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Abstract—Cloud storage is an increasingly popular application of cloud computing, which can provide on-demand outsourcing data

services for both organizations and individuals. However, users may not fully trust the cloud service providers (CSPs) in that it is difficult

to determine whether the CSPs meet their legal expectations for data security. Therefore, it is critical to develop efficient auditing

techniques to strengthen data owners’ trust and confidence in cloud storage. In this paper, we present a novel public auditing scheme

for secure cloud storage based on dynamic hash table (DHT), which is a new two-dimensional data structure located at a third parity

auditor (TPA) to record the data property information for dynamic auditing. Differing from the existing works, the proposed scheme

migrates the authorized information from the CSP to the TPA, and thereby significantly reduces the computational cost and

communication overhead. Meanwhile, exploiting the structural advantages of the DHT, our scheme can also achieve higher updating

efficiency than the state-of-the-art schemes. In addition, we extend our scheme to support privacy preservation by combining the

homomorphic authenticator based on the public key with the random masking generated by the TPA, and achieve batch auditing by

employing the aggregate BLS signature technique. We formally prove the security of the proposed scheme, and evaluate the auditing

performance by detailed experiments and comparisons with the existing ones. The results demonstrate that the proposed scheme can

effectively achieve secure auditing for cloud storage, and outperforms the previous schemes in computation complexity, storage costs

and communication overhead.

Index Terms—Cloud storage, cloud security, public auditing, dynamic hash table

Ç

1 INTRODUCTION

CLOUD storage is an important branch of cloud comput-
ing [1], whose goal is to provide powerful and on-

demand out-sourcing data services for users exploiting
highly virtualized infrastructures [1], [2]. Due to the low-cost
and high-performance of cloud storage, a growing number
of organizations and individuals are tending to outsource
their data storage to professional cloud services providers
(CSP), which buoys the rapid development of cloud storage
and its relative techniques in recent years. However, as a
new cutting-edge technology, cloud storage still faces many
security challenges [3]. One of the biggest concerns is how to
determine whether a cloud storage system and its provider
meet the legal expectations of customers for data security [4].
This is mainly caused by the following reasons. First, cloud
users (data owners), who outsource their data in clouds, can

no longer verify the integrity of their data via traditional
techniques that are often employed in local storage scenarios.
Second, CSPs, which suffer Byzantine failures occasionally,
may choose to conceal the data errors from the data owners
for their own self-interest [5]. What is more severe, CSPs
might neglect to keep or even deliberately delete rarely
accessed data that belong to ordinary customers to save
storage space [6]. Therefore, it is critical and significant to
develop efficient auditing techniques to strengthen data
owners’ trust and confidence in cloud storage, of which the
core is how to effectively check data integrity remotely.

So far, many solutions have been presented to overcome
this problem, which can be generally divided into two cate-
gories: private auditing and public auditing. Private auditing
is the initial model for remote checking of data integrity [7],
[8], in which the verification operation is performed directly
between data owners and CSPs with relatively low cost.
However, it cannot provide convincing auditing results,
since the owners and CSPs often mistrust each other. More-
over, it is not advisable for the users to carry out the audit fre-
quently, since it would substantially increase the overhead
that the users may not afford. Thus, Ateniese et al. [9] first
presented the public auditing scheme, in which the checking
work is customarily done by an authorized third party audi-
tor (TPA). Compared with the former, the latter can offer
dependable auditing results and significantly reduce users’
unnecessary burden by introducing an independent TPA.
Thus, it is more rational and practical, and popularly
believed to be the right direction of future development [2],
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[3], [4], [5], [6], [9], [10], [11], [12], [13], [14], [15], [16]. In the
public auditing, however, some vital problems as follows
remain to be addressed or further gone into [5], [10].

� Privacy-preserving: data privacy protection (DPP)
has always been an important topic for cloud stor-
age. In the public auditing, the core of this problem
is how to preserve uses’ privacy while introducing a
TPA. Although exploiting data encryption prior to
outsourcing is an approach to mitigate the privacy
concern in cloud storage [7], it cannot prevent data
leakage during the verification process [11]. Thus, it
is important for the cloud auditing to include a pri-
vacy-preserving mechanism independent to data
encryption [11], [12].

� Batch auditing: to enhance the efficiency and enable
the scalability of public auditing, the TPA should
deal with multiple auditing tasks from various users
in a fast and cost-efficient manner, i.e., support the
batching auditing [13], [14].

� Dynamic auditing: as it is well known that a cloud
storage system is not just a data warehouse, the users
often need to update the data dynamically motivated
by various application requirements. Therefore, it is
significant for cloud storage auditing to support data
dynamics [6], [15], [16].

For the dynamic data auditing, Erway et al. [15] first
presented a dynamic provable data possession (DPDP)
scheme, which extends the original PDP model [9] by intro-
ducing a rank-based authenticated skip list. Although their
scheme cannot support public auditing, they reveal a general
approach to achieve dynamic auditing, i.e., incorporating
dynamic authenticated data structures with verification
algorithms. Later, Wang et al. [6] presented a public auditing
scheme based on Merkle Hash Tree (MHT), which can
achieve the above auditing requirements. However, both
the above schemes would incur heavy computational costs
of the TPA and large communication overhead during the

updating and verification processes. Further, Zhu et al. [16]
proposed another public auditing scheme (IHT-PA) based on
an index-hash table (IHT), which can effectively reduce both
the computational costs and communication overhead by
storing the data properties for auditing using the IHT in the
TPA instead of the CSP. The IHT is the key of IHT-PA to sup-
port data dynamics, but it is inefficient in updating opera-
tions, especially insertion and deletion operations. The main
reason is that these updating operations will lead to the
adjustment of average N/2 elements, where N is the total
number of all blocks, due to the sequence structure of the
IHT. Moreover, the operations would change the sequence
numbers of some blocks, and cause the recalculations of their
tags, which would induce extra computational costs to the
user and unnecessary communication overhead.

In view of these problems, this paper presents a public
auditing scheme (DHT-PA) using a new data structure
called dynamic hash table (DHT). Exploiting the DHT, our
scheme can achieve dynamic auditing. Moreover, because
DHT-PA migrates the authorized information from the CSP
to the TPA, its computational costs and communication
overhead are significantly smaller than the scheme based
on skip list [15] and the one based on MHT [6] (see Table 1).
DHT-PA also outperforms IHT-PA [16] in updating, as the
times of updating operations on the DHT are much fewer
than that on the IHT.

In addition, we extend DHT-PA to achieve privacy pre-
serving by combining the homomorphic authenticator
based on the public key with random masking generated by
the TPA. Furthermore, we employ the well-known Boneh-
Lynn-Shacham (BLS) signature and bilinear maps to
achieve batch auditing. Specifically, our contribution in this
work can be summarized as follows:

1. We present a novel public auditing scheme, which
can completely support three vital functions, i.e.,
dynamic data auditing, privacy protection and batch
auditing.

TABLE 1
Performance Comparison of Auditing Schemes for Cloud Storage

Schemes Communication
Overhead

Computation costs

Detection
Probability

Verification Updating

Auditor CSP User/TPA CSP

PoRs [8] O(1) O(c) O(c) — — 1� ð1� tÞc
PDP [9] O(1) O(c) O(c) — — 1� ð1� tÞc
CPDP [13] O(cþs) O(cþs) O(cþs) — — 1� ð1� tÞc�s
DAP [14] O(c) O(c) O(c�s) O(n) O(w) 1� ð1� tÞc�s
DPDP(skip list) [15] cO(logn) cO(logn) cO(logn) wO(logn) wO(logn) 1� ð1� tÞc
DPDP(MHT) [6] cO(logn) cO(logn) cO(logn) wO(logn) wO(logn) 1� ð1� tÞc
IHT-PA [16] O(cþs) O(cþs) O(cþs) O(n) O(w) 1� ð1� tÞc�s
DHT-PA O(c) O(c) O(c) (O(c�s)) O(w) O(w) 1� ð1� tÞcð1� ð1� tÞc�sÞ
Note: n is the whole number of blocks in a file; a block is divided into s segments; c is the number of the verified blocks when auditing a file; w is the number of
updated blocks; t is the probability of the corrupted blocks/segments. In our DHT-PA, the communication overhead of each challenge is proportional to the number
of the sampled blocks c, and the proof generated by CSP is a constant value, so the communication overhead can be considered as O(c). In the verification phase,
the costs for the proof generation in the CSP and the proof audit in the TPA are also proportional to the number of the sampled blocks c, so both the verification
overheads for the CSP and that for the TPA are O(c). If the segment strategy used to reduce the storage cost of block tags in the CSP is introduced, the verification
overhead for the CSP can be considered as O(c�s). However, the verification overhead for the TPA is still O(c), because the segment strategy is transparent to the
auditor. In the updating phrase, the computation overheads for data updating in the CSP and DHT updating in the TPA are proportional to the number of the
blocks needed to modify, so they are both considered as O(w). The probability of at least one of the uncorrected blocks (or segments) being picked by checking ran-
domly sampled c blocks (or c�s segments) is 1� ð1� tÞc (or 1� ð1� tÞc�sÞ.
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2. We design a new data structure named DHT to
record data properties for auditing in the TPA, and
by virtue of it, achieve rapid auditing and efficient
data updating.

3. We formally prove the security of the proposed
scheme, and evaluate its auditing performance by
concrete experiments and comparisons with the
state-of-the-art schemes. The results demonstrate
that the proposed scheme can effectively achieve
secure auditing in clouds, and outperforms the pre-
vious ones in computation complexity, storage costs
and communication overhead.

The rest of the paper is organized as follows: In Section 2,
we review the related work regarding cloud storage audit-
ing. We introduce the background and necessary prelimi-
naries for our work in Section 3, and present our scheme
based on DHT in Section 4. We prove and analyze the secu-
rity of our scheme in Section 5, which is followed by the
comprehensive performance evaluation through experi-
ments and comparisons with some existing schemes in Sec-
tion 6. Finally, Section 7 gives the concluding remarks.

2 RELATED WORK

In recent years, cloud storage auditing has attracted increas-
ing attention. One of the earliest related work is “proof of
retrievability (PoRs)” presented by Juels et al. [8] in 2007,
which can check the correctness of data stored on the CSP
and ensure data’s retrievability with the use of error-
correcting code. However, PoRs is a typical private auditing
solution, and does not support auditing by the third party.
In the same year, Ateniese et al. [9] first presented an origi-
nal public auditing scheme, provable data possession
(PDP), which employs homomorphic tags based on RSA
and can remotely check the integrity of outsourced data by
randomly sampling a few blocks from the file. As men-
tioned above, compared with the private auditing, the pub-
lic auditing can provide dependable verification results and
greatly reduce users’ unnecessary overhead by introducing
an independent TPA. Thus, it is believed to be more practi-
cal and promising.

Besides, there are some other significant concerns for
cloud storage auditing, such as, privacy protection, batch
auditing and dynamic auditing.

To address the data-leakage concern, Wang et al. [11],
[12] first presented a privacy-preserving auditing protocol.
By integrating the homomorphic authenticator with the ran-
dom masking, this protocol can guarantee that the TPA
could not obtain any knowledge on the data content stored
in the cloud servers during the whole verification process.
Particularly, the authors [10], [11], [12] observantly pointed
out that privacy protection is indispensable for achieving
the public auditability.

Moreover, Wang et al. [11], [12] extended their privacy-
preserving auditing protocol into a multiuser setting to sup-
port batch verification for better efficiency. Later, Zhu et al.
[13] proposed a cooperative PDP (CPDP) scheme exploiting
the homomorphic verifiable response and hash index hierar-
chy to achieve batch auditing in multi-clouds scenarios. Fur-
ther, Yang et al. [14] presented another public auditing
scheme for both multi-clouds and multi-users without intro-
ducing any trusted organizer. Essentially, the batch auditing

for multi-clouds is a task of the CSP that organizes the audit-
ing information from different cloud servers [14]. However,
in terms of the batch verification performed by the TPA, the
difficult point is how to effectively handle multiple audit
requests from different users [11], [12], [13], [14]. A practical
solution for this problem is to first aggregate the different
data block tags produced by various users and then verify
them as a whole [11], [12], [14], which is also adopted in this
work to achieve batch auditing.

To achieve dynamic data auditing, Erway et al. [15]
extended the original PDP model [9] by introducing a rank-
based authenticated skip list, and presented a dynamic
provable data possession scheme. Their foremost contribu-
tion is to demonstrate a general pattern for dynamic data
auditing, i.e., incorporating dynamic data structures with
verification algorithms. Later, Wang et al. [6] presented
another classic public auditing scheme for dynamic audit-
ing using Merkle Hash Tree, which simultaneously sup-
ports privacy-preserving and batch verification. However,
both the above schemes would incur heavy computational
costs of the TPA and large communication overhead during
the updating and verification processes [16]. Thus, Zhu
et al. [16] proposed another public auditing scheme (IHT-
PA) based on Index Hash Table (IHT). Compared with the
former ones, this scheme organizes the data properties for
auditing using the IHT, and stores them in the TPA instead
of the CSP. Consequently, it can reduce the computational
costs and communication overhead. Nevertheless, its
updating operations (particularly, the insertion and deletion
ones) are inefficient, because they would induce the adjust-
ment of average N/2 elements in the IHT, where N denotes
the number of all blocks, due to the sequence structure
of the IHT. Moreover, the operations would inevitably
change the sequence numbers of some blocks, and finally
cause the recalculations of their tags, which would induce
more extra computational costs of the CSP and unnecessary
communication overhead. Therefore, in this paper, we are
motivated to design a new data structure, DHT, to achieve
more efficient data updating and auditing.

To highlight the differences among our scheme and the
existing ones, Tables 1 and 2 respectively give the compari-
sons of performance and functions. It is not hard to see that
the proposed scheme (DHT-PA) can support all the given
auditing functions, and achieve data updating and various
audits in a more cost-effective way.

3 BACKGROUND AND PRELIMINARIES

3.1 Problem Statement

In this work, we concentrate on the design of an effective
public auditing scheme based on the DHT illustrated in
Fig. 1, which involves the following three entities: User,
who stores a great quantity of data files in the cloud, can be
an individual or a organization; Cloud Service Provider,
who manages and coordinates a number of cloud servers to
offer scalable and on-demand outsourcing data services for
users; and Third Party Auditor, who can verify the reliabil-
ity of the cloud storage services (CSS) credibly and depend-
ably on behalf of the users upon request. Users can be
relieved of the burden of storage and computation while
enjoying the storage and maintenance service by
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outsourcing their data into the CSP. However, due to the
loss of local possession of the data, they are keen to ensure
the correctness and integrity of their data periodically. To
obtain a convincing answer as well as alleviate the users’
burden potentially induced by the frequent verification, the
TPA is involved to check the integrity of the users’ data
stored in the cloud. However, in the whole verification pro-
cess, the TPA is not expected to be able to learn the actual
content of the users’ data for privacy protection.

We assume the TPA is credible but curious. In other
words, the TPA can perform the audit reliably, but may be
curious about the users’ data. In addition, the CSP is consid-
ered to be dishonest. That is to say, the CSP may choose to
hide the fact of some data being corrupted motivated by
self-interest. Specially, the CSP may launch the following
attacks to the TPA:

� Forge attack. The CSP may forge the data blocks and/
or their tags to deceive the verifier.

� Replacing attack. The CSP may want to pass the verifi-
cation by replacing a required block and its tag,
which have been corrupted, with another block and
its corresponding tag.

� Reply attack. The CSP may attempt to pass the verifi-
cation using the proof generated from the previous
ones or other former information.

To enable secure and efficient public auditing for cloud
storage, our scheme is designed to achieve the following
objectives:

1. Public auditing: anyone (not only the users) is allowed
to have the capability to verify the correctness
and integrity of the users’ data stored in the cloud.

2. Storage correctness: the CSP, which does not cor-
rectly store users’ data as required, cannot pass the
verification.

3. Blockless verification: no data block needs to be
retrieved by the TPA during the verification process.

4. Dynamic data auditing: dynamic data operations
should be supported while the efficient public audit-
ing is achieved.

5. Privacy preserving: the TPA cannot derive any
actual content of users’ data from the received audit-
ing information.

6. Batch auditing: the TPA can handle multiple audit-
ing tasks from various users in a fast and cost-effi-
cient manner.

7. Lightweight: the verification should be performed
with the minimum communication and computation
overhead.

3.2 Dynamic Hash Table

As previously mentioned, it is popular to introduce an
authenticated data structure to achieve dynamic auditing.
The PDP based on skip list [15] and the MHT-based public
auditing scheme [6] are typical representatives. However,
they would incur heavy computational costs of the TPA
and large communication overhead during the updating
and verification processes. Thus, Zhu et al. [16] introduced
a simple data structure (see Table 3), called Index Hash
Table, to record the changes of data blocks and help to

Fig. 1. System architecture.

TABLE 2
Function Comparison of Auditing Schemes for Cloud Storage

Schemes Public Auditing Privacy Protection Dynamic Auditing Batch Auditing

PoRs [8] � — � �
PDP [9]

p � � �
CPDP [13]

p p � p
DAP [14]

p p p p
DPDP(skip list) [15] � —

p �
DPDP(MHT) [6]

p p p p
IHT-PA [16]

p p p �
DHT-PA

p p p p

Note: “
p
” means “support”; “�” means “not support”; “—” means “no demand ”; and “�” means “not mentioned”.

TABLE 3
Index Hash Table

No. Bi Vi Ri

0 0 0 0  Used to head
1 1 2 r01  Update
2 2 1 r2
3 4 1 r3  Delete
4 5 1 r5
5 5 2 r05  Insert

..

. ..
. ..

. ..
.

n n 1 rn
nþ 1 nþ 1 1 rnþ1  Append

Note: “No.” is the serial number, “Bi” is the block number, “Vi”
is the version number, “Ri” is a random integer.
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generate the hash value of each bock in the verification pro-
cess. The structure of the IHT is like a one-dimensional
array, which contains index number, block number, version
number and random value. The IHT-based scheme can also
reduce the computational costs and communication over-
head by storing the data properties for auditing using the
IHT in the TPA instead of the CSP. Unfortunately, due to
the sequence structure of the IHT, updating operations (par-
ticularly, insertion and deletion) on the IHT are inefficient,
since they will lead to the adjustment of average N/2 ele-
ments, where N is the total number of all blocks. Moreover,
during the insertion or deletion processes, the block num-
bers (Bi) of some blocks will be inevitably modified, which
thereby will cause the regeneration of their corresponding
block tags. That is obviously inefficient, and would cause
more extra computational costs of users and unnecessary
communication overhead. Therefore, we are motivated to
design a new data structure, dynamic hash table, for better
auditing efficiency.

The DHT, like the IHT, is employed by the TPA to track
the latest version information (VI) of the user’ data for audit-
ing. However, differing from the IHT, the DHT is a two-
dimensional data structure, as illustrated in Fig. 2. In the
DHT, there are two kinds of basic elements, namely, file ele-
ments and block elements. Each file element consists of the
index number (NOi) of the given file (e.g., Fi), the File identi-
fier (IDi) and a pointer indicating its first block element,
which is stored in an array-like structure. Each file is orga-
nized using a linked list with the corresponding file element
as the header node. Each block element (e.g., the jth block of
the ith file mi,j) is one node of the corresponding file list,
including the current version of the given block vi,j, its time
stamp ti,j and a pointer indicating the next node. Accordingly,
the operations on the DHT are divided into two categories:
file operations and block operations, which both include
search, insertion, deletion, and modification. Generally
speaking, the block operations parallel those of the common
linked list. To be specific, the search of a block is to locate the
required element through visiting nodes from the first one in
sequence; the insertion of a block after (before) an existing
block is to first keep track of the given (previous) node and
insert the new node after it; the deletion of a block is to first
keep track of the required node and remove it from the cur-
rent linked list. The search of a file is to locate the file element
according to its index, and the other file operations would
involve the manipulations on both file elements and block
elements. Specifically, the insertion of a file involves inserting

a file element into the file arrays and constructing a linked list
that consists of corresponding block elements; the deletion of
a file is to delete the linked list of the given file and its file ele-
ment; the modification of a file is to update both the file ele-
ment and related block elements.

Taking the advantages of linked lists, the DHT signifi-
cantly outperforms the IHT in the insertion and deletion of
blocks. Further, the insertion and deletion of a block are
unable to cause the change of other VI records in the DHT.
That is to say, the block tags, which include the hash values
of the VI records, would not be influenced. Therefore, com-
pared with the scheme based on the IHT, our scheme can
effectively reduce the computational costs of the CSP and
communication overhead in the updating process. Moreover,
although the search operation on the DHT during the verifi-
cation may cost more time than the IHT, it is too negligible to
induce any material impact on the whole verification time.
Wewill demonstrate the conclusion in the following text, and
further prove that the verification time of our scheme is sub-
stantially smaller than that of the one based on the IHT.

3.3 Preliminaries

To make our paper self-contained, we would like first intro-
duce some necessary cryptographic background for our
proposed scheme.

Bilinear Map: Let G and GT be multiplicative cyclic
groups of a large prime order p. A bilinear map is a map
function e: G� G! GT with the following properties [19]:

1) Bilinearity: For 8 g1; g2; g32 G and 8 a, b 2 Zp, eðga1; gb2Þ ¼
eðg1; g2Þa�b, and eðg1; g2 � g3Þ ¼ eðg2 � g3; g1Þ ¼ eðg1; g2Þ � eðg1;
g3Þ; 2) Nondegeneracy: eðg; gÞ 6¼ 1, if g is a generator of G; 3)
Computability: e is efficiently computable.

Homomorphic Verifiable Authenticator (HVA): HVA is
widely employed as a building block for public auditing [2],
[4], [5], [6], [9], [10], [11], [12], [13], [14], [15], [16], [18], [19],
[20], which allows a public auditor to verify the integrity of
data stored in the cloud without accessing or downloading
the original data. Generally, digital signatures (such as
RSA-based signature and BLS-based signature) are used to
generate HVAs. In this sense, HVAs can be considered as
homomorphic verifiable signatures. In addition to unforge-
ability, HVAs satisfy the following properties:

� Blockless verifiability [9], [18]. Using HVAs, the TPA
can verify the required file blocks without knowing
their actual data content.

� Homomorphism [9]. Let G and H be multiplicative
groups of a large prime order p, “�” and “�” be
operations in G and H. If a map function f: G!H sat-
isfies homomorphism, then 8 g1; g2 2 G, f(g1 � g2) ¼ f
(g1) � f(g2).

� Non-malleability [18]. Let s1 and s2 denote the sig-
natures on blocks m1 and m2 respectively, a1 and a2

two random numbers in Zp. For the given block,
m0 ¼ a1m1 þ a2m2, a user, who does not know the
private key sk, is not able to generate the signature s0

ofm0 by combining s1 and s2.
Whilewielding the same security strength (e.g. 80-bit secu-

rity), a BLS-based signature (160 bit) is much shorter than an
RSA-based signature (1,024 bit) [6], [18]. Therefore, BLS-
based homomorphic verifiable authenticators (BLS-HVA) are

Fig. 2. Dynamic hash table.
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more popularly adopted in the recent public schemes [6], [18],
[19], [20]. Essentially, the BLS-HVA can be generated using
the bilinear map as follows: Given a bilinear map e:
G � G! GT , a secret key a and a pair of public key {g, y} 2 G,
where y ¼ ga. The BLS-HVA (denoted by s) for block m can
be computed by s ¼ ðhðmÞÞa, where h is a hash function.
Finally, the TPA can verify the integrity of block m through
checkingwhether eðhðmÞ; yÞ ¼ eðs; gÞ holds.

3.4 Security Assumptions

The security of our scheme is based on the following
assumptions.

Computational Diffe-Hellman (CDH) Problem. Let G

be a multiplicative cyclic group of a large prime order p and

two random numbers a, b 2 Zp, given (g; ga; gb) 2 G, compute

the value gab 2 G.

Definition 1 (CDH Assumption). For any probabilistic poly-
nomial-time adversary U, the probability of solving the CDH
problem is negligible, namely,

PrðACDHðg; ga; gb 2 GÞ ! gab 2 G : 8a; b2
R
ZpÞ 	 ": (1)

That is to say, the CDH problem is computationally
intractable, or impossible to be solved in limited time.

Discrete Logarithm (DL) Problem. Let G be a multiplica-
tive cyclic group of a large prime order pwith a generator g,
given h 2 G, compute a 2 Zp, such that h ¼ ga.

Definition 2 (DL Assumption). For any probabilistic polyno-
mial-time adversary U, the probability of solving the DL prob-
lem is negligible, namely,

PrðADLðg; h 2 GÞ ! a 2 Zp; s:t: h ¼ gaÞ 	 ": (2)

That is to say, the DL problem is computationally intrac-
table, or impossible to be solved in limited time.

4 THE PROPOSED SCHEME BASED ON DHT

In this section, we will present our scheme based on DHT,
which consists of the dynamic verification protocol with pri-
vacy-preserving described in Section 4.1, the dynamic
updating operations detailed in Section 4.2, and the batch
verification protocol introduced in Section 4.3.

4.1 Dynamic Verification with Privacy-Preserving

Let G1 and G2 be multiplicative cyclic groups of a large
prime order p, and e be a bilinear map G1 � G1 ! G2. H is
a secure hash function with H : f0; 1g
 ! G1; assume that
the file (denoted by F) to be outsourced to the CSP is
divided into n blocks, i.e., F ¼ fm1;m2; . . . ;mng. Our
dynamic auditing scheme (as shown in Fig. 3) involves
two phases: setup and verification. The setup phase can be
completed by the following steps:

STEP 1 (Key Initiation): The user generates a key pair
ðSK ¼ fa; skg; PK ¼ fg; y; u; pkgÞ, where (sk, pk) is a
random key pair of the user for signature, a 2 Zp is a
random number, g and u are the random elements of G1

and y ¼ ga.
STEP 2 (Data Information Initiation): The user sends the

data information (ID;F ¼ fðvi; tiÞj1 	 i 	 ng) to the
TPA, where ID is the unique identifier of F;F ¼ fðvi;tiÞj

Fig. 3. Workflow of the dynamic verification with privacy-preserving.
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1 	 i 	 ng is the set of all blocks’ VI, and vi and ti are
respectively the version and timestamp of the block mi.
Upon receiving the data information, the TPA will add
it into the DHT.

STEP 3 (Signature Generation): For each block mi, the user
generates a signature si with the public key u, which
can be described as follows:

si ¼ HðvijjtiÞ � uðmiþHðvijjtiÞÞ: (3)

Moreover, to ensure the integrity of the unique file
identifier ID, the user computes the file tag
# ¼ IDjjSIGðsk; IDÞ, where SIG(sk, ID) is the signature
on ID under the private key sk. Let the set of all blocks’
signatures be s ¼ fsij1 	 i 	 ng. The user uploads F, #
and s to the CSP, and deletes them from the local
storage.

STEP 4 (Tag Generation): For each blockmi, the CSP further
creates a tag ui based on the received signature si using
the bilinear map e, namely,

ui ¼ eðsi; yÞ: (4)

Let the set of all block tags be uu ¼ fuij1 	 i 	 ng. At last,
the CSP should store the verification metadata (#; uu) along
with the file F ¼ fm1;m2; . . . ;mng.

Note that we assume that the CSP creates a tag ui for each
block mi here. However, it is not the best choice. Since each
tag is an element of G1, the n tags for n blocks would cost a
great deal of extra storage space, which is evidently uneco-
nomic in terms of the pay-as-you-go pricing model. There-
fore, the segment strategy is popularly adopted to reduce
the space cost [14], [16], [22]. Specifically, each data block is
further divided into s segments, i.e., mi ¼ fmi;1;mi;2; . . . ;
mi;sg, and its corresponding signature is calculated as fol-
lows:

si ¼ HðvijjtiÞ �
Ys
j¼1

uðmi;jþHðvijjtiÞÞ; (5)

instead of Eq. (3). In this way, the storage overhead can be
reduced to 1=s of the original one [14], [16]. However, it is
worthwhile to emphasize that each signature and each tag
still correspond to a block rather than a segment. In other
words, the segment strategy performed by the user is just
an approach to reduce the storage overhead of tags in the
CSP, and it is transparent (invisible) to the TPA.

The workflow of verification phrase is as follows:

STEP 1 (File Identifier Check): The TPA first retrieves the
file tag #, and verifies the signature SIG(sk, ID) using the
user’s public key pk. If the verification fails, the TPA
quits the verification by emitting FALSE; otherwise, it
recovers the file identifier ID and goes to STEP 2.

STEP 2 (Challenge): The TPA launches a challenge by
sending the challenge information chal ¼ ðIDX ¼
fidxij1 	 i 	 c; c 	 ng; S ¼ fsiji 2 IDXg; RÞ to the CSP,
where IDX ¼ fidxij1 	 i 	 cg is the index set of the
blocks to be checked, S ¼ fsiji 2 IDXg is the set of
random numbers belonging to Zp, c is the total number
of the blocks to be checked, and R is a random mask-
ing calculated by R ¼ yr (r is a random number
belonging to Zp here).

STEP 3 (Proof Generation): Upon receiving the challenge,
the CSP would produce a response proof of data stor-
age correctness, which consists of the tag proof and the
data proof. The tag proofQ is essentially the aggregated
authenticator of all the tags to be checked, i.e.,

Q ¼
Y

i2IDX

u
si
i : (6)

To generate the data proof, the CSP first computes
the linear combination (denoted by M) of sampled
blocks required in chal, i.e.,

M ¼
X

i2IDX

si �mi: (7)

Then, the CSP computes the data proof L as fol-
lows.

L ¼ eðu; RÞM: (8)

Finally, the CSP sends (Q, L) back to TPA as the
proof.

STEP 4 (Proof Check): To perform the verification, the TPA
first computes the hash values for all VI of the chal-
lenged data blocks, and obtains the challenge hash H
by combining them:

H ¼
Y

i2IDX

Hðvi; tiÞsi : (9)

Further, the TPA can verify the proof by checking the fol-
lowing equation:

L � eðH � u
P

i2IDX
si�HðvijjtiÞ; RÞ¼? Qr: (10)

If the equation holds, it outputs TRUE; otherwise,
FALSE. The correctness of the above verification equation
can be demonstrated as follows.

L � e H � u
P

i2IDX
si�H vijjtið Þ; R

� �

¼ e u;Rð Þ
P

i2IDX
si�mi �e

Y
i2IDX

H vijjtið Þsi � u
P

i2IDX
si�H vijjtið Þ; R

 !

¼ e u
P

i2IDX
si �mi ; R

� �
� e

Y
i2IDX

H vijjtið Þsi � u
P

i2IDX
si�H vijjtið Þ; R

 !

¼ e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX
si� miþH vijjtið Þð Þ; gr�a

 !

¼ e
Y

i2IDX

H vijjtið Þ � u miþH vijjtið Þð Þ
� �si

; gr�a
 !

¼ e
Y

i2IDX

s
si
i ; g

r�a
 !

¼ e
Y

i2IDX

s
si
i ; g

a

 !r

¼ e
Y

i2IDX

s
si
i ; y

 !r

¼
Y

i2IDX

u
si�r
i

¼ Qr:
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So far, we have presented the verification process of the
proposed dynamic auditing protocol. However, we would
also like to introduce the following design considerations
for efficiency and security.

Blockless verification: To achieve the public auditing
without having to retrieve the original data block, we
employ the HVA technique as described in Section 3.3 to
generate block tags that are unforgeable metadata for data
blocks. Accordingly, we just need to authenticate the block
tags instead of original data blocks in the verification pro-
cess. Moreover, although all PKC-based HVAs (such as
RSA-HVA and BLS-HVA) can be employed in our scheme,
we prefer to choose BLS-HVA for the shorter length of each
block tag [6], [18].

Sampling verification: Given the huge amounts of
data outsourced in the cloud, it is inadvisable to chal-
lenge all data blocks for checking the integrity. Instead,
it is more affordable and practical for both the TPA and
the CSP to achieve high-accuracy verification by only
checking a portion of the data file, which is the so-called
sampling verification. The previous studies [6], [9], [11],
[12] have demonstrated the rationality and feasibility of
this strategy. Generally, if t fractions of the given
data are corrupted, the detection probability of the verifi-
cation by checking random sampled c blocks is
P ¼ 1� ð1� tÞc. Particularly, when t ¼ 0:01, the TPA
only needs to verify 460 (300) randomly chosen blocks to
discover this corruption with probability larger than 99
percent (95 percent).

Privacy preservation: To prevent privacy leakage, in the
process of generating the data proof L, the CSP would blind
the linear combination M of sampled blocks with the ran-
dom masking R provided by the TPA and the public key u.
Although the TPA knows L, R and u, it is computationally
infeasible for the TPA to obtain users’ privacy data M under
the DL assumption.

Data freshness: For each data blockmi, the user stores its
VI (vi, ti) in the DHT located at the TPA, and generates a sig-
nature si involving bothmi and (vi, ti) as Eq. (5) or (3) in the
setup phrase. In the verification phrase, the TPA would
employ the VI of each challenged data block to verify the
proof, i.e., check whether Eq. (10) holds. Since the VI of each
block cannot be forged, the presented protocol can guaran-
tee that the challenged data reflects the latest updates, if the
verification is passed.

In addition, let us consider the following derivation: by
substituting Eq. (7) into Eq. (8), we can get

L ¼ eðu;RÞM ¼ e
�
u
P

i2IDX
simi ; R

�
¼
Y

i2IDX

eðumi ; RÞsi : (11)

According to this equation, it seems that the CSP may
compute the data proof L as

Q
i2IDX eðumi ; RÞsi , and even

keep umi instead of mi to pass the audit, which is a com-
mon issue existing also in the state-of-the-art schemes
like DAP [14]. In the dynamic auditing scheme, in fact,
this dishonest behavior can be easily discovered, because
the dynamic data keep updating continually. That is to
say, in the dynamic audit, the CSP could not pass the ver-
ification without actually storing the very version of the
data. However, for the archived data that is not updated

frequently, the CSP may indeed have the chance to pass
the verification using umi . Inspired by this, we plan to
design another better method targeted for archived data
in the future, which is beyond the scope of this paper. By
the way, we would like to point out that it could be more
effective to employ different and more proper auditing
methods for diverse data.

4.2 Dynamic Updating

To support the efficient management of dynamic data, we
design updating operations on the DHT for data blocks and
files respectively. The updating operations of data blocks
include block modification (MB), block insertion (JB) and
block deletion (DB) as follows.

Block modification: Suppose the ith block mi of the file
F needs to be modified to m0i. To update the records in the
DHT, the user first generates the data information (v0i, t

0
i)

for m0i, and sends an update request UTPAðF; MB; i; v
0
i; t
0
iÞ

to the TPA. Upon receiving UTPAðF;MB; i; v
0
i; t
0
iÞ, the TPA

finds the ith node in the linked list of F in the DHT, and
replaces vi and ti with v0i and t0i. To update the data stored
in the cloud, the user first generates the signature s0i for
m0i according to Eq. (3), and sends an update request
UCSPðF;MB; i; mi;m

0
i; s
0
iÞ to the CSP. Upon receiving

UCSPðF;MB; i; mi;m
0
i; s
0
iÞ, the CSP obtains the new file ver-

sion F0 by replacing the block mi in F with m0i, and the

new tag set uu0 by replacing the tag ui in uu with u0i gener-
ated based on s0i according to Eq. (4).

Block insertion: Suppose that a block m
 needs to be
inserted into the file F after the ith block mi. To update the
records in the DHT, the user first generates the data infor-
mation (v
; t
) for m
, and sends an update request
UTPAðF; JB; i; v
; t
Þ to the TPA. Upon receiving UTPAðF; JB;
i; v
; t
Þ, the TPA finds the ith node in the linked list of F in
the DHT, and behind it inserts a new node including (v
; t
).
To update the data stored in the cloud, the user first gener-
ates the signature s
 for m
 according to Eq. (3), and sends
an update request UCSPðF; JB; i;m
; s
Þ to the CSP. Upon
receiving UCSPðF; JB; i;m
; s
Þ, the CSP obtains the new file
version F0 by inserting m
 after mi in F, and the new tag set

uu
0
by inserting the tag u
 generated based on s
 according to

Eq. (4) after ui in uu.
Block deletion: Suppose the ith block mi of the file F

needs to be deleted. The user sends an update request
UTPAðF;DB, i) to the TPA. Upon receiving UTPAðF;DB, i),
the TPA finds and deletes the ith node in the linked list of F
in the DHT. Moreover, the user sends an update request
UCSPðF;DB, i) to the CSP. Upon receiving the request, the

CSP obtains the new file version F0 and the new tag set uu
0
by

deletingmi in F and ui in uu, respectively.
Compared with the block updating operations, the file

updating operations, including file appending and file dele-
tion, are relatively straightforward. If the user wants to
append a new file F 
, he (or she) only needs to conduct
STEP 2 to STEP 4 in the setup phase once again. To delete a
file F, the user can send deletion requests to the TPA and
the CSP respectively. Upon receiving the requests, the TPA
would delete the file element and the whole linked list of F
in the DHT, and the CSP would delete the all data of F and
its verification metadata (#, uu).
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4.3 Batch Verification

The core of the batch auditing is how to concurrently handle
multiple verification tasks from different users. Specifically,
this is equivalent to the verification ofmany signatures on dif-
ferent messages by different users. Thus, we introduce the
aggregate BLS signature technique from bilinear maps [21] to
achieve the batch verification, which the idea behind is to
aggregate all the signatures by different users on various data
blocks into a single short one and verify it for only one time to
reduce the communication cost in the verification process.

Assume that there are k challenges launched by k differ-
ent users. Upon receiving these challenges, for each user
(e.g. the ith one, i ¼ 1; 2; . . . ; k), the CSP first computes the
tag proof (Qi) and the data proof (Li), and then obtains the
aggregate tag proof QB and the aggregate data proof LB

according to Eqs. (10) and (11), respectively.

QB ¼
Yk
i¼1

Qi: (12)

LB¼
Yk
i¼1

Li: (13)

At last, the CSP sends QB and LB to the TPA as the
response proof. Upon receiving the proof, the TPA com-
putes the challenge hash Hi for each user, and gets the batch
challenge hash HB by combining the challenge hash values
of all k users, namely,

HB ¼
Yk
i¼1

Y
j2IDXi

Hðvi;jjjti;jÞsi;j ; (14)

where IDXi ¼ fidxi;jj1 	 j 	 cg is the index set of the
blocks to be checked for the ith user; vi;j and ti;j are respec-
tively the version and timestamp of the block mi;j chal-
lenged by the ith user; and Si ¼ {si,j j j 2 IDXi} is the set of
random numbers for the ith user. Further, the TPA can ver-
ify the proof by checking the following equation:

LB �
Yk
i¼1

e HB � u
P

j2IDX
si;j�Hðvi;jjjti;jÞ

i ; Ri

� �
¼? Qr

B ; (15)

where ui is the public key of the ith user, and Ri is the ran-
dom masking for the ith user. If this equation holds, all the
challenged files are proved to be correctly stored in the
cloud; otherwise, there is a high possibility that one or some
of them are incorrect. The correctness of the above verifica-
tion equation for batch auditing can be demonstrated as
follows.

5 SECURITY ANALYSIS

We will evaluate the security of the proposed scheme by
analyzing the effectiveness of attack prevention strategies in
this section.

Theorem 1 (Unforgeability of BLS-HVAs). For any adver-
sary, it is computationally infeasible to forge an HVA under

LB �
Yk
i¼1

e HB � u
P

j2IDX
si;j�Hðvi;j jjti;jÞ

i ; Ri

� �

¼
Yk
i¼1

e u;Rið Þ
P

j2IDX
si;j �mi;j �

Yk
i¼1

e
Y

j2IDXi

H vi;jjjti;j
� �si;j � u

P
j2IDX

si;j �H vi;j jjti;jð Þ
i ; Ri

 !

¼
Yk
i¼1

e u

P
j2IDX

si;j �mi;j ; Ri

� �
�
Yk
i¼1

e
Y

j2IDXi

H vi;jjjti;j
� �si;j � u

P
j2IDX

si;j�H vi;j jjti;jð Þ
i ; Ri

 !

¼
Yk
i¼1

e
Y

j2IDX

H vi;jjjti;j
� �si;j � u

P
j2IDX

si;i � mi;jþH vi;jjjti;jð Þð Þ
; gr�ai

 !

¼
Yk
i¼1

e
Y

j2IDX

H vi;jjjti;j
� �si;j � u

P
j2IDX

si;i � mi;jþH vi;j jjti;jð Þð Þ
 !ai

; gr

 !

¼
Yk
i¼1

e
Y

j2IDX

H vi;jjjti;j
� � � u mi;jþH vi;j jjti;jð Þð Þ

 !ai �si;j
; gr

 !

¼
Yk
i¼1

e
Y

j2IDX

s
ai�si;j
i;j ; g

 !r

¼
Yk
i¼1

e
Y

j2IDX

s
si;j
i;j ; g

ai

 !r

¼
Yk
i¼1

Y
j2IDX

u
si;j
i;j

 !r

¼
Yk
i¼1

Qr
i

¼ Qr
B :
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BLS signature scheme, if the computational Diffe-Hellman
(CDH) assumption in bilinear groups holds.

Proof. This theorem follows from Wang’s work [6], where it
has been proven that the HVA scheme is existentially
unforgeable, in that BLS short signature scheme is secure
with the assumption that the CDH problem is hard in
bilinear groups [17]. Therefore, we omit the detailed
proof here. tu

Theorem 2 (Unforgeability of the proof). In the DHT-PA
scheme, it is computationally infeasible for the CSP to forge an
auditing proof to pass the verification.

Proof. To prove the theorem, we first design the following
game according to the security game definition in [22]:
The TPA sends a challenge chal ¼ ðIDX ¼ fidxij1 	 i 	
c; c 	 ng; S ¼ fsiji 2 IDXg; RÞ to the CSP. To pass the
verification with Eq. (9), the auditing proof on the correct
data file F sent back from the CSP should be (Q, L). How-
ever, the CSP generates a proof on an incorrect data file F0

as (Q, L0), where F 0 6¼ F;L0 ¼ eðu;RÞM 0 ;M 0 ¼Pi2IDXð�0iÞ,
and �0i ¼ si �m0i. Define D�i ¼ �0i � �i for i 2 IDX, and at
least one element of fD�igi2IDX is nonzero. If this proof
can still pass the verification performed by the TPA, then
the CSP wins the game; otherwise, it fails.

Assume that the CSP wins the game, then, according
to Eq. (9), we have

eðu;RÞM0 � e
Y

i2IDX

Hðvi; tiÞsi � u
P

i2IDX
si�HðvijjtiÞ; R

 !
¼ Qr:

(16)

Moreover, (Q, L) is the correct proof, so we have

eðu;RÞM � e
Y

i2IDX

Hðvi; tiÞsi � u
P

i2IDX
si�HðvijjtiÞ; R

 !
¼ Qr:

(17)

According to the properties of bilinear maps described
in Section 3.3, we can learn that

u
P

i2IDX
�i ¼ u

P
i2IDX

�0i ) u
P

i2IDX
D�i ¼ 1: (18)

Let G be a multiplicative cyclic group of a large prime
order p, then for two elements h1, h2 2 G, 9 x 2 Zp such
that h2 ¼ hx

1 . Moreover, given h1 and h2, u can be gener-

ated as u ¼ ha
1h

b
2 2 G, where a and b are random values

belonging to Zp. Accordingly, we have

u
P

i2IDX
D�i ¼ h

a
P

i2IDX
D�i

1 � hb
P

i2IDX
D�i

2 ¼ 1: (19)

Obviously, for the given h1; h2 2 G, h2 ¼ hx
1 , we can

find a solution for the DL problem x ¼ �a=b unless
Si2IDXðD�iÞ ¼ 0 or b ¼ 0. However, as we defined
above, at least one of element in fD�igi2IDX is nonzero,
and b is a random element of Zp, meaning the proba-
bility of b being equal to 0 is 1/p. Therefore, we can
find a solution for the DL problem with a non-negligi-
ble probability of 1� 1=p, which contradicts the DL

assumption described in Section 3.4. This completes
the proof of the theorem. tu

Theorem 3 (Immunity from replacing attacks). In the DHT-
PA scheme, the CSP is not able to pass the verification by
replacing a specified block and its tag, with another block and
its corresponding tag.

Proof. We define the replacing-attack game as follows: The
TPA sends a challenge chal ¼ ðIDX ¼ fidxij1 	 i 	 c;
c 	 ng; S ¼ fsiji 2 IDXg; RÞ to the CSP. The CSP sends
back auditing proof (Q0, L0). In the process of generating
the proof, the information of the jth (j 2 IDX) block is
replaced with that of the kth (k 6¼ j) block. If this proof
can still pass the verification performed by the TPA, then
the CSP wins the game; otherwise, it fails.

According to the properties of bilinear maps, the left-
hand side of Eq. (9) can be rewritten as follows.

L0 � e H � u
P

i2IDX
si�H vijjtið Þ; R

� �

¼ e u;Rð Þ
P

i2IDX&i6¼j ðsi�miÞþsj�mk � e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX
si�H vijjtið Þ; R

 !

¼ eðu
P

i2IDX&i6¼j ðsi�miÞþsj�mk;RÞ � e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX
si�H vijjtið Þ; R

 !

¼ e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX&i6¼j ðsi�miÞþsj�mkþ
P

i2IDX
si�H vijjtið Þ

� �
; R

 !

¼ e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX&i6¼j si�ðmiþH vijjtið ÞÞþsj� mkþH vjjjtjð Þð Þ
� �

; R

 !
:

Further, the right-hand side of Eq. (9) can be devel-
oped to

ðQ0Þr ¼
Y

i2IDX&i6¼j
u
si�r
i � usj�rk

¼ e
Y

i2IDX&i6¼j
s
si
i � s

sj
k ; R

 !

¼ e
Y

i2IDX&i6¼j
H vijjtið Þ � u miþH vijjtið Þð Þ
� �si � H vkjjtkð Þ � u mkþH vkjjtkð Þð Þ

� �sj
; R

 !

¼ e
Y

i2IDX

H vijjtið Þsi � u
P

i2IDX&i 6¼j si�ðmiþH vijjtið ÞÞþsj� mkþH vkjjtkð Þð Þ
� �

; R

 !
:

If the verification is assumed to be passed, then
Hðvj k tjÞ ¼ Hðvk k tkÞ, i.e., vj ¼ vk and tj ¼ tk. However,
we have defined that k 6¼ j, so tj must not be identical to
tk. That is to say, the equation Hðvj k tjÞ ¼ Hðvk k tkÞ
does not hold absolutely. Thus, we can conclude that the
CSP cannot win the game. This completes the proof of
the theorem. tu

Theorem 4 (Immunity from replay attacks). In the DHT-PA
scheme, it is impossible for the CSP to pass the verification
using the former information.

Proof. We define the replay-attack game as follows: The
TPA sends a challenge chal ¼ ðIDX ¼ fidxij1 	 i 	 c; c 	
ng; S ¼ fsiji 2 IDXg; RÞ to the CSP. The CSP sends back
auditing proof (Q0, L0). In the process of generating the
proof, the information of the jth (j 2 IDX) block is substi-
tuted with its previous information (We differentiate the
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previous parameters from the correct ones with a single
quote mark, e.g.,m0j andmj are the old block and the cor-

rect block respectively). If this proof can still pass the ver-
ification performed by the TPA, then the CSP wins the
game; otherwise, it fails.

The proof of this theorem is very similar to that of
Theorem 3. It is not hard to infer that the equation
Hðvj k tjÞ ¼ Hðv0j k t0jÞ should hold, if the verification is

assumed to be passed. However, it is absolutely impossi-
ble that the current timestamp tj is identical with the old
one t0j. Thus, the CSP cannot win the game. This com-

pletes the proof of the theorem. tu

6 PERFORMANCE EVALUATION

In this section, we will evaluate the performance of our
scheme (DHT-PA) and compare it with the state-of-the-art
schemes.

6.1 Communication Costs

As mentioned above, it is a popular strategy for achieving
dynamic data auditing to incorporate a certain special data
structure with verification algorithms. Besides DHT-PA,
there are many typical schemes, such as, the DPDP based
on MHT [6], the DPDP based on skip list [15], DAP [14],
and IHT-PA [16]. Table 4 shows the communication costs of
all the five schemes during the verification and updating,
from which we can learn that the communication costs of
the first two schemes are apparently more (logn times) than
those of the others. The reasons for that are twofold. First,
the former two schemes store all the metadata for auditing
in the CSP while the others save the metadata except the
tags in the TPA. In other words, the latter three schemes can
reduce the communication costs compared to the former
ones by migrating the auditing metadata except the tags
from the CSP to the TPA. Second, for verifying a data block,
the former two schemes involve logn times more metadata
queries than the others, which also suggests that the data
structures used in the latter three schemes are simpler but
more effective than the former ones.

6.2 Storage Costs

We further compare the storage costs (not including the
users’ data) of DHT-PA with the previous four schemes.
Without loss of generality, we take a data file F with n
blocks as an example to analyze storage costs in the CSP
and the TPA.

In the DPDP based on MHT and the DPDP based on skip
list, there is no storage cost in the TPA (in fact, the DPDP
based on skip list does not involve any TPA, since it is a pri-
vate auditing protocol), and the storage costs in the CSP
stem from the requirements for storing the tags and the
auditing metadata organized with the MHT or the skip list.
Specifically, the storage costs for the tags are n�m, where m is
the bit length of every element in Zp; the storage costs for

the MHT (or skip list) are (2lognþ1 � 1)�m, because there are

2lognþ1 � 1 nodes in the MHT (or skip list). In the other
schemes, the CSP stores the tags, and the TPA stores the
auditing metadata organized with a data structure. There-
fore, their storage costs in the CSP are n�m. However, their
storage costs in the TPA are different due to their distinct
data structures. Specifically, let the bit length of each record
be v1 in the metadata table (called ITable) of DAP, v2 in the
IHT, and v3 in the DHT, then, 1) the storage costs of DAP in
the TPA are v1 � n, since there is a record for each block of
the file in the ITable; 2) the storage costs of IHT-PA in the
TPA are v2 � n for the same reason above; and 3) the storage
costs of DHT-PA in the TPA are v3�(n þ 1), because there are
n records for all data blocks and one record for the file in
the DHT. We list all their storage costs in Table 5.

Note that in these schemes, m ¼ 160 bits (due to using the
BLS signature), v1 ¼ v2 ¼ 16 bits, and v3 ¼ 12 bits. Accord-
ingly, we can learn that: 1) although the latter three schemes
migrate the auditing metadata stored in the data structures
from the CSP and to the TPA for the sake of reducing the
communication costs and enhancing the verification effi-
ciency, their whole storage costs are still fewer than those of
the former two schemes. 2) Particularly, DHT-PA induces
the fewest storage costs, indicating the structural advantage
of the DHT.

6.3 Computational Costs

In this section, we would like to further evaluate the compu-
tational costs of DHT-PA and compare them with IHT-PA
and DAP (We do not include the DPDP based on MHT and
the DPDP based on skip list in the comparison experiments,
because they involve more metadata than IHT-PA, DAP
and DHT-PA, and apparently need more computational
costs). We simulate the computations involved in these
schemes on an HP workstation with an Intel Core i5-3470
CPU at 3.2 GHz, 8 GB RAM and 7200 RPM 500 GB Serial
ATA drive with a 32 MB buffer. All algorithms are imple-
mented using the Pairing-Based Cryptography (PBC)
library version 0.5.14. We employ an MNT d159 curve,

TABLE 4
Comparison of Communication Costs

Schemes Communication Costs

Verification Updating

DPDP(MHT) [6] cO(logn) O(logn)
DPDP(skip list) [15] cO(logn) O(logn)
DAP [14] O(c) O(1)
IHT-PA [16] O(c) O(1)
DHT-PA O(c) O(1)

Note: n is the whole number of the blocks in a file; and c is the number of the
verified blocks when auditing a file.

TABLE 5
Comparison of Storage Costs

Schemes Storage Costs

CSP TPA

DPDP(MHT) [6] m � ð2lognþ1 � 1þ nÞ —
DPDP(skip list) [15] m � ð2lognþ1 � 1þ nÞ —
DAP [14] n � m v1 � n
IHT-PA [16] n � m v2 � n
DHT-PA n � m v3 � ðnþ 1Þ
Note: n is the number of the data blocks; m is the bit length of every element in
Zp, v1 v2, and v3 are respectively the bit lengths of each record in the ITable,
the IHT and the DHT.
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which has a 160-bit group order. Thus, p in the experiments
is a 160-bit length prime. Moreover, in all experiments, we
typically set the segment number to be 20, i.e., s ¼ 20. All
the statistical results are the averages of 20 trials.

6.3.1 Computational Costs in the Setup Phase

Fig. 4 shows the experimental result of the user’s processing
time for the different numbers of data blocks with the same
size (e.g. 50 KB) in the setup phase, from which we can learn
that: 1) the user’s processing time is proportional to the
block number; and 2) to handle the same number of data
blocks, DHT-PA spends less time than IHT-PA and DPA.
That is to say, the computational costs of the user in DHT-
PA are fewer than those in IHT-PA and DPA.

6.3.2 Computational Costs in the Verification Phase

As mentioned in Section 3.2, the search time on the DHT is
slightly more than that on the IHT used in both IHT-PA and
DPA. However, as shown in Fig. 5a, the search time on DHT
decreases with the increase of the block size, and the search
time on the DHT and the IHT has insignificant gaps, when the
block size is larger than 1,000. Further, we can learn from
Fig. 5b that the verification time of DHT-PA is much less than
IHT-PA and DPA, which suggests that the advantages of the
verification algorithms in DHT-PA significantly outweigh the
disadvantages induced by the searching operation.

6.3.3 Computational Costs in the Updating Phase

Figs. 6 and 7 show the computational costs of block / file
operations on the IHT and the DHT in the updating

phase, from which we can learn that: 1) Due to employing
the same data structure (i.e, the IHT), the operation time
of IHT-PA and DAP is almost identical. As mentioned in
[14], however, the whole updating time of DAP would be
less than that of IHT-PA, because DAP can effectively
avoid the regeneration of block tags while performing
insertion or deletion operations, compared with IHT-PA.
2) The time of the block operations both on the DHT and
the IHT increases with the file size, but the time of opera-
tions on the DHT is much less than that on the IHT.
3) For the file operations, the time of operations on the
IHT and the DHT are in proportion to the size of the file.
Compared with the former, the latter has a much smaller
initial value (for the file size equal to 1 GB) but a faster
growth rate. Specifically, for file appending (deletion)
operations, the time of operations on the DHT is less than
that on the IHT when the file size is not larger than 23 GB
(15 GB). Moreover, the smaller the file size, the larger the
gap between the time of operations on the DHT and that
on the IHT. In practice, the data files with small sizes are
decidedly in the thumping majority. In this sense, DHT-
PA would outperform IHT-PA and DPA in the whole effi-
ciency of the updating process in the TPA.

6.3.4 Computational costs of batch auditing

We also evaluate the performance of DHT-PA in the batch
auditing scenario and compare it with DAP. The experi-
mental results, as shown in Fig. 8, suggests that: 1) the
batch auditing can not only simultaneously handle differ-
ent verifications from multiple-users, but also reduce the
computational costs on the TPA side compared with per-
forming the individual auditing many times; and 2) the
batch auditing protocol in DHT-PA is more efficient than
that in DAP.

Fig. 4. The user’s processing time for different block numbers in the
setup phase (block size ¼ 50 KB).

Fig. 5. The experimental results for the searching time and verification
time in the verification phase (file size ¼ 1 GB).

Fig. 6. Time of the updating operations for blocks (block size ¼ 50 KB).

Fig. 7. Time of the updating operations for files (block size ¼ 50 KB).

712 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017



7 CONCLUSIONS

Nowadays, cloud storage, which can offer on-demand
outsourcing data services for both organizations and indi-
viduals, has been attracting more and more attention.
However, one of the most serious obstacles to its develop-
ment is that users may not fully trust the CSPs in that it is
difficult to determine whether the CSPs meet their legal
expectations for data security. Therefore, it is critical and
significant to develop efficient auditing techniques to
strengthen data owners’ trust and confidence in cloud
storage. In this paper, we are motivated to present a novel
public auditing scheme for secure cloud storage using
dynamic hash table, which is a new two-dimensional data
structure used to record the data property information for
dynamic auditing. Differing from the existing works, our
scheme migrates the auditing metadata excerpt the block
tags from the CSP to the TPA, and thereby significantly
reduces the computational cost and communication over-
head. Meanwhile, exploiting the structural advantages of
the DHT, our scheme can also achieve better performance
than the state-of-the-art schemes in the updating phase. In
addition, for privacy preservation, our scheme introduces
a random masking provided by the TPA into the process
of generating proof to blind the data information. More-
over, our scheme further exploits the aggregate BLS signa-
ture technique from bilinear maps to perform multiple
auditing tasks simultaneously, of which the principle is to
aggregate all the signatures by different users on various
data blocks into a single short one and verify it for only
one time to reduce the communication cost in the verifica-
tion process. We formally prove the security of our
scheme, and evaluate the auditing performance by
detailed experiments and comparisons with the existing
ones. The results demonstrate that our scheme can effec-
tively achieve secure auditing in clouds, and induce sig-
nificantly fewer costs of storage, communication and
computation than the previous schemes.

Moreover, we would like to point out that no single
method can achieve perfect audits for all types of cloud
data, just as no standard has a universal validity. Thus, it
may be a new trend to design a more effective scheme,
including different audit strategies for various types of
cloud data, which is also the direction for our future work.
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