
Application-Aware Local-Global Source
Deduplication for Cloud Backup
Services of Personal Storage

Yinjin Fu, Hong Jiang, Senior Member, IEEE, Nong Xiao, Member, IEEE, Lei Tian, Fang Liu, and Lei Xu

Abstract—In personal computing devices that rely on a cloud storage environment for data backup, an imminent challenge
facing source deduplication for cloud backup services is the low deduplication efficiency due to a combination of the resource-
intensive nature of deduplication and the limited system resources. In this paper, we present ALG-Dedupe, an Application-aware
Local-Global source deduplication scheme that improves data deduplication efficiency by exploiting application awareness, and
further combines local and global duplicate detection to strike a good balance between cloud storage capacity saving and
deduplication time reduction. We perform experiments via prototype implementation to demonstrate that our scheme can
significantly improve deduplication efficiency over the state-of-the-art methods with low system overhead, resulting in shortened
backup window, increased power efficiency and reduced cost for cloud backup services of personal storage.

Index Terms—Cloud backup, personal storage, source deduplication, deduplication efficiency, application awareness

Ç

1 INTRODUCTION

NOWADAYS, the ever-growing volume and value of
digital information have raised a critical and increas-

ing requirement for data protection in the personal
computing environment. Cloud backup service has become
a cost-effective choice for data protection of personal
computing devices [1], since the centralized cloud man-
agement has created an efficiency and cost inflection point,
and offers simple offsite storage for disaster recovery,
which is always a critical concern for data backup. And the
efficiency of IT resources in the cloud can be further
improved due to the high data redundancy in backup
dataset [2].

Data deduplication, an effective data compression
approach that exploits data redundancy, partitions large
data objects into smaller parts, called chunks, represents
these chunks by their fingerprints (i.e., generally a crypto-
graphic hash of the chunk data), replaces the duplicate

chunks with their fingerprints after chunk fingerprint index
lookup, and only transfers or stores the unique chunks for
the purpose of communication or storage efficiency. Source
deduplication that eliminates redundant data at the client
site is obviously preferred to target deduplication due to the
former’s ability to significantly reduce the amount of data
transferred over wide area network (WAN) with low
communication bandwidth [19]. For dataset with logical
size L and physical size P , source deduplication can reduce
the data transfer time to P=L that of traditional cloud
backup. However, data deduplication is a resource-inten-
sive process, which entails the CPU-intensive hash calcula-
tions for chunking and fingerprinting and the I/O-intensive
operations for identifying and eliminating duplicate data.
Unfortunately, such resources are limited in a typical
personal computing device. Therefore, it is desirable to
achieve a tradeoff (i.e., deduplication efficiency) between
deduplication effectiveness (i.e., duplicate elimination
ratio) and system overhead for personal computing devices
with limited system resources.

In the traditional storage stack comprising applications,
file systems, and storage hardware, each of the layers
contains different kinds of information about the data they
manage and such information in one layer is typically not
available to any other layers. Codesign for storage and
application is possible to optimize deduplication based
storage system when the lower-level storage layer has
extensive knowledge about the data structures and their
access characteristics in the higher-level application layer.
ADMAD [3] improves redundancy detection by applica-
tion-specific chunking methods that exploit the knowledge
about concrete file formats. ViDeDup [4] is a frame-work
for video deduplication based on an application-level
view of redundancy at the content level rather than at the
byte level. But all these prior work only focus on the

. Y. Fu is with the State Key Lab. of High Performance Computing and
School of Computer, National University of Defense Technology,
Changsha, Hunan 410073, China, and also with the Department of
Computer Science and Engineering, University of Nebraska, Lincoln, NE
68588 USA. E-mail: yinjinfu@gmail.com; yfu@cse.unl.edu.

. H. Jiang, L. Tian, and L. Xu are with the Department of Computer Science
and Engineering, University of Nebraska, Lincoln, NE 68588 USA.
E-mail: {jiang, tian, lxu}@cse.unl.edu.

. N. Xiao and F. Liu are with the State Key Lab. of High Performance
Computing and School of Computer, National University of Defense
Technology, Changsha, Hunan 410073, China. E-mail: {nongxiao,
liufang}@nudt.edu.cn.

Manuscript received 3 Nov. 2012; revised 21 Apr. 2013; accepted 25 June
2013. Date of publication 1 July 2013; date of current version 21 Mar. 2014.
Recommended for acceptance by J. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.167

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014 1155

effectiveness of deduplication to remove more redundancy
without consider the system overheads for high efficiency
in deduplication process.

The existing source deduplication strategies can be
divided into two categories: local source deduplication
[7], [6], [21] that only detects redundancy in backup
dataset from the same device at the client side and only
sends the unique data chunks to the cloud storage, and
global source deduplication [8], [16] that performs
duplicate check in backup datasets from all clients in
the cloud side before data transfer over WAN. The
former only eliminates intra-client redundancy with low
duplicate elimination ratio by low-latency client-side
duplicate data check, while the latter can suppress both
intra-client and inter-client redundancy with high dedu-
plication effectiveness by performing high-latency dupli-
cation detection on the cloud side. Inspired by
Cloud4Home [9] that enhances data services by combin-
ing limited local resources with low latency and powerful
Internet resources with high latency, local-global source
deduplication scheme that eliminates intra-client redun-
dancy at client before suppression inter-client redundan-
cy in the cloud, can potentially improve deduplication
efficiency in cloud backup services to save as much cloud
storage space as the global method but at as low latency
as the local mechanism.

In this paper, we propose ALG-Dedupe, an Application-
aware Local-Global source deduplication scheme that not
only exploits application awareness, but also combines
local and global duplication detection, to achieve high
deduplication efficiency by reducing the deduplication
latency to as low as the application-aware local de-
duplication while saving as much cloud storage cost as
the application-aware global deduplication. Our applica-
tion-aware deduplication design is motivated by the
systematic deduplication analysis on personal storage.
We observe that there is a significant difference among
different types of applications in the personal computing
environment in terms of data redundancy, sensitivity to
different chunking methods, and independence in the de-
duplication process. Thus, the basic idea of ALG-Dedupe is
to effectively exploit this application difference and
awareness by treating different types of applications
independently and adaptively during the local and global
duplicate check processes to significantly improve the
deduplication efficiency and reduce the system overhead.

We have made several contributions in the paper. We
propose a new metric, ‘‘bytes saved per second,’’ to
measure the efficiency of different deduplication schemes
on the same platform. We design an application-aware
deduplication scheme that employs an intelligent data
chunking method and an adaptive use of hash functions to
minimize computational overhead and maximize dedupli-
cation effectiveness by exploiting application awareness.
We combine local deduplication and global deduplication
to balance the effectiveness and latency of deduplication.
To relieve the disk index lookup bottleneck, we provide
application-aware index structure to suppress redundancy
independently and in parallel by dividing a central index
into many independent small indices to optimize lookup
performance. We also propose a data aggregation strategy

at the client side to improve data transfer efficiency by
grouping many small data packets into a single larger one
for cloud storage. Our prototype implementation and real
dataset driven evaluations show that our ALG-Dedupe
outperforms the existing state-of-the-art source deduplica-
tion schemes in terms of backup window, energy efficien-
cy, and cost saving for its high deduplication efficiency and
low system overhead.

The remainder of this paper is organized as follows: We
formulate the research problem in Section 2 and conduct
deduplication analysis on personal data in Section 3. We
describe the detailed design of ALG-Dedupe in Section 4.
We evaluate ALG-Dedupe by comparing it with the
existing state-of-the-art schemes in Section 5. We conclude
with remarks on future work in Section 6.

2 PROBLEM FORMULATION

For a backup dataset with logical dataset size L, its physical
dataset size will be reduced to PL after local source
deduplication in personal computing devices and further
decreased to PG by global source deduplication in the
cloud, PL 9PG. We divide the backup process into three
parts: local duplicate detection, global duplicate detection
and unique data cloud store. Here, the latencies for
chunking and fingerprinting are included in duplicate
detection latency. Meanwhile, we assume that there are
average local duplicate detection latency TL, average global
duplicate detection latency TG and average cloud storage
I/O bandwidthB for average chunk size C, TG 9TL. We can
build models to calculate BWSL and BWSG for the average
backup window size per chunk of local source deduplica-
tion based cloud backup and global source deduplication
based cloud backup as in (1) and (2), respectively

BWSL ¼TL þ
C

B
� PL
L

(1)

BWSG ¼TG þ
C

B
� PG
L
: (2)

Though local deduplication can achieve several to tens
times of duplicate elimination ratio R ¼ L=PL with low
latency, from an empirical estimation in NEC [10], global
deduplication can outperform local deduplication at
20 percent to 50 percent greater in deduplication effective-
ness, and the research results in EMC [20] show that inter-
client data overlapping can reach up to 75 percent, though
around 10 percent is more common. While the latency is
always the Achilles Heel of cloud computing, and the
average global duplicate detection latency per chunk TG is
dozens or hundreds of times the latency of local duplicate
detection TL [9]. To balance cloud storage cost saving and
backup window shrinking in these two schemes, we choose
local-global source deduplication, which reduce the backup
window size by exploiting local resources to reduce
deduplication latency and save cloud storage cost by
leveraging cloud resources to improve deduplication
effectiveness. A novel model to estimate BWSLG, the
average backup window size per chunk for local-global
source deduplication, is expressed in (3). It can outperform

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 20141156

local source deduplication if (4) is satisfied when network
bandwidth is very low, and also outperform global source
deduplication since (5) is always satisfied due to high cloud
latency

BWSLG ¼ TL þ TG �
PL
L
þ C
B
� PG
L

(3)

PG
PL
þB � TG

C
G 1 (4)

PL
L
þ TL
TG

G 1: (5)

We can define a metric for deduplication efficiency to
balance the cloud storage cost saving and backup window
shrinking in source deduplication based cloud backup
services. It is well understood that the deduplication
efficiency is proportional to deduplication effectiveness
that is always defined by duplicate elimination ratio
R ¼ L=P , and inversely proportional to the average backup
window size per chunk BWS with average chunk size C.
Based on this understanding and to better quantify and
compare deduplication efficiency of a wide variety of
deduplication techniques, we propose a new metric, called
‘‘bytes saved per second,’’ which is expressed in (6), to
measure the deduplication efficiency DE of different
deduplication schemes on the same platform. Our local-
global source deduplication design can achieve high
efficiency for its global deduplication effectiveness and
reduced backup window

DE ¼ C

BWS
� 1� 1

R

� �
: (6)

Different from the traditional deduplication based
cloud backup services that are oblivious to the file level
semantic knowledge, we optimize the efficiency for the
source deduplication based cloud backup services by
exploiting application awareness. We can divide backup
dataset into n application data subsets according to file
semantics, and improve the deduplication effectiveness
and decrease deduplication latency by dedicated dedupli-
cation process for each kind of application data. For
application i, we define Li, PLi, and PGi as its logical data
subset size, its physical data subset sizes after traditional
local and global source deduplication, respectively; PALi
and PAGi as its physical data subset sizes after local and
global application aware source deduplication, respective-
ly. We assume its average latency per chunk for local and
global application aware duplication detection are TALi
and TAGi, respectively, then TALi GTL and TAGi GTG due to
the index lookup optimization by exploiting application
awareness. According to our observation in Section 3: the
amount of data shared among different types of applica-
tions is negligibly small, we have PLi � PALi and
PGi � PAGi for any i is established. We make formulas
(7) and (8) to estimate the upper bound of physical dataset
size PAG and the average backup window size per chunk
BWSALG for application-aware local-global source dedu-
plication based cloud backup services, and then we know
formula (9) is established, and it indicates that the
efficiency of application-aware local-global source dedu-

plication DEALG is higher than that of local-global source
deduplication DELG

BWSALG ¼
Xn
i¼1

Li
L
� TLiþTGi�

PALi
Li
þC
B
�PAGi

Li

� �

G
Xn
i¼1

Li
L
� TL þ TG �

PALi
Li
þ C
B
� PAGi

Li

� �

�
Xn
i¼1

Li
L
�TLþTG�

Xn
i¼1

PLi
L
þC
B
�
Xn
i¼1

PGi
L

¼TL þ TG �
PL
L
þ C
B
� PG
L

¼BWSLG (7)

PAG ¼
Xn
i¼1

PAGi �
Xn
i¼1

PGi ¼ PG (8)

DEALG ¼
C

BWSALG
� 1�PAG

L

� �
9

C

BWSLG
� 1� PG

L

� �

¼DELG: (9)

3 DEDUPLICATION ANALYSIS ON PERSONAL DATA

In this section, we will investigate how data redundancy,
space utilization efficiency of popular data chunking
methods and computational overhead of typical hash
functions change in different applications of personal
computing to motivate our research. We perform prelim-
inary experimental study on datasets collected from desk-
tops in our research group, volunteers’ personal laptops,
personal workstations for image processing and financial
analysis, and a shared home server. Table 1 outlines the key
dataset characteristics: the number of devices, applications
and dataset size for each studied workload. To the best of
our knowledge, this is the first systematic deduplication
analysis on personal storage.

Observation 1
A disproportionally large percentage of storage space is
occupied by a very small number of large files with very
low chunk-level redundancy after file-level dedupe.

Implication
File-level deduplication using weak hash fun-ctions for
these large files is sufficient to avoid hash collisions for
small datasets in the personal computing environment.

To reveal the relationship between file count and storage
capacity under various file size, we collect statistics on
the distribution of file count and storage space occupied
by files of different sizes in the datasets listed in Table 1

TABLE 1
Datasets Used for Deduplication Analysis

FU ET AL.: LOCAL-GLOBAL SOURCE DEDUPLICATION FOR CLOUD BACKUP SERVICES 1157

and shows the results in Fig. 1. We observe that about
60.3 percent of all files are smaller than 10 KB, accounting
for only 1.7 percent of the total storage capacity, and only
1.5 percent files are larger than 1 MB but occupy 77.2 percent
of the storage capacity. These results are consistent with
[11]. This suggests that tiny files can be ignored during the
deduplication process as so to improve the deduplication
efficiency, since it is the large files in the tiny minority that
dominate in determining the deduplication efficiency. In
the datasets mentioned above, we also find that compressed
files larger than 1 MB occupy 61.2 percent storage space. To
verify the data redundancy in the compressed files, we
carried out chunk-level deduplication using two popular
methods: Static Chunking (SC) [11] of 4 KB chunk size
and TTTD based Content Defined Chunking (CDC) [13] of
4 KB average chunk size (Min: 2 KB, Max: 16 KB) after file-
level deduplication in about 2.6TB data of typical PC
applications using compression, respectively. Table 2
shows the chunk-level data redundancy after file-level
deduplication in typical application groups. Here, accord-
ing to the function of applications, we group file types
using compression into application groups: video, audio,
image, Linux-AC for compressed archive file types in
Linux, Mac-AC for compressed archive file types in Mac
OS X, Windows-AC for compressed archive file types in
Windows. From the statistics shown in Table 2, we observe

that all these file types using compression have low chunk-
level redundancy because R ¼ 1 means no redundancy,
while files in these applications are large with MB-scale
average file sizes. It is similar to the results in [18]. Owing
to low chunk-level redundancy of compressed files, file-
level deduplication can achieve almost the same effective-
ness of data reduction as chunk-level deduplication, and it
can also enhance the lookup speed for duplicate data
because of reduced metadata overhead. Since the com-
pressed files have coarse granularity and these file count is
very small in the personal storage, a weak hash function is
sufficient to avoid hash collisions in local file-level
deduplication of compressed files.

Observation 2
The optimal combination of chunking and hash finger-
printing methods can reduce system overheads on
resource-limited personal computing devices.

Implication
The use of weaker hash functions for coarse-grained
chunks and stronger hash functions for fine-grained
chunks is an effective way to reduce the computational
overhead and RAM usage for local deduplication in PC
clients.

To evaluate the computational overhead of typical hash
functions on datasets in Table 1, we measured the 4-thread
parallel computing throughputs of the Rabin hash, MD5
and SHA-1 hash algorithms respectively in user space on a
laptop with 2.53 GHz Intel Core 2 Duo for fingerprinting
data chunks obtained, respectively, from the Whole File
Chunking (WFC), which uses an entire file as the basis for
duplicate detection [11], the SC-based chunking with 4 KB
fixed chunk size, and the CDC-based chunking with 4 KB
average chunk size. Rabin hash is a rolling hash function
with lower computational overhead than cryptographic
hash functions SHA-1 and MD5. According to our com-
parative analysis in the supplementary filewhich is avail-
able in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/167, we find that 12-byte
extended Rabin hash for WFC-based deduplication on
compressed files, SHA-1 for SC-based deduplication and
MD5 for CDC-based dedupli-cation on uncompressed files
can keep almost the same level collision resistance for
deduplication on personal datasets. As shown in Fig. 2, the
average throughput of chunking and fingerprinting in
WFC-based deduplication is almost the same as that of
SC-based deduplication, since the bulk of the processing

TABLE 2
Chunk-Level Redundancy after File-Level Deduplication in

Typical Compressed Application Groups

Fig. 2. Throughput of chunking and fingerprinting.

Fig. 1. Distribution of capacity and count as a function of file size. The
histograms are the values of discrete density functions on file count
and capacity, while the lines are cumulative distribution functions for
them.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 20141158

time is spent on the hash calculation itself. CDC-based
deduplication has the lowest throughput on chunking
and fingerprinting because most of its computational
overhead is on identifying the chunk boundaries instead
of chunk fingerprinting. The deduplication strategy based
on simpler chunking schemes (e.g., WFC or SC) can achieve
a higher throughput because of their lower metadata
storage and chunking overheads, while deduplication
strategies with weaker hash functions (e.g., Rabin hash)
obtain a higher throughput because of their lower compu-
tational overhead. Furthermore, the combined response
time of Rabin hash and MD5 is even less than that of
SHA-1. This suggests that we can employ the extended
Rabin hash value as chunk fingerprint for local duplicate
detection and MD5 for global duplicate detection on
compressed files to reduce the computational overhead
with low probability of hash collision in both small PC
dataset and large-scale cloud dataset. We use SC-based
deduplication with the SHA-1 or CDC-based deduplica-
tion with MD5 for both local and global deduplication
on those uncompressed application datasets.

Observation 3
The amount of data shared among different types of
applications is negligibly small due to the difference in data
content and format in these applications.

Implication
Application-aware deduplication has a potential to im-
prove the efficiency of deduplication by eliminating
redundancy in each application independently and in
parallel.

We first made this proposition in our primary study
with empirical observations and analysis [21], which was
subsequently confirmed by a recent Microsoft Research’s
paper [18] in their datasets from 15 globally distributed
servers. To guide our application-aware deduplication
design, we conduct a content overlapping analysis to
exploit the independent parallel local-global deduplication
among the clients and in the cloud. We first examine the
data redundancy of intra-application and inter-application
by measuring the space savings of deduplication within
applications and across applications. To discover the data
redundancy, we chunk files with a fixed chunk size of 4 KB
and calculate the corresponding MD5 value as the chunk
fingerprint in each application dataset. We first compare
fingerprints in each application for intra-application
redundancy, then compare fingerprints between any two
applications to identify the overlapping data between these
applications for inter-application redundancy in all
datasets. As seen in Table 3, we find that the loss in
deduplication savings is negligibly small for all datasets
when partitioning application dataset by file type and
only performing intra-application deduplication. So the
amount of shared data among the application groups is
negligibly small due to the difference in data content and
format in application datasets, which makes independent
parallel deduplication among different application
groups possible. As a result, the full fingerprint index
can be divided into small independent indices according

to the data type information in different applications,
enabling it to greatly benefit from small indices to avoid
on-disk index lookup bottlenecks [14], [15] by leveraging
data locality in applications to prefetch appropriate
application indices into memory, while exposing higher
index access parallelism with low lock contention on
chunk index structure.

Observation 4
To exploit chunk-level redundancy, the best choices of
chunking method and chunk size to achieve high dedupli-
cation efficiency vary with different application datasets.

Implication
For each application data subset, dedicated deduplication
design can significantly improve deduplication efficiency
over traditional deduplication schemes with single
chunking method and solely chunk size for all application
types.

To discover high chunk-level redundancy, we need to
choose chunking method and chunk size to strike a good
balance between the capability of redundancy discovery
and the deduplication overhead. We always use SC-based
or CDC-based deduplication schemes. The effectiveness of
the former lies in its simplicity in splitting files into small
chunks with a fixed chunk size. The latter partitions data
into variable size chunks based on the data content rather
than the data position to avoid the chunk boundary-
shifting problem [13] caused by data updates with high
computational overhead. It is also important to select
chunk size since poor chunk size selection harms efficien-
cy: too large chunk size reduces the exploitable redundan-
cy in datasets, while too small chunk size can greatly
increase the overhead of representing and transferring the
datasets. We test the efficiency of local-global source
deduplication based cloud backup service on 3 application
datasets with high redundancy: 160 GB Linux kernel
source code (Linux), 313 GB Virtual Machine disk images
(VM) and 87 GB Microsoft Word documents with multiple
versions (DOC), as a function of chunking method and
chunk size. The results are shown in Fig. 3 with 4.3 MB/s
mean upload bandwidth and about 300 ms average cloud
latency for duplicate detection. We observe that the
optimal chunk size for the highest deduplication efficiency
varies among different application types. Hence, our
application-aware deduplication design can significantly
improve the deduplication efficiency for each application
data subset by adaptively selecting chunking method and
chunk size according to dataset characteristics.

TABLE 3
Space Saving for Inter- or Intra-Application Deduplication by File

Type Directed Classification

FU ET AL.: LOCAL-GLOBAL SOURCE DEDUPLICATION FOR CLOUD BACKUP SERVICES 1159

4 DESIGN AND IMPLEMENTATION

ALG-Dedupe, motivated in part by our observations made
in Section 2, is designed to meet the requirement of
deduplication efficiency with high deduplication effective-
ness and low system overhead. The main idea of ALG-
Dedupe is 1) exploiting both low-overhead local resources
and high-overhead cloud resources to reduce the compu-
tational overhead by employing an intelligent data chunk-
ing scheme and an adaptive use of hash functions based on
application awareness, and 2) to mitigate the on-disk index
lookup bottleneck by dividing the full index into small
independent and application-specific indices in an appli-
cation-aware index structure. It combines local-global
source deduplication with application awareness to im-
prove deduplication effectiveness with low system over-
head on the client side.

4.1 Architecture Overview
An architectural overview of ALG-Dedupe is illustrated in
Fig. 4, where tiny files are first filtered out by file size filter
for efficiency reasons, and backup data streams are broken
into chunks by an intelligent chunker using an application-
aware chunking strategy. Data chunks from the same type
of files are then deduplicated in the application-aware
deduplicator by generating chunk fingerprints in hash
engine and performing data redundancy check in

application-aware indices in both local client and remote
cloud. Their fingerprints are first looked up in an
application-aware local index that is stored in the local
disk for local redundancy check. If a match is found, the
metadata for the file containing that chunk is updated to
point to the location of the existing chunk. When there is
no match, the fingerprint will be sent to the cloud for
further parallel global duplication check on an applica-
tion-aware global index, and then if a match is found in
the cloud, the corresponding file metadata is updated for
duplicate chunks, or else the chunk is new. On the client
side, fingerprints will be transferred in batch and new
data chunks will be packed into large units called
segments in the segment store module with tiny files
before their transfers to reduce cloud computing latency
and improve network bandwidth efficiency over WAN.
On the cloud datacenter side, segments and its
corresponding chunk fingerprints are stored in a self-
describing data structureVcontainerVin cloud storage,
supported by the parallel container store. We will now
describe the deduplication process in more detail in the
rest of this section.

4.2 File Size Filter
Most of the files in the PC dataset are tiny files that less than
10 KB in file size, accounting for a negligibly small
percentage of the storage capacity. As shown in our
statistical evidences in Section 2, about 60.3 percent of all
files are tiny files, accounting for only 1.7 percent of the
total storage capacity of the dataset. To reduce the
metadata overhead, ALG-Dedupe filters out these tiny
files in the file size filter before the deduplication process,
and groups data from many tiny files together into larger
units of about 1 MB each in the segment store to increase
the data transfer efficiency over WAN.

4.3 Intelligent Data Chunking
The deduplication efficiency of data chunking scheme
among different applications differs greatly as we dis-
cussed in Section 2. Depending on whether the file type is
compressed or whether SC can outperform CDC in
deduplication efficiency, we divide files into three main
categories: compressed files, static uncompressed files, and
dynamic uncompressed files. The dynamic files are always
editable, while the static files are uneditable in common.
Some examples are shown in Fig. 5. To strike a better

Fig. 4. Architectural overview of the ALG-Dedupe design. Fig. 5. Application-aware index structure.

Fig. 3. Difference of deduplication efficiency as a function of chunk size
and chunking method for various applications. Linux dataset can
achieve highest efficiency by CDC scheme with 2 KB average chunk
size, VM dataset reaches best efficiency by SC method with 8 KB chunk
size, and DOC dataset can get peak efficiency by CDC scheme with 4 KB
average chunk size.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 20141160

tradeoff between duplicate elimination ratio and dedupli-
cation overhead, we deduplicate compressed files with
WFC, separate static uncompressed files into fix-sized
chunks by SC with ideal chunk size, and break dynamic
uncompressed files into variable-sized chunks with opti-
mal average chunk size using CDC based on the Rabin
fingerprinting to identify chunk boundaries.

4.4 Application-Aware Deduplicator
After data chunking in intelligent chunker module, data
chunks will be deduplicated in the application-aware
deduplicator by generating chunk fingerprints in the
hash engine and detecting duplicate chunks in both the
local client and remote cloud. ALG-Dedupe strikes a good
balance between alleviating computation overhead on the
client side and avoiding hash collision to keep data
integrity. We employ an extended 12-byte Rabin hash
value as chunk fingerprint for local duplicate data
detection and a MD5 value for global duplicate detection
of compressed files with WFC. In both local and global
detection scenarios, a SHA-1 value of chunk serves as
chunk fingerprint of SC in static uncompressed files and a
MD5 value is used as chunk fingerprint of dynamic
uncompressed files since chunk length is another dimen-
sion for duplicate detection in CDC-based deduplication.
To achieve high deduplication efficiency, the application-
aware deduplicator first detects duplicate data in the
application-aware local index corresponding to the local
dataset with low deduplication latency in the PC client, and
then compares local deduplicated data chunks with all data
stored in the cloud by looking up fingerprints in the
application-aware global index on the cloud side for high
data reduction ratio. Only the unique data chunks after
global duplicate detection are stored in the cloud storage
with parallel container management.

4.5 Application-Aware Index Structure
An application-aware index structure for ALG-Dedupe is
constructed, which is shown in Fig. 5. It consists of an in-
RAM application index and small hash-table based on-disk
indices classified by application type. According to the
accompanied file type information, the incoming chunk is
directed to the chunk index with the same file type. Each
entry of the index stores a mapping from the fingerprint
(fp) of a chunk or with its length (len) to its container ID
(cid). As chunk locality exists in backup data streams [15], a
small index cache is allocated in RAM to speedup index
lookup by reducing disk I/O operations. The index cache is
a key-value structure, and it is constructed by a doubly
linked list indexed by a hash table. When the cache is full,
fingerprints of those containers that are ineffective in
accelerating chunk fingerprint lookup are replaced to make
room for future prefetching and caching. The current cache
replacement policy in ALG-Dedupe is Least-Recently-Used
(LRU) on cached chunk fingerprints.

ALG-Dedupe requires two application-aware chunk
indices: a local index on the client side and a global index
on the cloud side. Comparing with traditional deduplica-
tion mechanisms, ALG-Dedupe can achieve high dedupli-
cation throughput by looking up chunk fingerprints
concurrently in small indices classified by applications

rather than a single full, unclassified index for both local
and global scenarios. Furthermore, a periodical data
synchronization scheme is also proposed in ALG-Dedupe
to backup the application-aware local index and file
metadata in the cloud storage to protect the data integrity
of the PC backup datasets.

4.6 Segment and Container Management
Aggregation of data produces larger files for the cloud
storage, which can be beneficial in avoiding high overhead
of lower layer network protocols due to small transfer
sizes, and in reducing the cost of the cloud storage.
Amazon S3, for example, has both a per-request and a
per-byte cost when storing a file, which encourages the use
of files greater than 100 KB. ALG-Dedupe will often group
deduplicated data from many smaller files and chunks into
larger units called segments before these data are trans-
ferred over WAN.

After a segment is sent to the cloud, it will be routed to a
storage node in the cloud with its corresponding finger-
prints, and be packed into container, a data stream based
structure, to keep spatial locality for deduplicated data. A
container includes a large number of chunks and their
metadata, and it has a size of several MB. An open chunk
container is maintained for each incoming backup data
stream in storage nodes, appending each new chunk or tiny
file to the open container corresponding to the stream it is
part of. When a container fills up with a predefined fixed
size, a new one is opened up. If a container is not full but
needs to be written to disk, it is padded out to its full size.
This process uses chunk locality to group chunks likely to
be retrieved together so that the data restoration perfor-
mance will be reasonably good. Supporting deletion of files
requires an additional process in the background. The
similar scheme is also adopted in the state-of-the-art
schemes such as DDFS [14] and Sparse Indexing [15] to
improve manageability and performance.

5 EVALUATIONS

We have built a prototype of ALG-Dedupe in approxi-
mately 6000 lines of C++ code. We have evaluated the
advantages of our design over the state-of-the-art source-
deduplication based cloud backup services in terms of
deduplication efficiency, backup window size, energy
consumption, monetary costs and system overheads by
feeding the real-world datasets in a personal computing
device. The following evaluation subsections will show the
results, beginning with a description of the experiment
platform with PC backup datasets we use as inputs.

5.1 Experiment Platform and Datasets
Our experiments were performed on a MacBook Pro client
with 2.53 GHz Intel Core 2 Duo processor, 4 GB RAM, and
one 500 GB SATA disk, and the Amazon Web Service
for cloud storage, including Amazon SimpleDB for
application-aware global chunk index store and Amazon
Simple Storage Service (S3) for unique data chunk store.
The Macbook is connected to the Internet by campus
wireless network connectivity with 10 Mbps � 50 Mbps
data transfer speed. To support our application-aware

FU ET AL.: LOCAL-GLOBAL SOURCE DEDUPLICATION FOR CLOUD BACKUP SERVICES 1161

global index structure, we create different domains for
each file-type by horizontal partitioning of chunk
fingerprints to improve overall throughput with parallel
fingerprint lookup. First, all the datasets from more than
15 clients in Table 1 are deduplicated by our ALG-
Dedupe scheme, but we only store the global chunk
index in SimpleDB without unique data chunk store in
S3 to save cloud storage cost and protect data privacy.
Then, we use new backup datasets in the users directory
of one of the author’s PCs as workloads to drive our
evaluations. There are 10 consecutive weekly full back-
ups in the workloads with a total of 3.81TB logical data
capacity consisting of about 54 million files in 17
applications.

We compare ALG-Dedupe against a number of state-
of-the-art schemes, including Jungle Disk [17], a file
incremental cloud backup scheme, BackupPC [6], a local
file-level source deduplication based cloud backup,
Cumulus [7], a local chunk-level source deduplication
method, SAM [5], a hybrid cloud backup scheme with local
chunk-level and global file-level source deduplication, and
AA-Dedupe [21], the local-deduplication-only scheme of
ALG-Dedupe. To make fair comparisons among these
mechanisms, besides ALG-Dedupe, we also implement
SAM and AA-Dedupe with the Amazon Web Service for
cloud services in our experiments, and choose Amazon S3
to store the unique data for other existing cloud backup
services.

5.2 Deduplication Effectiveness
Our experimental results in Fig. 6 present the cumulative
cloud storage capacity required of the providers at each
backup session for individual user with the six cloud
backup schemes. Different from source deduplication
schemes, Jungle Disk fails to achieve high cloud storage
saving due to the fact that its incremental backup scheme
cannot eliminate file copies written in different places. In
the source deduplication schemes, the coarse-grained
method BackupPC cannot find more redundancy than
other fine-grained mechanisms. The fine-grained Cumulus
only performs local duplicate check, and limits the search
for unmodified data to the chunks in the previous versions
of the file, so it achieves lower space saving than the local-
deduplication-only application-aware deduplication AA-

Dedupe. ALG-Dedupe improves the deduplication ratio of
AA-Dedupe by further leveraging global deduplication
with cloud computing. By leveraging application aware-
ness to achieve global chunk-level deduplication effec-
tiveness, it also outperforms SAM that combines local
chunk-level and global file-level source deduplication.
Due to the application-aware design and global dupli-
cate detection, ALG-Dedupe can outperform Jungle Disk
by 64 percent, save 43 percent space for Cumulus, and
reduce a third storage usage for SAM. Comparing with
the AA-Dedupe, it achieves 23 percent higher space
efficiency.

5.3 Deduplication Efficiency
The high effectiveness of data deduplication of the fine-
grained or global deduplication schemes comes at a
significant overhead that throttles the system throughput.
In our ALG-Dedupe, we perform parallel local duplication
detection on shared hash-table based application-aware
index structure that is stored in RAM at client side. For high
parallel global duplication check in SimpleDB, we apply
horizontal partitioning to divide the whole unclassified
index into many small independent domains that are
partitioned by file-type directed application grouping.
Despite of the high WAN latency, we can significantly
improve the global deduplication performance of ALG-
Dedupe by batch I/O and parallel query. We present a
comparison of the five cloud backup schemes in terms of
deduplication efficiency in Fig. 7, and employ our
proposed new metric of ‘‘bytes saved per second’’, defined
in Section 2.3, to measure the efficiency of different
deduplication approaches in the same cloud storage
platform. ALG-Dedupe performs much better than other
backup schemes in the deduplication efficiency measure
with a low overhead. This significant advantage of ALG-
Dedupe is primarily attributed to its application aware-
ness and global duplicate detection in the deduplication
process.

We observe that the deduplication efficiency of ALG-
Dedupe is 14 percent higher than our previous local
scheme AA-Dedupe, owing to its advantage in global
design, about 1.6 times that of the application-oblivious
SAM and 1.9 times that of the local-deduplication Cumulus,
more than 2.3 times that of the coarse-grained BackupPC on
average.Fig. 6. Cloud storage space requirement.

Fig. 7. Data deduplication efficiency of the backup datasets.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 20141162

5.4 Backup Window
The backup window represents the time spent on sending
a backup dataset to cloud storage, which mainly depends
on the volume of the transferred dataset and available
network bandwidth. Though the cloud latency affects
global deduplication, our local duplicate detection can
significantly reduces the number of global fingerprint
lookup requests. And data transfer time is sharply
decreased by our application-aware source deduplication
even though the upload bandwidth is low in WAN. In
our experimental results, shown in Fig. 8, BackupPC and
Cumulus perform not well for their low duplicate
elimination ratio; SAM has shorter backup windows
due to their fine-grained and global deduplication
schemes. ALG-Dedupe consistently performs the best
among the five cloud backup schemes owing to its high
deduplication efficiency achieved by our application-
aware local-global source deduplication design. The
backup window size of ALG-Dedupe is almost the same
as AA-Dedupe due to its global deduplication design has
high deduplication effectiveness in spite of the dedupli-
cation time is increased by global duplicate detection. We
observe that the backup window size of ALG-Dedupe
is shortened from other schemes by about 26 percent-
37 percent in our evaluation.

5.5 Energy Efficiency
Energy efficiency has become a critical issue and its
importance seems to become more pronounced in personal
computing devices due to the limited energy in battery. In
our experiment, we compare the power consumptions of
the five source deduplication based cloud backup schemes
during the deduplication process, measured by an elec-
tricity usage monitor on the whole PC. Fig. 9 shows the
energy consumptions of the cloud backup schemes as a
function of backup sessions. Existing approaches incur
high-level power consumptions due to their significant
computational overhead during the deduplication process
or high data transfer overhead owing to low space saving.
ALG-Dedupe incurs only 59 percent� 65 percent that of
SAM, BackupPC and Cumulus by adaptively using
application-aware design in deduplication. Furthermore,
it achieves almost the same energy consumption as its local
scheme AA-Dedupe.

5.6 Cloud Cost
To price cloud-based backup services attractively requires
minimizing the capital costs of datacenter storage and the
operational bandwidth costs of shipping the data back and
forth. We use the prices for Amazon S3 as an initial point in
the pricing space. As of February 2012, these prices are (in
US dollars) less than $0.125 per GB � month for storage,
$0.01 per 1000 upload requests, $0.01 per 10000 download
requests and $0.12 per GB �month for data transfer out. We
define DS as dataset size, R as duplicate elimination ratio,
RC as request count, CC as cloud cost. And we assume SP ,
TP and RP represent the price of storage, the price of
transfer and the price of request, respectively. The cost of
cloud backup services can be modelled as follows:

CC ¼ DS
R
� ðSP þ TP Þ þRC �RP: (10)

We estimate the cloud cost of our test datasets in two
months based on (10), as shown in Fig. 10. Comparing with
the more space-efficient scheme SAM, file-granula-rity
data transfer in Jungle Disk and BackupPC can bring more
cost savings in request cost due to the large number of large
files in our datasets. ALG-Dedupe can reduce the cloud
cost significantly not only by global deduplication effec-
tiveness, but also by packing several KB-sized tiny files and
chunks into 1 MB segments before sending them to the
cloud as Cumulus and AA-Dedupe. We observe that the
cloud cost of AA-Dedupe can be reduced by 23 percent
in ALG-Dedupe, which is lower than those of other

Fig. 8. Backup window size of 10 backup sessions.

Fig. 9. Energy consumption of source deduplication schemes.

Fig. 10. Monetary cost of cloud storage.

FU ET AL.: LOCAL-GLOBAL SOURCE DEDUPLICATION FOR CLOUD BACKUP SERVICES 1163

schemes by about 41 percent-64 percent for our backup
datasets.

5.7 System Overhead
Considering the limited system resources in PC clients, we
estimate the system overhead in terms of CPU processing
speed and RAM usage for source deduplication based
cloud backup services in personal devices. In our ALG-
Dedupe design, we adaptively select chunking method and
hash function for different application data subsets to
achieve high deduplication efficiency with low system
overhead. Since the computational overhead of deduplica-
tion is dominated by CDC based chunking and hash
fingerprinting, we test the average throughput of
performing both chunking and fingerprinting in client for
the five source deduplication based cloud backup services
in 10 backup sessions. As shown in Fig. 11, our ALG-
Dedupe can achieve more than 1.7 � 13 times speed of all
application-oblivious schemes, but perform slightly lower
than our local scheme AA-Dedupe in processing speed due
to the involvement of global deduplication. It is well
known that chunk fingerprint index cost the main RAM
usage for local deduplication in client. AA-Dedupe has the
same local deduplication scheme as ALG-Dedupe, so they
have almost the same RAM usage at client side. For the
given datasets in each backup session, Fig. 12 shows that
the on-disk full index size of ALG-Dedupe is slightly larger
than that of file-level deduplication method BackupPC, but
much smaller than that of chunk-level schemes: SAM and
Cumulus. Furthermore, as discussed in Appendix C, our
application-aware index structure has much higher utili-
zation of index cache in RAM than traditional index design
by exploiting application locality. In short, our ALG-
Dedupe scheme can not only significantly improve com-
puting speed for source deduplication, but also greatly
save RAM usage with reduced full chunk index size and
enhanced index cache efficiency.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose ALG-Dedupe, an application-
aware local-global source-deduplication scheme for cloud
backup in the personal computing environment to improve
deduplication efficiency. An intelligent deduplication
strategy in ALG-Dedupe is designed to exploit file

semantics to minimize computational overhead and max-
imize deduplication effectiveness using application aware-
ness. It combines local deduplication and global
deduplication to balance the effectiveness and latency of
deduplication. The proposed application-aware index
structure can significantly relieve the disk index lookup
bottleneck by dividing a central index into many indepen-
dent small indices to optimize lookup performance. In our
prototype evaluation, ALG-Dedupe is shown to improve
the deduplication efficiency of the state-of-the-art
application-oblivious source deduplication approaches
by a factor of 1.6X � 2.3X with very low system overhead,
and shorten the backup window size by 26 percent-
37 percent, improve power-efficiency by more than a third,
and save 41 percent-64 percent cloud cost for the cloud
backup service. Comparing with our previous local-
deduplication-only design AA-Dedupe, it can reduce
cloud cost by 23 percent without increasing backup
window size. As a direction of future work, we plan to
further optimize our scheme for other resource-constrained
mobile devices like smartphone or tablet and investigate the
secure deduplication issue in cloud backup services of the
personal computing environment.

ACKNOWLEDGMENT

This research was supported in part by the 863 Program of
China under Grant 2013AA013201, the National Natural
Science Foundation of China under Grant 61025009,
61232003, 61120106005, 60903040, 61070198 and 61170288,
China Scholarship Council, and the US NSF under Grants
CCF-0937993, IIS-0916859, CNS-1016609 and CNS-1116606.
N. Xiao is the corresponding author. A preliminary version
of the paper was presented at the 2011 IEEE Cluster
Conference.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, ‘‘A View of Cloud Computing,’’ Commun. ACM,
vol. 53, no. 4, pp. 49-58, Apr. 2010.

[2] H. Biggar, ‘‘Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements,’’ Enterprise
Strategy Grp., Milford, MA, USA, White Paper, Feb. 2007.

[3] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S. Wang, ‘‘ADMAD:
Application-Driven Metadata Aware De-Deduplication Archival
Storage Systems,’’ in Proc. 5th IEEE Int’l Workshop SNAPI I/Os,
2008, pp. 29-35.Fig. 11. Speeds of chunking and fingerprinting in PC clients.

Fig. 12. The size of chunk index for source deduplication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 20141164

[4] A. Katiyar and J. Weissman, ‘‘ViDeDup: An Application-Aware
Framework for Video De-Duplication,’’ in Proc. 3rd USENIX
Workshop Hot-Storage File Syst., 2011, pp. 31-35.

[5] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou, ‘‘SAM: A
Semantic-Aware Multi-Tiered Source De-Duplication Frame-
Work for Cloud Backup,’’ in Proc. 39th ICPP, 2010, pp. 614-623.

[6] BackupPC, 2011. [Online]. Available: http://backuppc.source-
forge.net/

[7] A. Muthitacharoen, B. Chen, and D. Mazières, ‘‘A Low-
Bandwidth Network File System,’’ in Proc. 18th ACM SOSP,
2001, pp. 174-187.

[8] EMC Avamar, 2011. [Online]. Available: http://www.emc.com/
avamar

[9] S. Kannan, A. Gavrilovska, and K. Schwan, ‘‘Cloud4HomeV
Enhancing Data Services with @Home Clouds,’’ in Proc. 31st
ICDCS, 2011, pp. 539-548.

[10] Maximizing Data Efficiency: Benefits of Global Deduplication-
NEC, Irving, TX, USA, NEC White Paper, 2009.

[11] D. Meister and A. Brinkmann, ‘‘Multi-Level Comparison of Data
Deduplication in a Backup Scenario,’’ in Proc. 2nd Annu. Int’l
SYSTOR, 2009, pp. 1-8.

[12] D. Bhagwat, K. Eshghi, D.D. Long, and M. Lillibridge, ‘‘Extreme
Binning: Scalable, Parallel Deduplication for Chunk Based File
Backup,’’ HP Lab., Palo Alto, CA, USA, Tech. Rep. HPL-2009-
10R2, Sept. 2009.

[13] K. Eshghi, ‘‘A Framework for Analyzing and Improving Content
Based Chunking Algorithms,’’ HP Laboratories, Palo Alto, CA,
USA, Tech. Rep. HPL-2005-30 (R.1), 2005.

[14] B. Zhu, K. Li, and H. Patterson, ‘‘Avoiding the Disk Bottleneck in
the Data Domain Deduplication File System,’’ in Proc. 6th
USENIX Conf. FAST, Feb. 2008, pp. 269-282.

[15] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, ‘‘Sparse Indexing: Large Scale, Inline Dedupli-
cation Using Sampling and Locality,’’ in Proc. 7th USENIX
Conf. FAST, 2009, pp. 111-123.

[16] P. Anderson and L. Zhang, ‘‘Fast and Secure Laptop Backups
With Encrypted De-Duplication,’’ in Proc. 24th Int’l Conf. LISA,
2010, pp. 29-40.

[17] Jungle Disk. 2011. [Online]. Available: http://www.jungledisk.
com/

[18] A. El-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, and S. Sengupta,
‘‘Primary Data DeduplicationVLarge Scale Study and System
Design,’’ in Proc. USENIX ATC, 2012, pp. 285-296.

[19] P. Shilane, M. Huang, G. Wallace, and W. Hsu, ‘‘WAN
Optimized Replication of Backup Datasets Using Stream-
Informed Delta Compression,’’ in Proc. 10th USENIX Conf.
FAST, 2012, pp. 49-64.

[20] F. Douglis, D. Bhardwaj, H. Qian, and P. Shilane, ‘‘Content-
Aware Load Balancing for Distributed Backup,’’ in Proc. 25th
USENIX Conf. LISA, Dec. 2011, pp. 151-168.

[21] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, ‘‘AA-Dedupe: An
Application-Aware Source Deduplication Approach for Cloud
Backup Services in the Personal Computing Environment,’’ in
Proc. 13th IEEE Int’l Conf. CLUSTER Comput., 2011, pp. 112-120.

Yinjin Fu received the BS degree in mathemat-
ics from Nanjing University, Nanjing, China, in
2006, and the MS degree in computer science
from National University of Defense Technology
(NUDT), Changsha, China, in 2008. He joined
the Department of Computer Science and Engi-
neering at University of Nebraska-Lincoln as a
visiting scholar from 2010 to 2012. Now he is a
PhD candidate in the State Key Laboratory of
High Performance Computing at NUDT, China.
His current research interests include data

deduplication, cloud storage and distributed file systems. He is a
student member of the ACM.

Hong Jiang received the BS degree in computer
engineering from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 1982,
the MS degree in computer engineering from the
University of Toronto, Canada, in 1987, and the
PhD degree in computer science from the Texas
A&M University, College Station, in 1991. Since
August 1991, he has been at the University of
Nebraska-Lincoln (UNL), where he served as
the vice chair of the Department of Computer
Science and Engineering (CSE) from 2001 to

2007, and is a professor of CSE. His present research interests include
computer architecture, computer storage systems and parallel I/O,
parallel/distributed computing, cluster and grid computing. He has more
than 180 publications in major journals and international conferences in
these areas, including IEEE TPDS, IEEE TC, JPDC, USENIX-ATC,
ISCA, MICRO, FAST, ICDCS, IPDPS, OOPLAS, ECOOP, SC, ICS,
MIDDLEWARE, HPDC, ICPP, etc. He is a Senior Member of the IEEE
and a member of the ACM and ACM SIGARCH.

Nong Xiao received the BS and PhD degrees in
computer science from the College of Computer
at National University of Defense Technology
(NUDT) in China, in 1990 and 1996, respective-
ly. He is currently a professor in the State Key
Laboratory of High Performance Computting at
NUDT, China. His current research interests
include large-scale storage system, network
computing, and computer architecture. He has
more than 130 publications to his credit in
journals and international conferences including

IEEE TSC, IEEE TMM, JPDC, JCST, HPCA, ICCAD, MIDDLEWARE,
MSST, IPDPS, CLUSTER, SYSTOR and MASCOTS. He is a member
of the IEEE and ACM.

Lei Tian received the BE degree in computer
science and technology from Huazhong Univer-
sity of Science and Technology (HUST), China,
in 2001, and the ME and PhD degrees in
computer architecture from HUST, in 2004 and
2010, respectively. His research interests in-
clude RAID-structured storage systems, distrib-
uted storage systems, and large-scale metadata
management. He has more than 30 publications
to his credit in journals and international con-
ferences including IEEE TC, IEEE TPDS, ACM

TOS, FAST, ICS, SC, HPDC, ICDCS, MSST, ICPP, IPDPS, and
MASCOTS.

Fang Liu received the BS and PhD degrees in
computer science from National University of
Defense Technology (NUDT), China, in 1999
and 2005 respectively. Now she is an associate
professor in the State Key Laboratory of High
Performance Computing at NUDT, China. Her
current research interests include distributed file
system, network storage and solid-state storage
system.

Lei Xu received the BS degree in electronic
science and technology from Wuhan University,
China, in 2005. Now he is a PhD student in the
Department of Computer Science at the Univer-
sity of Nebraska Lincoln. His research interests
include distributed file system, manycore archi-
tecture, and distributed storage system for Big
Data.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FU ET AL.: LOCAL-GLOBAL SOURCE DEDUPLICATION FOR CLOUD BACKUP SERVICES 1165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

