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Abstract—Flash-based storage subsystem is the key compo-
nent that affects the system performance, reliability, and cost
efficiency of Android-based smartphones. In this paper, we first
introduce a trace collection tool specifically designed to capture
the I/O requests with important content features in Android-
based smartphones, which are critically important but rarely
available in content-aware designs and optimizations, such as
JProbe and Netlink. Based on the analysis of the traces collected
from 15 popular mobile applications, we find that 20%–40% of
the I/O requests on the I/O critical path of the storage stack are
redundant and this data redundancy is minimally shared among
different applications. Based on this key observation, we propose
a content-aware optimization, called APP-Dedupe, that applies
data deduplication on the I/O critical path to improve both
performance and efficiency by reducing write amplification and
improving GC efficiency of the flash storage on Android smart-
phones. The evaluation results show that APP-Dedupe reduces
the GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and reduces the amount of write data by
an average of 45.2%.

Index Terms—Flash-based storage, I/O deduplication, smart-
phones, trace collection.

I. INTRODUCTION

STORAGE is one of the key factors affecting the overall
system performance and reliability of the Android-based

smartphones [6], [18], [19], [28]. The mobile applications,
often referred to as “APP,” in Android-based smartphones
generate I/O requests that have different characteristics than
those generated by nonmobile applications. The storage sub-
system of smartphones usually relies on flash-based embedded
multimedia controller (eMMC) memory, with either a disk
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file system (such as Ext4) or a flash file system (such as
F2FS [23]).

Generally speaking, the storage stack of current smart-
phones faces three challenges. First, the performance tends to
degrade after repeated usages, particularly writes, due to the
physical characteristics of the flash memory, also one of the
reasons why smartphones slow down over time [5], [14], [40].
Second, one of these physical characteristics of flash memory
is its limited life cycles [49], i.e., the number of times each
cell can be programmed/written before it fails, and causes
the flash storage to get sluggish after repeated usages, which
affects the storage reliability of smartphones. Third, the cost of
upgrading the flash capacity from one level to the next level,
e.g., from 16 to 32 GB, amounts to nearly 100 USD for most
smartphones (for example, Apple iPhones). Therefore, these
challenges, pointing to the measures of performance, relia-
bility, and cost, suggest that it is important to 1) understand
the mobile applications and how they interact with the flash-
based eMMC and 2) optimize to reduce write traffic to the
flash-based eMMC in smartphones.

Data deduplication and its applications in flash-based stor-
age systems have been well studied in [36] and [45]. Some
studies have shown that by leveraging the deduplication tech-
nology to reducing the write traffic, the system performance
and reliability of the storage stack of conventional, nonmo-
bile systems can be significantly improved [4], [13]. However,
the unique characteristics of mobile devices and mobile
applications make straightforwardly applying deduplication in
Android-based smartphones both less effective and more chal-
lenging [21]. For example, the mobile devices have much
smaller memory capacity than nonmobile systems, which
implies that mobile applications must be made memory effi-
cient to attain acceptable performance. On the other hand,
the user-facing nature of smartphones implies, and confirmed
by our experimental observation, that only one application
is usually running in the foreground while all the other
opened applications are hung up in the background in the
Android-based smartphones.

To make data deduplication effective and efficient in smart-
phones, we need to understand and gain insight into the data
redundancy and unique characteristics of mobile applications
by collecting and analyzing content-aware application traces.
Unfortunately, due to the dataset privacy leakage risk, content-
aware trace collections are rarely done in storage systems [12],
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let alone publicly available traces with content features, with
the exception of the FIU department traces available in the
SNIA trace repository [22]. To address this problem, we design
a low-overhead content-aware trace collection tool, which can
be used both offline and online. Using this tool, we collected
traces of 15 popular mobile applications. Our workload anal-
ysis of 15 popular mobile applications reveals that an average
data redundancy of 33.1% exists in mobile applications but this
redundancy is minimally shared among these applications.

Therefore, we propose APP-Dedupe for Android-based
smartphones to address the aforementioned challenges. Instead
of treating data chunks from all application streams equally,
APP-Dedupe organizes the hash (fingerprint) index in an
application-aware way, effectively grouping the hash index
of the same application (short for APP) together and divid-
ing the whole hash index into different groups based on the
application types. When an application is running in the fore-
ground, APP-Dedupe loads the corresponding hash index of
the application into the memory, thus improving the efficiency
of the memory for the hash index. Moreover, it groups the
data chunks of the same application together on the flash
to alleviate the read amplification problem (i.e., fragmenta-
tion caused by deduplication) and exploits the spatial locality
to improve the read performance. The extensive trace-driven
experiments conducted on our lightweight prototype imple-
mentation of APP-Dedupe show that APP-Dedupe reduces the
GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and reduces the amount of write data
by an average of 45.2%.

The main contributions of this paper are threefold.
1) We design a low-overhead content-aware trace collection

tool that captures the I/O requests in the storage stack
in Android-based smartphones.

2) We collect the traces with content features from 15 pop-
ular applications and perform in-depth I/O analysis. We
find that 20% to 40% of the I/O requests on the I/O crit-
ical path of the storage stack are redundant and this data
redundancy is minimally shared among different appli-
cations. To the best of our knowledge, currently no such
study exists for the Android-based smartphones.

3) We propose APP-Dedupe to improve the storage effi-
ciency of Android-based smartphones. The trace collec-
tion tool, the 15 traces and the image of the prototype
system are available for academic purposes.

The rest of this paper is organized as follows. Section II
presents the trace collection tool and workload characteristics
in Android-based smartphones. The design and implementa-
tion of APP-Dedupe is presented in Section III. Section IV
describes the performance results through the extensive evalu-
ations on the APP-Dedupe prototype. The conclusion is given
in Section V.

II. TRACE COLLECTION AND ANALYSIS

In this section, we first present the design of a content-aware
trace collection tool in Android-based smartphones. Then we
analyze the workload characteristics of the traces collected by
this tool to motivate our App-Dedupe study.

A. Content-Aware Trace Collection

While trace collections on enterprise storage systems have
been well studied, there is limited effort on trace collection
in mobile systems. In particular, currently only MOST [16]
and BIOtracer [48] are designed for I/O trace collections in
Android-based smartphones and they only capture the I/O
requests behaviors (e.g., size, read/write patterns, etc.) with-
out including any content values or features. Yet, it is the
content features of the traces that enable one to analyze the
data redundancy characteristics of I/O accesses in Android-
based smartphones. For this reason, we design a content-aware
trace collection tool, called MobileCT. MobileCT collects the
traces that contain the basic I/O request information, the pro-
cess names and the content features. First, it captures the basic
information of an I/O request via the bio structure, includ-
ing time, R/W, offset, and size, and copies the data of the
request for the subsequent hash computing of the content.
Second, it explores the Linux kernel tracepoint infrastructure
to track requests in-flight through the block I/O stack, similar
to the blktrace infrastructure which can capture the process
ID (PID) and process name information [38]. Based on the
process information, the specific application is recorded by
MobileCT. Third, it splits the data into 4KB chunks and cal-
culates the MD5 fingerprint for each chunk. Finally, the basic
information and hash values of the I/O requests are recorded
in the trace file and transferred to the user level.

There are two major challenges facing content-aware trace
collection in Android-based smartphones, namely, how to
anonymize the contents to protect the privacy of the users [36]
and how to minimize the interference between the trace cap-
turing operations and the user I/O requests to reduce collection
overhead [48]. For the first privacy challenge, similar to the
FIU traces [22], we also use the MD5 fingerprints to repre-
sent the content feature for the deduplication research without
leakage of the location or personal information [46]. For the
overhead challenge, since the processing resources in Android-
based smartphones are limited and hash computing for chunk
fingerprints can be resource demanding, the aforementioned
interference, if not avoided or minimized, can adversely affect
the application performance and/or the accuracy of the traces.
To address this challenge, MobileCT uses a circular buffer to
temporarily store the write data and delay the subsequent MD5
computing of the data chunks to avoid the interference and
contention on the CPU resources. Fig. 1 shows the trace collec-
tion workflow in MobileCT. JProbe is a servlet for inspecting
the bio→end_io() function and Netlink_sock is used for the
data transfer between the user space and the kernel space.

B. Workload Characteristics

The traces presented in this paper are collected from 15
applications on the Google Nexus 5 smartphone (running
Android 5.0.1 with Linux Kernel 3.4). We compare the chunk
fingerprints of the 15 data sets using the chunk-level dedupli-
cation with 4 KB chunk size. The trace characteristics are
summarized in Table I, which shows that the data redun-
dancy of the mobile applications is between 20% to 40%, with
an average of 33.1%. Of particular interests are the findings



MAO et al.: IMPROVING FLASH MEMORY PERFORMANCE AND RELIABILITY FOR SMARTPHONES WITH I/O DEDUPLICATION 1019

Fig. 1. Trace collection workflow in MobileCT.

TABLE I
KEY CHARACTERISTICS OF THE 15 MOBILE APPLICATIONS

that the IOPS is less than 10 for all the 15 applications and
the write requests dominate in the mobile applications. These
findings of workload characteristics are consistent with the
previous studies of mobile applications [16], [48].

The most interesting finding, as shown in Table II, is that the
amount of data redundancy shared between any two different
mobile applications, or the percentage of shared redundancy,
is minimal. The percentage of shared redundancy, the percent-
age entry in the table, is the percentage ratio of the number of
common redundant data chunks between the two applications
(row and column) to the total number of data chunks of the row
application. From Table II, we can see that the redundant data
chunks shared by any two different applications are less than
5% for most cases, which implies that the amount of redun-
dant data shared by different applications is negligible. The
reason is that different applications usually have different data
contents and data formats. The results are consistent with the
previous studies on nonmobile applications [9], [11], [43] and
indicate that there is very little overlap between hash indexes
of any two different applications. The significance of this find-
ing is that it makes it possible to effectively group the hash
index of the same application together and partition the whole
hash index into multiple small segments according to the appli-
cation types. This in turn helps optimize hash index locality
for optimal cashing efficiency.

C. Motivation

The flash storage affects the system performance
for the mobile applications in Android-based smart-
phones [7], [14], [18], [26]. Recent studies have shown that

the overlap between the file system journaling (such as EXT4)
and the database journaling (such as SQLite) activities, also
referred to as journal of journaling [20], [24], [35], is the root
cause of the inefficiency for the flash storage in smartphones.
Existing solutions to this problem to either reduce the jour-
naling overhead in the SQLite database, such as reducing the
SQLite journaling I/Os through multiversion B-tree [20], min-
imize the synchronization overhead, such as WALDIO [24], or
optimize the file systems, such as MobiFS [33] and F2FS [23].
However, none of them exploits the content redundancy char-
acteristics in the mobile storage subsystems, which has the
potential to improve not only application performance but also
system reliability and efficiency (space and energy).

In this paper, we revisit the flash performance issue in smart-
phones from a fresh perspective based on the content feature
analysis of the mobile applications. Recent studies in the liter-
ature indicate that reducing the amount of I/Os on the critical
path can be much more effective and efficient than optimizing
I/Os in storage systems [27]. I/O deduplication on the I/O crit-
ical path can reduce the I/O traffic at the cost of computing and
memory overhead. Motivated by the importance of the mobile
storage space, performance and reliability, combined with the
observations from the workload studies, we propose APP-
Dedupe to improve the storage efficiency of Android-based
smartphones.

III. DESIGN AND IMPLEMENTATION OF APP-DEDUPE

In this section, we first outline the main design objectives
of the APP-Dedupe system. Then we present the architecture
overview and design details of APP-Dedupe.

A. Design Objectives of APP-Dedupe

The design of APP-Dedupe aims to achieve the following
three objectives.

1) Improving the Applications’ Performance: By applying
I/O deduplication on the critical I/O path, APP-Dedupe
is designed to detect and remove a significant amount of
redundant write data, thus effectively filtering out redun-
dant write requests and improving I/O performance of
smartphones.

2) Improving the Space Efficiency: By using I/O deduplica-
tion to remove a significant amount of redundant write
data, the overall space efficiency is improved for flash
storage within smartphones.

3) Improving the Flash Reliability: The write traffic and
the amount of stored data on the flash subsystem are
significantly reduced by APP-Dedupe. This leads to the
number of block erase cycles to be significantly reduced,
which improves the flash reliability accordingly.

B. Architecture Overview

Fig. 2 shows a system architecture overview of our proposed
APP-Dedupe in the context of the storage subsystem in the
Android-based smartphones. APP-Dedupe sits below the file
system and the SQLite database and thus can be easily incor-
porated into any existing platforms to accelerate their storage
subsystem performance. It must be noted that SQLite is
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TABLE II
PERCENTAGE OF SHARING OF DATA REDUNDANCY BETWEEN ANY TWO DIFFERENT APPLICATIONS. NOTE: DUE TO THE SPACE LIMIT, ONLY THE

FIRST WORD OF AN APPLICATION’S NAME IS PRESENTED

Fig. 2. System architecture of APP-Dedupe.

a popular data storage option in the Android platform to
store nontrivial amounts of structured data. However, Android
also provides several other data storage options, which are
explained in detail on the Android Developer site, to store
persistent data, such as shared preferences, internal/external
storage, and network connections [8]. APP-Dedupe is inde-
pendent of the upper file system, which makes APP-Dedupe
amenable to be deployed in a variety of environments,
including the newly proposed MobiFS [33] and F2FS [23].
Moreover, APP-Dedupe explores the Linux kernel tracepoint
infrastructure to track the PID and process name information
in-flight through the block I/O stack [38]. The PID and pro-
cess name information is used to infer the specific application
of the request.

APP-Dedupe has three main functional components:
1) Deduplicator; 2) APP-aware index partition; and 3) APP-
aware chunk store. The Deduplicator module is responsible for
splitting the incoming write data into data chunks, calculating
the hash value of each data chunk and identifying whether

a data chunk is a duplicate. The APP-aware index partition
(short for AIP) module divides the whole hash index into small
subsets based on the application types. When an application
is in the active state, the corresponding hash index subset is
loaded from the back-end eMMC storage into the memory.
AIP swaps out the cached hash index to the back-end eMMC
storage when the corresponding application is hung out in the
background. The APP chunk store (short for ACS) module
groups the data chunks of the same application together to alle-
viate the data fragmentation problem [17] by fully leveraging
the spatial locality of the user accesses.

C. APP-Aware Index Partition

Fig. 3 illustrates the write workflow in APP-Dedupe. There
are two key data structures used to deduplicate and redirect
the I/O requests, and identify the popular hash index entries,
namely, Map_table and App_index_table, as shown in Fig. 3.
While Map_table keeps all the information of the dedupli-
cated write requests whose write data are already stored on
the back-end eMMC storage, App_index_table maintains the
fingerprints of the data chunks according to the specific appli-
cation. The mapping between the items in the Map_table and
the items in the APP_index_table is many-to-1. It means that
a logical block address (LBA) can only be linked to a unique
and distinctive physical data block, i.e., physical block address
(PBA), but multiple LBAs can be linked to the same PBA.

In order to reduce the memory and processing overhead of
storing and querying the large hash index, AIP only swaps the
corresponding index subset in the memory when the applica-
tion is in the active state. App_index_table is organized in an
LRU form and maintains the frequency of write requests to
each data chunk (PBA) by using the Count variable (initial-
ized to “1”), as shown in Fig. 3. When a write request hits
App_index_table, the count value of the corresponding index
entry in App_index_table is increased by 1, which captures the
temporal locality and frequency of write requests to this PBA.
The Count variable is also used to prevent the referenced data
blocks from being modified or deleted.

When a write request arrives, APP-Dedupe splits the write
data into multiple fixed-size data chunks and calculates their
fingerprints. If a fingerprint hits App_index_table, mean-
ing that the corresponding data chunk is a duplicate, the
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Fig. 3. Write workflow in APP-Dedupe.

corresponding Count value in App_index_table is incremented.
APP-Dedupe only updates Map_table for the duplicate data
chunks, and synchronizes Map_table to the back-end eMMC
storage periodically. Otherwise, a new hash index entry is
inserted into App_index_table and the data chunk is directly
written to the back-end eMMC storage.

D. APP-Aware Chunk Store

Our experimental observation indicates that the amount of
data redundancy shared by different applications is negligible
and most data redundancy exists among the data chunks of
the same application. To alleviate read performance degrada-
tion problem caused by the data fragmentation associated with
data deduplication, the ACS module stores the data chunks
of the same application in the same container. Moreover, by
exploiting the semantic information of the file access correla-
tion, the ACS module effectively groups the data chunks of
these files together, thus allowing the subsequent read requests
to fetch them in a single I/O request. In this way, the data
fragmentation problem, which can degrade read performance
(read amplification), is alleviated by concentrating the read
accesses to a single container, thus improving the restore/read
performance.

When a read request arrives at the block layer, hav-
ing missed the upper-level cache, APP-Dedupe first checks
whether the read request hits Map_table. If the read request
misses Map_table, the read request is directly submitted to the
block device layer. Otherwise, the address of the request will
be replaced by one or more addresses according to Map_table,
depending on whether the read request fully hits Map_table or
not. If fully hit (i.e., all LBAs of the constituent data chunks
of the request are found), the read request will be replaced by
the new address in Map_table. Otherwise, partially hit (i.e.,
not all LBAs of the constituent data chunks of the request
are found), the read request will be split into multiple new
read requests based on the locations of the constituent data
chunks of the original read request. Then, the newly gen-
erated read request(s) is (are) submitted to the block layer.

Fig. 4. Implementation of APP-Dedupe within DiskSim simulator.

After the completion of these read requests, the read data is
reconstructed and returned to the upper layer.

E. APP-Dedupe Within DiskSim

An important design objective of APP-Dedupe is to improve
the flash reliability within smartphones. However, in real
smartphones, it is hard to get the internal GC statics, such
as block erase count which is directly related to the flash
reliability. In order to get the GC-statics within the flash
memory, we embedded the APP-Dedupe within the SSD-based
DiskSim simulator [2], [3] and replaying the content-based
mobile traces. Fig. 4 shows the detailed implementation of
APP-Dedupe within DiskSim simulator.

There are two main changes to the DiskSim simulator: 1)
trace API and 2) MD5-based RB-Tree. First, to emulate the
deduplication-based flash storage, we fill the DiskSim with the
content-enhanced traces which are collected from real smart-
phones. Moreover, the APP flag is also extended to the request
I/Os to identify different mobile applications. Since the main
purpose of simulation is to evaluate the block erase count
results within flash memory, the MD5 fingerprint computing
latency is added based on a 4 KB data size in smartphones.
Second, we extend the DiskSim simulator with a MD5-based
RB-Tree to query the fingerprint and determine whether the
write request is redundant or not. The redundant write data
is not written to the flash memory, thus the total block erase
count is reduced accordantly.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup
and methodology. Then we evaluate the performance of
APP-Dedupe through both benchmark-driven and trace-driven
evaluations.

A. Experimental Setup and Methodology

We implement a prototype of APP-Dedupe on the Google
Nexus 5 smartphone, with Qualcomm MSM8974 Quadcore
2.3 GHz, 2 GB DRAM, 16 GB eMMC storage, and running
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TABLE III
DEFAULT FLASH MODEL PARAMETERS

Fig. 5. Memory usage and CPU utilization under the benchmark evaluation
driven by the Monkey tool.

Android 5.0.1 with Linux Kernel 3.4. The system and appli-
cation software is configured with the default settings without
data deduplication as the baseline system. In order to evaluate
the internal GC activities within eMMC, we also incorporate
the deduplication functionality into the SSD-based DiskSim
simulator [2]. The reserved free space is set to be 15% and
the greedy cleaning policy is used in the simulation experi-
ments. The values of the flash specific parameters used in the
SSD-based DiskSim simulator are shown in Table III.

We use both the benchmark workload, i.e., the Monkey tool,
and the trace replay workload to evaluate the effectiveness
of APP-dedupe. The Monkey tool is a program that runs on
the smartphones to generate for mobile applications pseudo-
random streams of user events such as clicks, touches, and
gestures, as well as a number of system-level events [30]. In
our evaluation it runs to generate pseudo-random streams of
user- and system-level events for the 15 applications listed
in Table I. Moreover, A1 SD Bench is used to test the I/O
read and write throughput [1]. The trace replay evaluations
are driven by the 15 mobile traces that are shown in Table I.

B. Benchmark-Driven Evaluations

During the benchmark evaluations driven by the Monkey
tool, we use the iostat command to monitor the CPU utilization
and I/O statistics and the dumpsys command to monitor the
memory usage. Fig. 5 shows the memory usage and CPU uti-
lization. It indicates that, compared with the baseline system,
APP-Dedupe incurs very little memory overhead, by no more
than 2.5% and with an average of 1.6%. The reason is that
APP-Dedupe only loads a subset of the hash index into the
memory when the corresponding APP is running in the fore-
ground. This memory overhead is expected to further diminish
given the trend of increasing memory capacity in smartphones

Fig. 6. Total amount of data written to the back-end eMMC storage driven
by the Monkey tool.

Fig. 7. System throughput normalized to the baseline system under different
access patterns driven by the A1 SD Bench.

from one generation to the next. Similarly, the processing
overhead, measured in CPU utilization, is also minimal, by
no more than 2% on average. The reason is that the CPU
resource in smartphones is usually idle during data trans-
mission [32]. For example, a recent study has revealed that
Android smartphones spend a significant portion of their CPU
active time (up to 58%) waiting for storage I/Os to com-
plete [32]. The very low memory and processing overheads
measured here, combined with the fact that user interactions
with smartphones are much less intensive than those with the
server and enterprise environment, as evidenced in Table I
and previous studies [16], [48], make the I/O deduplication a
feasible solution in Android-based smartphones.

In the benchmark evaluation, we also compare the total
amounts of written data for different schemes, as shown in
Fig. 6. Note that “APP-Dedupe generated” means the total
amount of data generated in the APP-Dedupe system while
“APP-Dedupe Written” means the total amount of data writ-
ten to the back-end eMMC storage in the APP-Dedupe system.
First, APP-Dedupe generates a little more data than the base-
line system because the deduplication operations incur some
extra metadata overhead, including the MD5 fingerprints and
the mapping information. However, the size of the increased
data is minimal at less than 60 MB. Second, APP-Dedupe
reduces the amount of data written to the back-end eMMC
storage by an average of 45.2%. Since APP-Dedupe works
on the I/O path, both the redundant data to different locations
and the redundant write data to the same location are elimi-
nated. The significant reduction in write data leads directly to
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Fig. 8. Average response times in the evaluation driven by the 15 mobile traces.

a notably improved system throughput, storage efficiency and
reduced cost. Reducing the write traffic to flash also directly
improves the endurance of flash devices. Previous studies, such
as CAFTL [4] and CA-SSD [13], have demonstrated that the
flash reliability can be improved by reducing the redundant
data on the write path. Recent studies on flash failure char-
acteristics in Google and Facebook data centers have found
that the total amount of data written directly affects the flash
reliability [29], [34]. Thus, by reducing the write traffic, APP-
Dedupe is shown to be able to improve the reliability of eMMC
storage within smartphones, as detailed by the trace-driven
study in Section IV-C.

Fig. 7 shows the system throughput normalized to the
baseline system under different access patterns driven by
the A1 SD Bench. APP-Dedupe improves the sequential
write throughput by 11.5% but degrades the sequential read
throughput by 30.0%. The reason for the degraded read
performance stems from the fact that deduplication causes the
data to be scattered across the flash memory, i.e., the known
data fragmentation problem [27]. Though APP-Dedupe uses
APP-aware chunk store to group the related chunks together,
accesses to the deduplicated sequential read data are no longer
sequential, unlike the system without deduplication. Moreover,
since the bandwidth of eMMC in smartphones is much lower
than that of the enterprise SSDs, the performance gap between
random read and sequential read for eMMC is significant.

The increased write throughput comes from the reduced
write data. In contrast, both the baseline system and the APP-
Dedupe system perform similarly in random accesses. The
reason is that eMMC’s random access performance is much
lower than its sequential access performance, which over-
shadows both the overhead and performance improvement of
deduplication for the random accesses.

C. Trace-Driven Evaluations

Fig. 8 shows the average response times in the evaluation
driven by the 15 mobile traces, indicating that APP-Dedupe
reduces the average response times of the baseline system
by up to 15.4% with an average of 6.2%. The reasons are
threefold. First, APP-Dedupe removes a large portion of the
redundant write requests. For these redundant write requests,

Fig. 9. Memory usages by the index table driven by the four traces.

only the metadata is updated without any disk I/O accesses.
Thus, significantly reducing the write request delays. Second,
by reducing the write traffic to the flash-based eMMC, the
read/write interaction is alleviated. Since the write latency
is much larger than read latency for flash memory, reduc-
ing the write traffic directly reduces the read latency. Third,
by reducing the total write data to the flash-based eMMC,
the internal block erase activities are also reduced, as that
shown in the end of this section. The process time of an
erase operation is an order of magnitude more than that of
a read or write operation. The performance of the incoming
user I/O requests during the GC period will be significantly
degraded by the GC process due to the sever contention
between these requests [44]. Reducing GC activities directly
improves the system performance. Thus, both the read and
write performances are improved.

On the other hand, it is interesting to notice that APP-
Dedupe increases the average response times of the Game2048
and Tencent applications by 1.1% and 2.3%. The reason is that,
while these two applications have relatively very small amount
of write data and low IOPS to begin with, making the amounts
of reduced write requests and GC activities very small and
limiting the benefits of deduplication. These limited benefits
from deduplication are more than offset by the hash comput-
ing overhead incurred by deduplication. The results on the
two applications also imply that applying data deduplication
within smartphones should be carefully designed to minimize
the deduplication-induced memory and computing overhead.
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Fig. 10. Total block erase counts within the eMMC device in the evaluation driven by the 15 mobile traces.

Fig. 9 shows the memory usages by the hash index table
driven by the four traces, Baidu, Sohu, Wechat, and Weibo.
We can see that the increased memory consumption by each
application is minimal. While memory usage increases with
the increase of the stored data within each application, APP-
Dedupe only loads in memory the hash index of the running
application, thus making the increased memory overhead still
acceptable. Moreover, even with the multiwindow multitasking
mode enabled within the Android N-based smartphones [31],
the memory usage by APP-Dedupe can still be affordable
because only a small number of applications can run on the
screen concurrently. Based on these results, the hash index of
a specific application is small. Thus, it is possible and feasible
to store the hash indices of a small number of applications in
memory concurrently.

The block erase count within flash memory is directly
related to the system reliability. Fig. 10 shows the total
block erase counts within the eMMC device in the DiskSim
evaluation driven by the 15 mobile traces, indicating that APP-
Dedupe reduces the block erase counts by up to 53.8% with
an average of 40.2%. The reason is that the GC frequency
in flash memory is highly correlated to the amount of data
written to it, i.e., the more the data written, the higher the
GC frequency. The large fraction of write data reduced by
APP-Dedupe leads directly to reduced GC activities [44], [47]
within flash memory. Moreover, by reducing the block erase
counts within flash-based eMMC, APP-Dedupe also improves
the reliability and enhances the lifespan of the smartphone
storage system [4].

The percentage of the reserved free blocks directly affects
the GC activities within the flash memory. To evaluate the sen-
sitivity of the GC efficiency to the percentage of the reserved
free blocks, we conduct the experiments by changing this per-
centage under the Wechat and Weibo traces. Fig. 11 shows
that APP-Dedupe has consistently reduces lower erase block
count than the baseline system. The reason is that APP-Dedupe
reduces the total amount of data actually written to the flash
memory, which in turn reduces the number of invalid data
blocks. As a result, the block erase count is reduced. However,
with a larger percentage of free block count, the improve-
ment brought by APP-Dedupe is seen to be reduced because
the baseline system also has a much larger percentage of the

Fig. 11. Block erase counts with respect to the different percentages of the
reserved free blocks driven by the Wechat and Weibo traces.

reserved free blocks. On the other hand, we also see that with
an increasing percentage of the reserved free blocks, the block
erase count is also reduced accordantly. This is because more
reserved free blocks lead to more blocks available to assist
the GC activities, resulting in a reduced number of blocks
that must be erased.

D. Extended Evaluations

To evaluate the effectiveness of APP-Dedupe in different
Android smartphones, we also implement APP-Dedupe on the
Huawei P9 smartphone with HUAWEI Kirin 955 Qcta core
2.5 GHZ, 4 GB DRAM, 64 GB eMMC storage, and run-
ning Android 6.0 with Linux Kernel 3.10.4. Fig. 12 shows the
average response times of APP-Dedupe and Baseline driven
by the mobile traces, indicating that APP-Dedupe reduces
the average response time of the baseline system by up to
38.1% with an average of 29.2%, which is much better than
that on the Google Nexus 5 smartphone. The obvious reason
for this is that the Huawei P9 smartphone has significantly
reduced overhead on computing fingerprints due to its much
higher processing power of HUAWEI Kirin 955 than that
of Qualcomm MSM8974. It also implies the good feasibil-
ity and applicability of APP-Dedupe on modern and future
smartphones that are equipped with much more powerful
processors.
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Fig. 12. Average response times on Huawei P9 smartphone driven by mobile
traces.

Fig. 13. CPU utilizations on Huawei P9 smartphone by writing a 4 GB file
twice.

The CPU utilization is also an important factor of system
performance and power consumption in smartphones. To eval-
uate the I/O intensity usage scenario, we write a 4 GB file
twice with different file names and record the CPU utiliza-
tions. Fig. 13 compares the two schemes in terms of CPU
utilization. First, we see that APP-Dedupe increases the CPU
utilization by about 7% during I/O intensive periods when
fingerprints are also computed. However, it performs similarly
to the baseline system during system idle periods. Second,
APP-Dedupe can significantly reduce the write time and the
CPU utilization when the write data is redundant, as indi-
cated in the time period when the file is being written for the
second time. The results on the Huawei P9 smartphone not
only clearly demonstrate APP-Dedupe’s effectiveness but also
shows that its performance advantage is more pronounced on
more powerful smartphones.

V. RELATED WORK

Data deduplication as a space-efficient technique has
received a great deal of attention from both industry and
academia. It has been demonstrated to be effective in cloud
backup and archiving applications to reduce the backup
window, improve the storage-space efficiency and network
bandwidth utilization [45]. Recent studies have shown that
moderate to high data redundancy also exists in primary stor-
age systems and leverage the data deduplication technique to
improve the I/O performance [22], [27], [37]. However, these
studies are based on HDD-based storage which is different
from the flash-based storage devices in terms of performance
and reliability.

Due to the unique characteristics of flash memory, apply-
ing data deduplication within flash-based storage systems has
also been well studied in [4], [13], and [45]. CAFTL [4] and
CA-SSD [13] employ data deduplication to eliminate redun-
dant write data to improve the endurance and performance
of flash-based SSDs. Delta-FTL [42] uses delta compression
to eliminate both duplicate and similar data to enlarge the
logical space of flash memory within FTL layer. Nitro [25]
implements data deduplication and data compression for SSD-
based cache to enlarge the cache capacity, thus improving the
cache efficiency. Moreover, data deduplication has become
a commodity feature in flash-based storage products for
many leading companies, such as Nimble Storage [41], Pure
Storage [10], and Tintri [39], for the purpose of enhancing the
system performance, reliability, and space efficiency.

However, the unique characteristics of mobile devices and
mobile applications make straightforwardly applying dedupli-
cation in Android-based smartphones both less effective and
more challenging. To the best of our knowledge, APP-Dedup
is the first study that investigate the data deduplication on flash
memory within smartphones. The smartphones have much
smaller memory capacity and different application usage char-
acteristics. Thus, we have designed a low-overhead content-
aware trace collection tool and collected 15 mobile traces from
popular mobile applications. The workload analysis results
show that data redundancy exists in Android-based smart-
phones and presents some unique characteristics. Based on
these workload characteristics, APP-Dedupe effectively groups
the hash index of the same application together and divid-
ing the whole hash index into different groups based on the
application types.

VI. CONCLUSION

Flash-based storage subsystem in smartphones plays an
important role in the application performance and system reli-
ability. In this paper, we first investigate the data redundancy
characteristics within Android-based smartphones by design a
content-aware trace collection tool and collecting 15 mobile
traces. From the trace analysis, we find that 20% to 40% of
the I/O requests on the I/O critical path of the storage stack are
redundant and this data redundancy is minimally shared among
different applications. Based on this key observation, this
paper proposes APP-Dedupe to detect and eliminate the I/O
redundancy. The extensive benchmark-driven and trace-driven
experiments conducted on our lightweight prototype imple-
mentation of APP-Dedupe show that APP-Dedupe reduces the
GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and saves the storage capacity by an
average of 45.2%.

It is worth noting that our application of deduplication to
the smartphone storage is still preliminary and an on-going
research topic. As such, some research issues remain to be
addressed as our future work. First, the issue of power con-
sumption is critically important in smartphones [15], [32].
Deduplication is effective in reducing the I/O traffic and GC
activities and thus has a potential to improve the storage
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energy efficiency. On the other hand, the hash computing con-
sumes extra processing power. As a result, another important
objective of APP-Dedupe is to improve the energy efficiency,
in addition to the performance improvement and capacity
saving. As a direction of future work, we will investigate
the power consumption issue associated with deduplication
in smartphones. Second, from our experimental results, we
observe that different applications have different data char-
acteristics. Depending on such characteristics, deduplication
may not always improve the performance. Thus, deduplication
for the mobile applications should be dynamically enabled or
disabled. We will investigate how to dynamically apply dedu-
plication on the smartphone storage at runtime to improve the
flexibility of APP-Dedupe.
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