: 1) The
value of each vertex in MLDM algorithms is generally a vector of
multiple data elements; 2) The sizes of the two vertex-subsets in a
bipartite graph can be significantly lopsided; 3) The degrees of ver-
tices within each subset are often highly skewed. Motivated by the
three observations, we present GraBi, a communication-efficient
and workload-balanced partitioning framework for bipartite graphs,
which assigns graph data over nodes in a structure-aware and fine-
grained way. To be specific, GraBi is composed of two sequential
processing stages, partitioning a bipartite graph first vertically and
then horizontally, briefly as follows:

Vertex-vector Chunking: Given that the value of each vertex
inMLDM algorithms is usually a multi-element vector, the elements
in the vector can be grouped and then assigned to different nodes.
Therefore, this stage vertically divides, or chunks, each vertex vec-
tor into multiple subvectors, referred to as vertex-chunks, each of
which comprises a portion of the elements. Accordingly, the whole
bipartite graph is vertically partitioned into multiple graph layers,
and each layer consisting of a certain vertex-chunk each from all
vertices is allocated to a fraction of nodes in the cluster. As a result,

every node is assigned with fine-grained vertex-chunks, and the
interrelated vertex-chunks of more vertices can be localized on
a single node, potentially decreasing the communication cost be-
tween different vertices, or inter-vertex communication. However,
this stage also introduces a new kind of cross-node communication
between different vertex-chunks belonging to the same vertex, or
intra-vertex communication. To this end, we propose an empirical
method for determining the number of layers, to strike an appro-
priate tradeoff between the inter- and intra-vertex communication.

Vertex-chunk Assignment: By exploiting the lopsided sizes
between the two vertex-subsets of a bipartite graph, this stage as-
signs the vertex-chunks in the larger subset first within each layer.
As a result, vertex replicas are created only for the smaller subset
and thus the communication cost can be greatly reduced. Further-
more, to eliminate workload imbalance incurred by the skewed
vertex degrees within each vertex-subset, this stage horizontally
decomposes every high-degree vertex-chunk into multiple sub-
chunks with an upper-bounded edge-count, and evenly assigns
them over nodes using a set of hash functions. Thus, edges of each
high-degree vertex-chunk are distributed over multiple nodes for
concurrent updates, and edges of each low-degree vertex-chunk
are localized on a single node for accessing locality, with negligible
overhead.

Specifically, the contributions of this paper are as follows:
(1) We investigate real-world bipartite graphs and MLDM algo-

rithms, and explicitly reveal three key observations.
(2) We present GraBi, a lightweight and generalizable partition-

ing framework that partitions a bipartite graph vertically
and then horizontally, fully exploiting these observations.

(3) We evaluate GraBi with three MLDM algorithms and five
real-world bipartite graphs in an 8-node cluster. The experi-
ments show that GraBi reduces the computation time by up
to 5.41x over Hybrid-cut, 4.32x over Bi-cut, and 1.89x over
3D-partitioner respectively.

The rest of this paper is organized as follows. Section 2 overviews
the background and motivates the proposal of the two-stage parti-
tioning framework GraBi, which is elaborated in Section 3. Section 4
reports and analyzes the experimental results. We discuss related
works in Section 5 and conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATION
In this section, we first briefly introduce the background of graph
partitioning, bipartite graphs, and Machine Learning and Data Min-
ing (MLDM) algorithms. Then, we present the three important
observations that motivate our work.

2.1 Graph Partitioning
Distributed graph processing systems heavily rely on graph parti-
tioning to evenly distribute vertices and edges over all computing
nodes, in order to achieve low communication cost and workload
balance among the nodes during subsequent graph computation.
Recently, many graph partitioning strategies have been proposed,
which can be roughly classified into two categories: edge-cut and
vertex-cut. Edge-cut tends to equally distribute vertices among
nodes. As an example shown in Figure 1(a), there are totally 4
vertices and 3 nodes, and each vertex is assigned to a node along

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Graph Abbr. |U| |V| |E | |U/V| λHybr id−cut λBi−cut λ3D−par tit ioner λGraBi

DBLP DBLP 4,000K 1,426K 8.6M 2.81 2.74 3.08 1.38 1.45
Netflix NF 480K 18K 100.5M 27.02 3.37 2.14 1.16 1.20

LiveJournal LJ 7,489K 3,201K 112.3M 2.34 2.64 3.47 1.30 1.52
Yahoo YH 1,001K 625K 256.8M 1.60 3.34 4.43 1.53 1.56
Orkut OK 8,731K 2,783K 327.0M 3.14 3.20 3.26 1.44 1.51

Table 1: A collection of bipartite graphs. λx represents the replication factor achieved by the partitioning framework x .

2

3

1

4

2

3

1

4

21

4

34

(a) Edge-cut

2

3

1

4

(b) Vertex-cut

34

24

21
Node 1 Node 2

Node 3

Node 1

Node 2

Node 3

Vertex Master Vertex Replica

Figure 1: Edge-cut versus vertex-cut.

with all its adjacent edges. Specially, an edge is cut if its two end-
points are distributed onto different nodes. As a result, edge-cut
creates replicas of every cut edge and remote neighboring vertex,
to generate a local subgraph on each node.

In contrast, vertex-cut attempts to evenly distribute edges among
nodes. As an example shown in Figure 1(b), each edge is assigned
to a node along with its two endpoints. Particularly, a vertex is cut
if its adjacent edges are distributed onto different nodes, leading
to some replicas of the vertex. Afterwards, one of the replicas is
selected as the vertex master according to a certain algorithm [9].
Note that, since vertex-cut assigns each edge along with both its
two endpoints, there are no cut edges and edge replicas. During
graph computation, vertex values are synchronized between ver-
tex masters and their replicas on different nodes, so that the total
communication cost is mainly decided by the number of repli-
cas. Therefore, the average number of replicas per vertex, formally
termed as replication factor (λ), is also an important metric for graph
partitioning. In this work, we adopt thewidely-used vertex-cut strat-
egy, because computational workload of many graph applications
largely depends on the number of edges [14], which is the target
that vertex-cut tries to balance.

2.2 Bipartite Graphs and MLDM algorithms
A bipartite graph G is formally represented asG(U,V,E), where U
and V are two disjoint subsets of vertices, and every edge in E con-
nects a vertex from U to one from V. Many real-world relationship
networks can be modeled as bipartite graphs, upon which MLDM
algorithms are executed to extract valuable insights for users. Take
the Collaborative Filtering problem for example, it predicts the
missing ratings from users to items, based on existing ratings. In a
matrix representation of the problem, the input is a sparse rating
matrix R, and the goal is to find two dense matrices P and Q, such
that R ≈ P ×QT . As shown in Figure 2(a), X and Y are the numbers
of users and items respectively, and D is the size of the feature
vector for each user or item.

X
us

er
s

Y items

R ≈

D

x DP

1

2

X

1

2

Y

p1

p2

pX

q1

q2

qY

... ...

(a) View of Matrix (b) View of Graph

R(p,q)

Figure 2: Collaborative Filtering problem.

As illustrated in Figure 2(b) , when the relationship network is
abstracted as a bipartite graph, users and items constitute the two
disjoint subsets of vertices separately, and the weight on each edge
R(p,q) represents an existing rating given from a user p to an item q.
Based on this bipartite graph, MLDM algorithms (e.g., Alternating
Least Squares [24]) generally associate each vertex with a vector of
D elements, and then perform element-wise operations on these
vectors, to estimate the weight of every absent edge between these
two vertex-subsets.

2.3 Observations and Opportunities
Although bipartite graphs have become increasingly popular, ex-
isting graph partitioning frameworks tend to generate suboptimal
partitioning that incurs high communication cost and workload im-
balance during graph computation, because they fail to fully exploit
some potentially beneficial features of bipartite graphs. As exam-
ples shown in Table 1, the average replication factors achieved by
the two widely-used graph partitioning frameworks Hybrid-cut [4]
and Bi-cut [5] are 3.06 and 3.28 respectively, which are relatively
high for an 8-node cluster, considering that the replication factor
is bounded by the number of participating nodes. Although the
novel 3D-partitioner [23] attains a lower average replication factor,
it suffers from serious workload imbalance during computation. To
better understand this problem, we investigate many real-world
bipartite graphs and MLDM algorithms, and obtain the following
three key observations:

Observation 1: The vertex value in many MLDM algorithms is a
divisible vector of multiple elements. For traditional graph algorithms
(e.g., PageRank), each vertex is associated with an indivisible value,
such as an integer. As a result, the value of a vertex in its entirety
must be assigned to a single node, referred to as the horizontal
partitioning that distributes vertices over all nodes. On the contrary,
the value of each vertex in MLDM algorithms is generally a vector
consisting of multiple data elements. For example, the authors
in [23] associate each vertex with a vector of up to 128 elements,
and the users of PowerGraph [9] can configure each vertex value

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

100 101 102 103

Degree

100
101
102
103
104
105
106

N
um

be
r o

f V
er

tc
es

(a) Author Degree Distribution

100 101 102

Degree

100
101
102
103
104
105
106

N
um

be
r o

f V
er

tc
es

(b) Publication Degree Distribution

Figure 3: Both two vertex-subsets in the graph DBLP exhibit
power-law degree distribution.

as a vector of thousands of elements. This introduces a new vertical
partitioning that divides each vertex vector into multiple subvectors,
each of which comprises a portion of the elements. Afterwards,
these subvectors, rather than an entire vector, are distributed over
multiple nodes via the horizontal partitioning, possibly reducing
total communication cost.

Observation 2: The sizes of two vertex-subsets in a bipartite graph
can be highly lopsided. It is not surprising that, the number of ver-
tices in a subset is much larger than that in the other one. As an
example, for Netflix shown in Table 1, the number of users is about
27x that of movies. As another concrete example, there are 2, 780
words in the English Wikipedia dataset [2], but the number of
articles is 273, 959, leading to a skew ratio of up to 98.5x. Such im-
balanced numbers of vertices heighten the necessity of processing
these two vertex-subsets with different priorities.

Observation 3: Even within a vertex-subset, the vertices usually
exhibit power-law degree distribution [9]. This means that within
each subset, a very small number of vertices connect much more
edges than most other vertices. It is common in daily life that, the
bestsellers are much more widely purchased and commented by
consumers than other less appealing goods. Take DBLP in Table 1 as
an example, the vertices in both its two subsets exhibit power-law
degree distribution, as shown in Figure 3. It is well-known that
the skewed degree distribution hurts the performance of graph
computation, by introducing stragglers into concurrent vertex up-
dates [22]. Therefore, it is essential to distinguish the vertices of
different degrees, and assign them with differential strategies.

In summary, the three state-of-the-art partitioning frameworks,
Hybrid-cut, Bi-cut, and 3D-partitioner, implicitly exploit one of
the above unique features of bipartite graphs respectively. To com-
prehensively exploit these features, we are motivated to design a
new partitioning framework, GraBi, to improve the performance
of MLDM algorithms on bipartite graphs, which will be elaborated
in the next section.

3 TWO-STAGE PARTITIONING
This section presents GraBi, a communication-efficient andworkload-
balanced partitioning framework that partitions a bipartite graph
first vertically and then horizontally. We summarize the overall
partitioning workflow of GraBi in Algorithm 1, and elaborate on
these two stages in the following subsections.

Algorithm 1: Two-stage Partitioning Framework
Input: A bipartite graph G, Number of elements D,

Number of nodes N , A set of hash functions F , Two
thresholds Rtotal and Rper_ver tex .

Output: A global table of adopted hash functions T ,
Mapping of vertices to nodesM .

1 /** STAGE 1: Vertex-vector Chunking **/
2 Calculate the number of layers L← GCD(D,N)

3 Divide G into L layers;
4 /** STAGE 2: Vertex-chunk Assignment **/
5 foreach layer j ∈ [0,L − 1] do
6 Get the larger subsetUj ;
7 Get the smaller subset Vj ;
8 foreach vertex-chunk u ∈ Uj do
9 while u .edдes > 0 do
10 Get the assignment of current hash function

nodek ← fcurrent (u .id,N /L);
11 if nodek .totalEdдes > Rtotal then
12 Replace current function with next one

fcurrent ← fnext ∈ F ;
13 continue;
14 end
15 Assign the first Rper_ver tex edges of u to nodek ;
16 Record < u .id, fcurrent .id > in the local table

on nodek ;
17 Remove the assigned edges from u

u .edдes ← (u .edдes − Rper_ver tex);
18 Replace current function with next one

fcurrent ← fnext ∈ F ;
19 end
20 Record the id and master location of u inM ;
21 end
22 foreach vertex-chunk v ∈ Vj do
23 Create replicas of v according to its edges;
24 Choose one replica as the master;
25 Record the id and master location of v inM ;
26 end
27 Aggregate all local tables into a global table T ;
28 Compress the global table T ← compress(T);
29 Send each item in T to correspoding sub-chunk;
30 end

3.1 (Vertical) Vertex-vector Chunking
As proposed inObservation 1, MLDM algorithms generally associate
each vertex in a bipartite graph with a multi-element vector, as
the sample graph shown in Figure 4(a) wherein the three vectored
vertices are represented as cylinders. Figure 4(b) illustrates how this
sample graph is partitioned over 3 computing nodes of a cluster by
traditional horizontal partitioning. Specifically, as the partitioning
strategy adopts vertex-cut that evenly assigns all edges over nodes, a
mod-based hash function is applied to each edge for determining its
location (e.g., by hashing the sum of vertex IDs of its two endpoints).
As a result, each node is assigned with one edge and entire vectors

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Chunk 3 (2)

Vertex 1

Node 2

Vertex 2

Vertex 3

Vertex 1

Replica 1 Vertex 2

Replica 2 Vertex 3

Node 3

Node 1

Chunk 1 (2)
Chunk 2 (2)

Node 1

Chunk 1 (1)
Chunk 2 (1)

Chunk 3 (1)

Chunk 1 (3)
Chunk2 (3)

Chunk 3 (3)

Vertex Master

Vertex Replica Node 2

Node 3Intra-vertex Comm.
inter-vertex Comm.

(a) Sample Graph

(b) Horizontal
 Partitioning

(c) Vertical
 Partitioning

Replica 3

Figure 4: Horizontal versus vertical partitioning.

of the two endpoints. During subsequent computation, each vertex
master synchronizes with its replicas on different nodes, referred
to as inter-vertex communication.

Traditional horizontal partitioning implicitly assumes that the
vertex value is indivisible, which is not true for MLDM algorithms
where each vertex is associated with a vector of multiple elements.
To explore the potential benefit brought by the vertex vectorization
in MLDM algorithms, we present the first stage of GraBi, Vertex-
vector Chunking (line 2-3 in Algorithm 1) that divides each vertex
vector into multiple subvectors, which we refer to as vertex-chunks.
Accordingly, the bipartite graph is partitioned into multiple layers,
and each layer consists of a certain vertex-chunk each from all
vertices. Figure 4(c) shows how the sample graph is partitioned by
the new vertical partitioning, in which Chunk i (j) denotes the j-th
chunk of Vertex i . To be specific, the sample graph is divided into 3
layers that are each assigned to a different node. For example, Node
1 holds the first chunks of all vertices, Node 2 holds the second
chunks of all vertices, and so on. By doing so, updating elements
in a vertex vector can be concurrently executed on all the nodes
that the vertex-chunks of the vertex are assigned to. More impor-
tantly, due to the element-wise operations performed by MLDM
algorithms, a given j-th chunk only communicates with the j-th
chunks of other vertices. Since each node holds the entire layer
comprising all interrelated chunks, the inter-vertex communication,
marked by the solid arrows in Figure 4(c), is localized on a single
node. However, the vertical partitioning is dominated by another
kind of synchronization, intra-vertex communication, which hap-
pens between any pair of adjacent chunks in a vectored vertex, as
indicated by the dashed arrows in Figure 4(c).

Generally speaking, partitioning a bipartite graph inevitably
introduces two types of communication, namely, the inter- and
intra-vertex communication. Intuitively, trading off between these
two types of communication can be realized by adjusting the num-
ber of layers, denoted as L. Particularly, if L equals 1, it is a totally
horizontal partitioning, in which the inter-vertex communication
dominates. If L equals the number of nodes N , it is a totally vertical
partitioning, in which the intra-vertex communication dominates.

Therefore, the value of L should be chosen between 1 and N . More-
over, L also influences the workload distribution, by deciding the
number of elements in each vertex-chunk and the number of nodes
for each layer. Despite the importance of L, state-of-the-art 3D-
partitioner [23] that also adopts the vertical partitioning lacks a
systematic method to decide the value of L before computation.
To address this issue, we present an empirical method to calculate
an appropriate L value, which can guarantee an adequate level of
performance for most MLDM applications.

Assuming that there are N nodes in the cluster and D elements
in each vertex vector, a balanced vertical partitioning is one in
which all vertex-chunks in a layer contain an equal number of
elements and are evenly distributed over nodes. To this end, L is set
as the greatest common divisor (GCD) of D and N , such that each
vertex-chunk consists of D/L elements, and each layer is assigned
to N /L nodes, wherein the layer is horizontally partitioned among
the N /L nodes as elaborated in the next subsection. However, if
the GCD equals 1, we prefer to balance the number of nodes each
layer is assigned to, and thus set L as the maximum number that
is divisible to N . As a result, the j-th chunk of a vertex contains
the elements in the range [f irstElement(j), f irstElement(j + 1)),
where j = 0, ...,L − 1. Particularly, f irstElement(j) is the sequence
number of the first element in the j-th chunk, which is an integer
between 0 and D − 1, and is calculated as follows:

f irstElement(j) = j × (⌊D/L⌋) +min(j,D%L) (1)
Furthermore, it may be the case that the vectors contain differ-
ent numbers of elements. Fortunately, some methods have been
proposed to uniformize these vectors, for example, extending the
smaller vectors with zeros when adding these vectors.

We evaluate this method of determining the L value in Section 4.6.
To summarize, the Vertex-vector Chunking is simple element-grouping
for every vectored vertex.

3.2 (Horizontal) Vertex-chunk Assignment
The first stage of GraBi vertically divides a bipartite graph into
multiple layers, with each layer being allocated to N /L nodes. We
next present the second stage, Vertex-chunk Assignment, to assign
vertex-chunks to nodes within each layer.

Subset-aware Prioritization: Traditional partitioning strate-
gies are oblivious to the two vertex-subsets in a bipartite graph, and
thus assign vertex-chunks from different subsets without differenti-
ation. Figure 5(b) shows an example of the traditional partitioning
strategy, wherein the location of each edge is decided by applying
a mod-based hash function to the sum of vertex IDs of its two end-
points, without distinguishing the endpoints from different subsets.
As it shows, totally 15 replicas are created, potentially incurring
high network and memory pressure during subsequent graph com-
putation.

In a bipartite graph, every edge connects a pair of vertices each
from a different subset. This implies that distributing only vertices
from the same subset over nodes would not generate any replicas,
because there are no edges connecting them. Therefore, if vertices in
a subset are first assigned, then the created replicas must come from
the other subset. Moreover, as mentioned in Observation 2, the sizes
of two vertex-subsets in a bipartite graph can be highly lopsided.
Based on this analysis, we present subset-aware prioritization (line

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

1 2 3 4

5 6 7 8 9 10 11 12

2

9

1

5

4

10

2 3

6

4

11

1

7

Master

Replica

Node 1 Node 2 Node 3 Node 4

1 3 1 2 4

5 9 8 10

2 3 4

9 8 12

(b) Non subset-aware Assignment

(c) Subset-aware Assignment

1 2 3 4

8 12

(a) Sample Graph

118 6 10

5
1 2 4

7 6 10 8

Figure 5: Non subset-aware versus subset-aware assignment.

6-7 in Algorithms 1), which always assigns vertex-chunks from
the larger subset first within each layer. As a result, the replicas
are created only for vertex-chunks in the smaller subset, setting
a much lower upper limit to the number of replicas. An example
of this subset-aware partitioning strategy is shown in Figure 5(c),
wherein the larger subset comprising the vertex-chunks 5○ through
12○ is granted a higher priority. Accordingly, each edge is assigned
to a node by applying the hash function only to the vertex ID of
endpoint in the larger subset. As a result, the number of replicas is
decreased from 15 to 7, significantly alleviating the network and
memory pressure. More importantly, since all edges are assigned
according to endpoints in the larger subset, accessing locality is
preserved for a majority of vertex-chunks.

Nevertheless, subset-aware prioritization only gives a preliminary
assigning order to the two vertex-subsets. The specific mapping
of vertex-chunks in a subset to nodes must be further determined.
Additionally, as mentioned in Observation 3, even within a subset,
the vertices often exhibit power-law degree distribution. In other
words, a few high-degree vertices connect much more edges than
most other vertices. For example, in Figure 5(c), the vertex-chunk
8○ connects 4 edges, more than that of the other vertex-chunks in
the same subset (1-3 edges). As a result, this high-degree vertex-
chunk may consume more time than all other vertex-chunks in
each update iteration, incurring workload imbalance during graph
computation.

Early solutions [9, 10] rely on vertex-cut that splits edges of
each high-degree vertex over multiple nodes, to distribute its high
workload. However, it also inevitably splits edges of low-degree
vertices, incurring many unnecessary replicas and high communi-
cation cost. Therefore, Hybrid-cut [4] is proposed to distinguish
the vertices of different degrees. To be specific, it applies vertex-
cut to high-degree vertices and edge-cut to low-degree vertices, to
achieve workload balance and low communication cost simultane-
ously. Nevertheless, Hybrid-cut has to pre-count the degree of every
vertex to decide whether it is high-degree or low-degree, causing
large preprocessing overhead that may not be amortized by subse-
quent computation [13]. To address these issues, we present two

5

1 2 3 4

6

5

1 2

5

3 4

f 1 f 2

Node 1 Node 2

6

3 4

Node 2

f 1

vertex ID functions
5 1, 2
6 1
… …
k 1,2,4

Global Table

f 1f 2f 3f 4

A set of
Hash Functions X

X

X Deleted Value

…

Sub-chunk

Rper_vertex = 2

Vertex-chunk

Figure 6: Sub-chunk assignment with a set of functions.

sequential steps, bounded chunk-cutting and sub-chunk assignment,
to assign vertex-chunks in the larger subset to nodes.

Bounded Chunk-cutting: The rationale behind this step is to
constrain the number of edges that a vertex-chunk can allocate to
each node. For this purpose, we propose two key parameters. The
first parameter is the total number of edges that can be received by
each node, denoted as Rtotal , and is calculated as follows:

Rtotal = (1 +
1

N /L
) × (

|E |

N /L
) (2)

Given that many global properties of the input graph (e.g., |E |,
|U| and |V|) are usually provided in advance, Rtotal is calculated
before computation. Intuitively, Rtotal ensures that all edges in a
layer are evenly distributed over the N /L nodes it is assigned to.

The second parameter is the maximum number of edges that
each node can receive from a given vertex-chunk, which is denoted
as Rper_ver tex and calculated as follows:

Rper_ver tex = α × (
|E |

|U|
) (3)

Wherein, α is an amplification factor that is greater than 1, and can
be determined empirically according to the skewness of power-law
degree distribution. We evaluate the impact of α in Section 4.6. The
second term in the above expression, |E/U|, represents the average
degree of vertices in the larger subset U, given that all edges are
assigned according to the endpoints inU. Therefore, a vertex-chunk
will be decomposed into multiple sub-chunks, if its degree is greater
than Rper_ver tex .

Sub-chunk Assignment: The inefficiency of Hybrid-cut essen-
tially stems from employing only a single hash function, which
tends to gather all edges of a vertex onto a single node. If the parti-
tioning strategy has a set of hash functions, it can distribute edges
of a high-degree vertex using multiple hash functions, and gather
edges of a low-degree vertex using one hash function. For this end,
this step uses a set of hash functions to assign the generated sub-
chunks to nodes. An example is shown in Figure 6, as Rper_ver tex
equals 2, the high-degree vertex-chunk 5○ is cut into 2 sub-chunks,
each of which connects 2 edges. In contrast, the low-degree vertex-
chunk 6○ has only one sub-chunk. The first sub-chunks of 5○ and
6○ are respectively assigned to Node 1 and Node 2, by applying the
first hash function f 1 to their vertex IDs. Since the vertex-chunk
5○ still has a sub-chunk unassigned, the next hash function f 2 is
used to assign the remaining sub-chunk to Node 2. As a result, the

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

two sub-chunks of 5○ are assigned over different nodes. In essence,
all hash functions will be sequentially used, until there are no unas-
signed sub-chunks. Moreover, for a certain vertex-chunk, some
hash functions will be skipped, if the total number of edges on a
node has already reached Rtotal (line 11-14). As a result, the hash
functions adopted by this vertex-chunk are nonconsecutive.

Intuitively, the number of hash functions should equal N /L, such
that the edges of an extremely high-degree vertex-chunk can be
split onto all nodes in the layer. Moreover, to distribute edges of a
vertex-chunk, any two hash functions in a set must map a certain
vertex ID onto different nodes. This can be realized by applying
the same modulus operator on the vertex ID and then adding an
incremental offset. As a result, the set of hash functions works in
a round-robin fashion. That is, two adjacent hash functions in the
set map a vertex ID onto two nodes of contiguous physical IDs.

To locate all sub-chunks of a given vertex-chunk, the hash func-
tions adopted by the vertex-chunk should be identifiable. To this
end, each node maintains a local table to store its received sub-
chunks and corresponding hash functions in the form of key-value
pairs, where the key is a vertex ID and the value is the sequence
number of the adopted hash function (line 16). After graph par-
titioning, all local tables are aggregated into a global table that
summarizes all hash functions adopted by each vertex-chunk (line
27).

The global table is generally of moderate size, because only a tiny
fraction of vertex-chunks in a power-law graph are high-degree and
thus adopt multiple hash functions. We further decrease the table
size by classifying the items in the table. First, for the item with
a value of 1 (e.g., the vertex-chunk 6○ in Figure 6), it is removed
from the table, because it only adopts the first hash function that is
the default one. Second, for the item with a value of consecutive
numbers (e.g., the vertex-chunk 5○), its value is reduced to the max-
imum sequence number of adopted hash functions, which can be
easily recognized. Last, for the item with a value of nonconsecutive
numbers (e.g., the vertex-chunk k○), its value is stored integrally. In
this way, the size of the global table is greatly decreased. We have
evaluated the effect of this compression technique, and find that it
can save the table size by an average of 90.4%, for those five graphs
listed in Table 1. After the compression, the sub-chunk assigned by
the first hash function receives a copy of corresponding item from
the global table, such that it can use the received hash functions to
locate all other sub-chunks for communication. Finally, the master
and replicas of every vertex-chunk in the smaller subset are created,
according to its adjacent edges.

In summary, the bounded chunk-cutting and the sub-chunk assign-
ment work together to evenly distribute edges of each high-degree
vertex-chunk over multiple nodes, and gather edges of each low-
degree vertex-chunk onto the same node, avoiding the overhead of
pre-counting degrees in Hybrid-cut.

3.3 Summary of GraBi
GraBi partitions a bipartite graph first vertically and then horizon-
tally, for different goals. To be concrete, the Vertex-vector Chunk-
ing first vertically partitions the entire graph into multiple layers,
to strike an appropriate tradeoff between inter- and intra-vertex

communication. In the Vertex-chunk Assignment, the larger vertex-
subset within each layer is first assigned with a higher priority, to
limit the number of replicas. More specifically, the bounded chunk-
cutting decomposes each vertex-chunk into one ormore sub-chunks
with an upper-bounded edge-count, and then the sub-chunk assign-
ment allocates sub-chunks over nodes using a set of hash functions,
to achieve workload balance with negligible overhead. By this way,
the bipartite graph is partitioned in a structure-aware and fine-
grained way.

In addition, GraBi takes each vertex as input, requiring no prior
knowledge or repartitioning stage. To be specific, it divides each
vectored vertex into multiple vertex-chunks, and then assigns corre-
sponding sub-chunks of the vertex-chunks over nodes using a series
of hash functions. Therefore, GraBi is lightweight. Finally, GraBi
is not confined to specific algorithms, and thus is generalizable to
most MLDM applications.

4 EVALUATION
In this section, we conduct a comprehensive evaluation on GraBi,
against three existing partitioning frameworks. First, we evaluate
the overall performance of GraBi, and break down the performance
into graph partitioning phase and computation phase respectively.
Next, we assess the scalability of GraBi by increasing the graph
size. Finally, we study the impact of two important parameters in
GraBi, the number of layers L and the amplification factor α .

4.1 Experimental Setup
GraBi is implemented as a separate partitioning framework in Pow-
erLyra [4], a distributed in-memory graph processing system. The
experiments are conducted on an in-house 8-node cluster. Each
node has one Intel Xeon E5-2650 processor (8 cores) and 16GB
DRAM, all nodes are connected via 1Gb Ethernet. We use a col-
lection of real-world bipartite graphs collected from the Konect
Network Dataset [1]. Table 1 shows the basic global properties of
these graphs. We select three representative MLDM algorithms,
Alternating Least Squares (ALS) [24], Stochastic Gradient Descent
(SGD) [21], and Non-negative Matrix Factorization (NMF) [12], as
the application drivers working on these graphs to assess the parti-
tioning quality. The number of elements in each vector D is set as
20 for all the three algorithms. Finally, we set the default value of L
and α in GraBi as 4 and 2 respectively, and compare GraBi against
three state-of-the-art partitioning frameworks:

Hybrid-cut [4] is a partitioning framework integrated in Pow-
erLyra. It combines edge-cut and vertex-cut to assign the vertices
following power-law degree distribution. Hybrid-cut has two ver-
sions, Random Hybrid-cut and Heuristic Hybrid-cut (i.e., Ginger).
As GraBi adopts hash functions to assign vertices and edges, we
choose Random Hybrid-cut as the counterpart for fair comparison.
Besides, we have tested many thresholds used by Hybrid-cut to
identify high-degree vertices, and use the best-performing one for
each graph.

Bi-cut [5] is another built-in partitioning framework of Power-
Lyra. It partitions a bipartite graph by differentiating the vertices
from different subsets. Similar to Hybrid-cut, Bi-cut also has two ver-
sions, Random Bi-cut and Heuristic Bi-cut (i.e., Aweto). We choose
Random Bi-cut as the counterpart for fair comparison.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

DBLP NF LJ YH OK0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Hybrid-cut (Partitioning)
Bi-cut (Partitioning)
3D (Partitioning)
GraBi (Partitioning)

Hybrid-cut (Computation)
Bi-cut (Computation)
3D (Computation)
GraBi (Computation)

Figure 7: The end-to-end execution time on different graphs,
achieved by the four partitioning frameworks. The execu-
tion time of each framework includes both the graph par-
titioning time and computation time, and is normalized to
that of Hybrid-cut.

3D-partitioner [23] is a partitioning framework proposed by a
novel distributed graph processing system CUBE. It advocates an
appropriate vertical partitioning of graphs. Specifically, we also set
the number of layers L in 3D-partitioner as 4, and employ Random
Bi-cut as the horizontal partitioning strategy within each layer.

4.2 Overall Performance
We first compare the end-to-end execution time, including both the
graph partitioning time and computation time, achieved by the four
partitioning frameworks. As shown in Figure 7, GraBi improves the
execution time by an average of 1.65x over Hybrid-cut, 1.70x over
Bi-cut, and 1.09x over 3D-partitioner respectively. To be specific,
GraBi surpasses Hybrid-cut and Bi-cut in both the partitioning and
computation phases. Besides, GraBi outperforms 3D-partitioner in
the computation phase, but slightly underperforms in the partition-
ing phase.

In essence, as 3D-partitioner employs Bi-cut to assign vertex-
chunks over nodes within each layer, it exploits the vertex vector-
ization in MLDM algorithms (i.e., Observation 1) and the lopsided
subset sizes in bipartite graphs (i.e., Observation 2). However, it
does not consider the skewed degree distribution inherent in many
graphs (i.e., Observation 3), and thus suffers from workload im-
balance during computation. In contrast, GraBi exploits the three
key observations simultaneously, and adopts the Vertex-chunk As-
signment within each layer to effectively alleviate the workload
imbalance. Therefore, GraBi runs faster than 3D-partitioner on
power-law graphs in the computation phase, such as LiveJournal
and Yahoo. Nevertheless, for graphs where the degree distribution
is not very skewed, such as Netflix, the execution time of GraBi is
comparable or even longer than that of 3D-partitioner. To better un-
derstand the performance advantage of GraBi over each of the other
partitioning frameworks, we break down the performance into the
graph partitioning phase and computation phase respectively, as
presented in the next two subsections.

Last but not the least, a partitioned graph is generally repeat-
edly used in real-world scenarios, and the partitioning time can

DBLP NF LJ YH OK0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
al

iz
ed

 T
im

e

Hybrid-cut
Bi-cut

3D
GraBi

(a) Loading & Distributing Time
DBLP NF LJ YH OK0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
al

iz
ed

 T
im

e

Hybrid-cut
Bi-cut

3D
GraBi

(b) Finalizing Time

Figure 8: The partitioning time ondifferent graphs, achieved
by the four partitioning frameworks. The partitioning time
is composed of the loading& distributing time, and the final-
izing time. Each type of time is normalized to that ofHybrid-
cut.

be amortized by multiple executions on the same graph. Thus, the
performance advantage of GraBi can be much more pronounced if
a partitioned graph is repeatedly analyzed by many algorithms.

4.3 Partitioning Phase
The partitioning phase includes loading a graph, distributing the
graph, and finalizing subgraphs on all nodes. We evaluate the per-
formance in the partitioning phase, by measuring the replication
factor and partitioning time respectively. Table 1 shows the repli-
cation factors of different graphs. Overall, the average replication
factors over the five graphs achieved by Hybrid-cut, Bi-cut, 3D-
partitioner, and GraBi are 3.06, 3.28, 1.36, and 1.45 respectively.
Specifically, Hybrid-cut performs better on bipartite graphs with
power-law degree distribution, for example, its replication factor on
Yahoo is 1.32x lower than that of Bi-cut. On the other hand, Bi-cut
works better on bipartite graphs with lopsided subset sizes, for
example, its replication factor on Netflix is 1.57x lower than that of
Hybrid-cut. However, both Hybrid-cut and Bi-cut are oblivious to
the divisible vertex vector in MLDM algorithms, and thus perform
no vertical partitioning. As stated earlier, the replication factor is
bounded by the number of participating nodes. Due to the vertical
partitioning, 3D-partitioner and GraBi assign each layer to 2 nodes
(i.e., N /L = 2), setting the upper limit of replication factors as only
2. For example, the replication factors on Netflix achieved by 3D-
partitioner and GraBi are 1.16 and 1.20 respectively. Note that, the
average replication factor of GraBi is slightly higher than that of
3D-partitioner. This is because GraBi considers power-law degree
distribution, and thus creates more replicas than 3D-partitioner to
realize workload balance in the computation phase.

We further break down the partitioning time into two separate
parts, namely the loading & distributing time and the finalizing
time. As shown in Figure 8(a), Hybrid-cut has the longest loading
& distributing time on all the five graphs, due to its high overhead
of pre-counting vertex degrees in the graph loading step. Since
3D-partitioner employs Bi-cut as the partitioning strategy within
each layer, the loading & distributing time of 3D-partitioner is
always longer than that of Bi-cut. Furthermore, the average loading
& distributing time of GraBi is slightly longer than that of 3D-
partitioner, especially on larger graphs (e.g., Yahoo and Orkut), due
to the overhead of switching between multiple hash functions to

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

DBLP NF LJ YH OK
2 1
20
21
22
23
24
25

N
et

w
or

k
Tr

af
fic

 (G
B)

Hybrid-cut
Bi-cut

3D
GraBi

Comm. Reduction

-20%

0%

20%

40%

60%

80%

Co
m

m
un

ic
at

io
n

Re
du

ct
io

n

(a) ALS
DBLP NF LJ YH OK

2 2

2 1

20

21

22

23

N
et

w
or

k
Tr

af
fic

 (G
B)

Hybrid-cut
Bi-cut

3D
GraBi

Comm. Reduction

-20%
0%
20%
40%
60%
80%

Co
m

m
un

ic
at

io
n

Re
du

ct
io

n

(b) SGD
DBLP NF LJ YH OK

2 2

2 1

20

21

22

23

N
et

w
or

k
Tr

af
fic

 (G
B)

Hybrid-cut
Bi-cut

3D
GraBi

Comm. Reduction

-20%
0%
20%
40%
60%
80%

Co
m

m
un

ic
at

io
n

Re
du

ct
io

n

(c) NMF

Figure 9: The network traffic of different MLDM algorithms, achieved by the four partitioning frameworks. The communica-
tion reduction is attained by GraBi over each of the other partitioning frameworks.

DBLP NF LJ YH OK0

100

200

300

400

500

Co
m

pu
ta

tio
n

Ti
m

e
(S

ec
)

Hybrid-cut
Bi-cut

3D
GraBi

Speedup

0
1
2
3
4
5
6

Sp
ee

du
p

(a) ALS
DBLP NF LJ YH OK0

50
100
150
200
250
300

Co
m

pu
ta

tio
n

Ti
m

e
(S

ec
)

Hybrid-cut
Bi-cut

3D
GraBi

Speedup

0
1
2
3
4
5
6

Sp
ee

du
p

(b) SGD
DBLP NF LJ YH OK0

20

40

60

80

100

Co
m

pu
ta

tio
n

Ti
m

e
(S

ec
)

Hybrid-cut
Bi-cut

3D
GraBi

Speedup

0
1
2
3
4
5
6

Sp
ee

du
p

(c) NMF

Figure 10: The computation time of different MLDM algorithms, achieved by the four partitioning frameworks. The speedup
is attained by GraBi over each of the other partitioning frameworks.

assign vertices and edges. As shown in Figure 8(b), the finalizing
time of each partitioning framework is almost proportional to the
corresponding replication factor. For example, on Yahoo, Bi-cut
has the highest replication factor of 4.43, and its finalizing time is
also the longest among the four partitioning frameworks. Besides,
the finalizing time of GraBi is also slightly longer than that of 3D
partitioner, due to the overhead of constructing global tables.

4.4 Computation Phase
We evaluate the performance in the computation phase, by measur-
ing the network traffic and computation time respectively. Figure 9
shows the network traffic of each MLDM algorithm on different
graphs. Overall, ALS is the algorithm with the heaviest network
workload, for example, when Hybrid-cut and Bi-cut execute ALS on
Orkut, the network traffic reaches up to 29.9GB and 31.4GB respec-
tively. Therefore, the network bandwidth can be a performance bot-
tleneck when executing ALS in these two frameworks. To make the
comparison more straightforward, we present the communication
reduction achieved by GraBi over each of the other frameworks,

which is calculated as (
Traf f icOther −Traf f icGraBi

Traf f icOther
). As Fig-

ure 9 shows, GraBi reduces the network traffic in Hybrid-cut and
Bi-cut by an average of 45.3% and 48.7% respectively. However,
GraBi incurs more network traffic than 3D-partitioner by average
11.5%, because of its slightly higher replication factors.

Figure 10 shows the computation time of each MLDM algorithm
on different graphs. Overall, Grabi outstrips Hybrid-cut, Bi-cut,
and 3D-partitioner by an average of 3.12x (up to 5.41x), 3.41x (up
to 4.32x), and 1.30x (up to 1.89x) respectively. Even though both
3D-partitioner and GraBi achieve shorter computation time be-
cause of much lower replication factors and communication cost,

3D-partitioner is oblivious to the skewed degree distribution in-
herent in many graphs, and thus suffers from workload imbalance
in the computation phase. This imbalance becomes much more
serious when executing ALS, which is a computation-intensive
algorithm. To overcome this problem, GraBi relies on the bounded
chunk-cutting to decompose each high-degree vertex-chunk into
multiple sub-chunks, and deploys some necessary replicas to per-
form concurrent vertex updates. To be specific, when running ALS
on Yahoo where the vertices exhibit power-law degree distribution,
GraBi outperforms 3D-partitioner in the maximum speedup by
1.89x, appropriately trading off between minimizing replicas and
balancing workload.

4.5 Scalability
We next assess the scalability of GraBi by increasing the graph
size. Particularly, since there are no tailored tools for generating
bipartite graphs, we use a general graph generator R-MAT [3] to
produce a series of power-law graphs in various sizes, where the
graph RMAT-n contains about 2n vertices and 2n+4 edges. After-
wards, we randomly classify the vertices in each graph into two
disjoint subsets, and delete all the edges connecting vertices from
the same subset. By this way, we obtain a collection of synthetic
bipartite graphs in different sizes. Finally, we measure the partition-
ing time and computation time respectively of the four partitioning
frameworks, when running ALS on each synthetic bipartite graph.
The other two algorithms have similar trends as ALS.

As shown in Figure 11(a), all the four partitioning frameworks
exhibit decent scalability in terms of the partitioning time, which
increases linearly with the graph size. However, as the graph size
increases to a certain extent (e.g., on RMAT-26), Hybrid-cut suffers
from the overhead of pre-counting vertex degrees, and Bi-cut has

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

(a) Partitioning Time (b) Computation Time

Figure 11: The partitioning time and computation time re-
spectively achieved by the four partitioning frameworks,
when running ALS on synthetic graphs in different sizes.

to create much more replicas in the finalizing step, incurring obvi-
ously longer partitioning time than 3D-partitioner and GraBi. As
shown in Figure 11(b), in terms of the computation time, Hybrid-cut
and GraBi exhibit better scalability than the other two frameworks,
since they consider the power-law degree distribution inherent
in the synthetic graphs. Moreover, given that the vertices in each
graph are randomly separated into two disjoint subsets, the two
vertex-subsets have similar sizes, and thus Bi-cut consistently un-
derperforms the other frameworks on all synthetic graphs.

4.6 Impact of Parameters
To better understand the aforementioned tradeoff, we examine the
impacts of two key parameters in GraBi, the number of layers L
and amplification factor α , on the computation phase respectively.
The L value influences overall communication cost by trading off
between inter- and intra-vertex communication. The α value affects
workload distribution by constraining the number of edges that
a vertex-chunk can allocate to each node (i.e., Rper_ver tex). Note
that, we omit the partitioning phase, because it is hardly affected
by these two parameters.

Figure 12(a) shows the impact of L on the computation time
of ALS and SGD respectively, while NMF has a similar trend as
SGD. Overall, vertically dividing a graph into multiple layers can
reduce the total communication cost, and therefore decreases the
computation time. For example, the execution of ALS on DBLP is
accelerated by 3.13x when L increases from 1 to 8. In addition, with
increasing L, the computation time of SGD first decreases rapidly
and then increases, while the computation time of ALS still drops

1 2 4 8
Number of Layers (L)

0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 C
om

pu
ta

tio
n

Ti
m

e

SGD+DBLP
SGD+NF

ALS+DBLP
ALS+NF

(a) Impact of L on ALS and SGD

1 2 4 8 16 32 64
Amplification Factor ()

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 C
om

pu
ta

tio
n

Ti
m

e DBLP
NF

LJ
YH

OK

(b) Impact of α on ALS

Figure 12: The impact of the number of layers (L) and ampli-
fication factor (α) respectively on the computation phase.

but at a lower speed. This finding echoes the communication-cost
equations of ALS and SGD, as proposed in [23]. Although ALS and
SGD behave best at different values of L, our empirical method of
setting L as GCD of N and D (e.g., L = 4 in this evaluation) delivers
adequate performance for both these two algorithms.

The impact of α on the computation time of ALS is shown in
Figure 12(b), and the other two algorithms have similar trends. In
general, the best-performing α value for each graph largely depends
on the skewness of power-law degree distribution. For example,
as the percentage of high-degree vertices in DBLP is lower than
that in other graphs, it prefers a lower α value to gather edges for
most low-degree vertices. Despite the impact of α , its influence is
moderate and stable within a wide value range.

5 RELATEDWORKS
Edge-cut versus Vertex-cut: Early partitioning frameworks [15,
16] adopt edge-cut to evenly assign vertices over nodes, but suffer
from high communication cost and imbalanced computation on
prevalent power-law graphs. Therefore, many partitioning frame-
works [9, 10] resort to vertex-cut to equally distribute edges over
nodes, but inevitably produce many unnecessary replicas for low-
degree vertices. To embrace the best of two worlds, some frame-
works develop hybrid approaches that distinguish vertices of differ-
ent degrees. One of the most impressive is PowerLyra [4] that has
been introduced earlier. Besides, Agent-Graph [22] is a vertex-cut
variant in the context of communication pattern, but uses edge-cut
to partition the residual graph where all high-degree vertices are
filtered. Nevertheless, these hybrid approaches usually require high
preprocessing overhead or complicated implementation. By com-
parison, GraBi employs a set of hash functions to uniformly assign
vertices, avoiding the costly overhead in distinguishing vertices of
different degrees.

Offline versus Streaming: Offline partitioning frameworks
usually leverage the knowledge of whole graph, to refine the parti-
tioning quality in multiple rounds. For example, METIS [11] pro-
poses a coarsening method to cut a graph into smaller pieces, and
a refining method to reconstruct the original graph from these
pieces. However, the cost of refinement often outweighs the ben-
efit of high-quality partitions. In contrast, streaming partitioning
frameworks determine the assignment of vertices on-the-fly, by se-
quentially scanning the whole graph in only one pass. For example,
ADWISE [17] is a window-based streaming partitioning framework,
which improves the partitioning quality by always choosing the
best edge from a set of edges for assignment to a partition. IOGP [6]
generates streaming partitions in three sequential stages, by taking
both the connectivity and degrees of vertices into consideration.
As GraBi is also a streaming but hash-based partitioning frame-
work, the heuristic methods in these works can be incorporated
into GraBi to improve partitioning quality.

6 CONCLUSION
This paper presents GraBi, a two-stage partitioning framework that
partitions a bipartite graph first vertically and then horizontally,
to achieve efficient communication and balanced workload during
computation. The first stage vertically divides every vectored vertex
in a bipartite graph into multiple vertex-chunks. In the second

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

stage, vertex-chunks in the larger vertex-subset are decomposed
into one or more sub-chunks with bounded edge-count. Then, these
sub-chunks are uniformly assigned over nodes using a set of hash
functions. Besides, GraBi is a lightweight partitioning framework
for bipartite graphs, and generalizes to most MLDM applications.

ACKNOWLEDGMENTS
This work was supported in part by National key research and
development program of China under Grant 2018YFA0701805 and
Grant 2018YFA0701804, in part by the Creative Research Group
Project of NSFC No. 61821003, NSFC No. 61872156, and in part by
Alibaba Group through Alibaba Innovative Research (AIR) Program.

REFERENCES
[1] [n.d.]. Konect Network Dataset. http://konect.uni-koblenz.de/.
[2] [n.d.]. Wikimedia Downloads. https://dumps.wikimedia.org/.
[3] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

Recursive Model for Graph Mining. In SDM.
[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-

entiated graph computation and partitioning on skewed graphs. In Eurosys.
[5] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan. 2014. Bipartite-oriented

distributed graph partitioning for big learning. In APSys.
[6] Dong Dai, Wei Zhang, and Yong Chen. 2017. IOGP: An Incremental Online Graph

Partitioning Algorithm for Distributed Graph Databases. In HPDC.
[7] Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite

spectral graph partitioning. In SIGKDD.
[8] Bin Gao, Tie-Yan Liu, Xin Zheng, QianSheng Cheng, and Wei-Ying Ma. 2005.

Consistent bipartite graph co-partitioning for star-structured high-order hetero-
geneous data co-clustering. In SIGKDD.

[9] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In OSDI.

[10] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In OSDI.

[11] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Scientific Computing 20, 1
(1998), 359–392.

[12] Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for Non-negative Matrix
Factorization. In NIPS.

[13] Dongsheng Li, Chengfei Zhang, Jinyan Wang, Zhaoning Zhang, and Yiming
Zhang. 2017. GraphA: Adaptive Partitioning for Natural Graphs. In ICDCS.

[14] Hang Liu and H. Howie Huang. 2017. Graphene: Fine-Grained IO Management
for Graph Computing. In FAST.

[15] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A Framework forMachine
Learning in the Cloud. PVLDB 5, 8 (2012), 716–727.

[16] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

[17] Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa
Laich, Lukas Rieger, and Kurt Rothermel. 2018. ADWISE: Adaptive Window-
Based Streaming Edge Partitioning for High-Speed Graph Processing. In ICDCS.

[18] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking Like
a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing. ACM Comput. Surv. 48, 2 (2015), 25:1–25:39.

[19] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy J.
Lin. 2016. GraphJet: Real-Time Content Recommendations at Twitter. PVLDB 9,
13 (2016), 1281–1292.

[20] Alexander J. Smola and Shravan M. Narayanamurthy. 2010. An Architecture for
Parallel Topic Models. PVLDB 3, 1 (2010), 703–710.

[21] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2009. Scal-
able Collaborative Filtering Approaches for Large Recommender Systems. J.
Mach. Learn. Res. 10 (2009), 623–656.

[22] Jie Yan, Guangming Tan, and Ninghui Sun. 2015. Study on Partitioning Real-
World Directed Graphs of Skewed Degree Distribution. In ICPP.

[23] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin
Zheng. 2016. Exploring the Hidden Dimension in Graph Processing. In OSDI.

[24] Yunhong Zhou, Dennis M. Wilkinson, Robert Schreiber, and Rong Pan. 2008.
Large-Scale Parallel Collaborative Filtering for the Netflix Prize. In AAIM.

[25] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.

In USENIX ATC.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Graph Partitioning
	2.2 Bipartite Graphs and MLDM algorithms
	2.3 Observations and Opportunities

	3 Two-stage Partitioning
	3.1 (Vertical) Vertex-vector Chunking
	3.2 (Horizontal) Vertex-chunk Assignment
	3.3 Summary of GraBi

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Partitioning Phase
	4.4 Computation Phase
	4.5 Scalability
	4.6 Impact of Parameters

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

