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a b s t r a c t

Reservoir sampling is widely employed to characterize large graph streams by producing edge samples.
However, existing reservoir-based sampling methods mainly focus on counting triangles but perform
poorly in analyzing topological characteristics reflected by node degrees. This paper proposes a new
method, called triangle-induced reservoir sampling, or T-Sample, to count triangles and estimate node
degrees simultaneously and efficiently. While every edge in a graph stream is processed only once by
T-Sample, a dual sampling mechanism performing both uniform sampling and non-uniform sampling
is carefully designed. Specifically, T-Sample’s uniform sampling is used to count triangles by a newly
proposed method with smaller estimation variances than existing reservoir-based sampling methods;
whereas, its non-uniform sampling ensures that edge samples are connected. Experimental results
driven by real datasets show that T-Sample can count triangles with smaller estimation errors and
variances than the state-of-the-art reservoir-based sampling methods while obtaining much more
accurate information about node degrees at smaller time and memory costs.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The rapid growth in real-world application scenarios, e.g.,
bioinformatics, social media, computer network traffic, etc., ne-
cessitates the storage, processing and analysis of the data content
of large graph streams. In a graph stream, each edge carries
the information about interaction between one node (entity) and
another node (entity) [1–4]. Importantly, these edges are not iso-
lated in representing pair-wise node interactions but are usually
connected in some ways to convey valuable information about a
graph stream [5–7]. Given the sheer size of data, it is much more
cost effective to use samples to substitute for the entire original
dataset to analyze the graph stream [4,8].

Many recent studies focus on one-pass stream sampling meth-
ods [8–13], in which each edge is processed for only one time
to determine whether it is a candidate sample by either of two
analyses. The first is an analysis of counting triangles (triangle-
count) of a graph stream, which has attracted considerable at-
tentions [10,12–14]. The second is to show connectivity by an
analysis of the number of different node-degrees and the num-
bers of nodes with specific node-degrees in a graph stream,
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referred to respectively as node-degree types and node-degree
counts in this paper.

However, existing one-pass sampling methods only focus on
characterizing the connectivity either from triangle-count analy-
sis or node-degree analysis but not both. To produce edge sam-
ples conducive to obtaining the two analyses simultaneously, a
new one-pass stream sampling method, called triangle-induced
reservoir sampling or T-Sample is proposed in this paper by
employing a dual sampling mechanism, namely, combining a
uniform sampling with a non-uniform sampling to produce edge
samples. The uniform and non-uniform samplings in T-Sample
cooperate to estimate both triangle counts and node degrees over
large graph streams.

With the design and implementation of T-Sample, this paper
makes the following contributions.

1. To the best of our knowledge, T-Sample, as a one-pass
stream sampling method, is a first attempt at character-
izing the connectivity of large graph streams by counting
triangles while presenting an approximate description of
the actual connectivity for a graph stream by proposing a
dual sampling mechanism. (Section 3)

2. T-Sample’s uniform sampling is used to estimate the total
triangle counts by a newly proposed method with higher
accuracy and smaller estimation variance than the existing
one-pass reservoir-based sampling methods. (Section 4)
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3. T-Sample uses a limited memory capacity to produce edge
samples which can be proven to be connected theoretically
and empirically. These edge samples thus can be employed
to estimate information about the node degrees of a graph
stream. (Section 4)

4. Experimental results driven by different real datasets show
that T-Sample can obtain more accurate information about
node degrees than the existing reservoir-based sampling
methods at smaller time and memory costs over the graph
streams with more than one-billion edges. At the same
time, the experimental results show that T-Sample can
estimate the triangle counts with smaller errors and vari-
ances than the existing one-pass sampling methods. (Sec-
tion 5)

The rest of the paper is organized as follows. Section 2 de-
scribes the related work and motivation of T-Sample. Section 3
elaborates on T-Sample’s design while Section 4 describes how
to count triangles and why T-Sample can be used to estimate
node degrees for a large graph stream. Section 5 presents the
evaluations of T-Sample while Section 6 concludes our work.
Based on T-Sample, Section 7 illustrates the future work.

2. Related work and motivation

Although there are many sampling techniques for estimating
node degrees [15–18], they are not applicable in graphs in the
form of edge streams because these sampling techniques focus
on producing samples in the form of nodes [19–21]. The existing
reservoir-based sampling methods can be classified into two cat-
egories, i.e., uniform reservoir-based sampling, which is capable
of learning the probability of an edge entering a reservoir in a
graph stream prior to sampling, and non-uniform reservoir-based
sampling for which the probability of an edge entering a reservoir
is not known before the sampling process. In what follows we
introduce these two categories, along with the shortcomings of
their representative methods, to motivate the T-Sample research.

2.1. Uniform reservoir-based sampling

In this approach, the probability of an edge entering a reservoir
is known by setting either a static reservoir capacity or a static
probability.
• Static reservoir capacity. Suppose that c is the static ca-

pacity of a reservoir used by a reservoir-based sampling method
that first preserves the front c edges of a graph stream directly
in the reservoir. With each subsequent arriving edge, there are
two probabilities that must be set to determine the outcomes
of two corresponding events, entrance − whether the new edge
will enter the reservoir or not − and replacement − which edge
currently in the reservoir will be replaced given the entrance of
the new edge. Existing uniform reservoir-based sampling meth-
ods set these probabilities in either a uniform way or a weighted
way, as follows.

(a). Uniform setting. Let pini denote the probability of the ith
arriving edge entering the reservoir and pout the probability of
an edge already preserved in the reservoir being replaced by the
newly sampled edge. pini and pout are given as,

pini = min{1,
c
i
}, pout =

1
c
, (1)

Triest and Triest-IMPR, proposed in [14], employ the idea of uni-
form setting to count the triangles. Triest and Triest-IMPR do not
consider the actual connectivity among the edges, rendering the
produced edge samples useless in estimating the node degrees.
Furthermore, in Triest and Triest-IMPR, the probability of forming
triangles by the edge samples, which is required for estimating

the triangle counts, is inferred without consideration about the
specific sampling probability of each edge in a graph stream and
thus increase the estimation variance as analyzed in detail in
Section 4.

(b). Weighted setting. The probability of the currently processed
edge entering a reservoir can be set according to a prescribed rule
(i.e., a randomly generated number). Specifically speaking, if the
newly arrived edge has a higher weight than the smallest weight,
labeled as z∗, of the edges preserved in the reservoir thus far, it
is selected to be stored in the reservoir replacing the edge with
the smallest weight.

GPS Post stream (GPS-Post) and GPS In stream (GPS-In),
proposed in [8], use the idea of weighted setting to sample large
graph streams. Intuitively, the weighted setting can help charac-
terize the actual connectivity of a graph stream when the weight
of the newly arrived edge is set according to its connectivity with
the edges preserved in the reservoir, i.e., the number of triangles
formed by the newly arrived edge and the edges preserved in the
reservoir thus far. However, there are three problems associated
with this sampling process. First, it is costly to sort the weights of
the edges in the reservoir to select the edge with the minimum
weight while deciding whether the newly arrived edge is to be
sampled or not. The total number of sort operations is equal to
the number of edges in the graph stream. Second, GPS-Post and
GPS-In cause major estimation variances and errors of the total
number of triangles that is highly dependent on how the weights
are set. Third, the edge samples produced by GPS-Post and GPS-In,
which are currently connected with one another, may be replaced
in the subsequent sampling process given that the capacity of the
reservoir is limited and static.
• Static probability. It is a straightforward way for reservoir-

based sampling methods, such as Mascot and Graph Sample
and Hold (GSH), proposed in [9,10] respectively to produce edge
samples by setting a uniformly static value as the probability of
each edge entering a reservoir in a graph stream. However, the
probability is arbitrarily set, which may cause large estimation
errors on triangle counts or occupy large memory because of
no strategies used to limit the reservoir capacity. Furthermore,
similar to Triest and Triest-IMPR that do not consider the spe-
cific connectivity among edges during the sampling process, the
edge samples produced by Mascot and GSH are rarely connected,
making them inadequate in reflecting the actual connectivity of
a graph stream.

2.2. Non-uniform reservoir-based sampling

In contrast to the uniform reservoir-based sampling methods,
their non-uniform counterparts consider the specific connectivity
among the edges when sampling, although the probability of each
edge entering a reservoir by the latter cannot be learned before
the sampling process. Existing non-uniform sampling methods
can be divided into two groups. Methods in the first are designed
to produce edge samples, such as NeiSampling [22] and Stream-
Sampling [23] while those in the second produce node samples,
such as PIES [24]. Their drawbacks are analyzed below.

The processing times of both NeiSampling and StreamSam-
pling are long. In NeiSampling, a newly arrived edge is compared
with edges preserved in a base reservoir c times, where c is the
capacity of the base reservoir, to determine whether it can be
sampled or form triangles with the edges already preserved in
the base reservoir. In StreamSampling, each newly arrived edge
is compared with 2 × c times to determine whether it can form
triangles with the edges preserved in an auxiliary reservoir whose
capacity is equal to the base reservoir, while determining whether
it can be sampled and further form wedges (i.e., any two of the
three edges of a triangle) with the edges preserved in the base
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reservoir. Besides, in StreamSampling, the expected number of
times of updating the edges preserved in the base reservoir is
c × log(n) with n being the total number of edges in a graph
stream. Furthermore, the edges preserved in the base reservoir
or the auxiliary reservoir are always updated. Thus, even if the
edges preserved in them are connected with one another at some
time, they may be replaced by edges arriving in the subsequent
sampling process.

PIES , as a representative non-uniform reservoir-based node
sampling method proposed in [24], is highly cost-effective by
using a reservoir of static capacity c to preserve the node samples.
The front c distinct nodes are preserved in the fixed-capacity
reservoir while edges relevant to these nodes are preserved in
an auxiliary reservoir with a dynamic capacity of m. The entrance
and replacement probabilities in PIES are set as follows. If an edge
e′s two nodes are already in the base reservoir, e is preserved
in the auxiliary reservoir directly. Otherwise, it is necessary to
replace the nodes preserved in the base reservoir by the nodes
of the ith edge with the probability m

i . Meanwhile, the edges
preserved in the auxiliary reservoir, which are relevant to the
replaced nodes, will be eliminated from the auxiliary reservoir.

However, it is costly by using the node samples to estimate the
node degrees in PIES — the c nodes in the base reservoir need c×n
comparisons with the edges in the graph stream whose total size
is n. Worse still, PIES cannot be used to estimate the total number
of triangles and there is almost no connectivity among the edge
samples.

2.3. Motivation

In many classes of applications, the analyses of both triangle
counts and node degrees of a large graph stream are required
simultaneously. For example, when to evaluate the propagation
of a product, rumor and so on over a large graph stream, the more
triangles mean that users can be infected from multiple channels
while the properties of the node degrees are used to reflect the
users can be infected from a single channel [25–27]. Suppose
that α and β are the propagation coefficients of one channel
and multiple channel respectively. We use inf to denote the
average influence (propagation ability) of a large graph stream
as described in Eq. (2), where AverageND is the average degree of
a node and AverageTC is the average triangle counts of a node.

Inf = AverageND× α + AverageTC × β, (2)

Suppose that 3α = β . According to Eq. (2), the average
influence of the graph stream shown in Fig. 1(a) is 4α+0.196β =
4.588α while that of another stream shown in Fig. 1(b) is 3.36α+
0.419β = 4.617α. Obviously, the average influence of a graph
stream is decided by both the triangle counts and node de-
grees rather than a single factor. From the above analysis, both
the existing uniform and non-uniform reservoir-based sampling
methods produce edge samples that no longer contain or convey
sufficient actual connectivity of a graph stream. As shown in
Fig. 2, the existing reservoir-based sampling methods provide
very limited information about the node-degree types as the
percentage of the nodes with degrees more than 10 is almost
equal to zero. Furthermore, Fig. 2 also shows that the degrees of
most of the nodes (92% at most and 70% at least) are equal to one,
based on the edge samples obtained by the existing reservoir-
based methods implemented in the same platform (described
in Section 5). Since the degree of any node is at least equal to
one because each edge consists of exactly two nodes, the results
in Fig. 2 clearly imply that the edge samples produced by the
existing reservoir based sampling methods are mostly isolated,
unconnected edges.

Fig. 1. An example of connectivity of two graph streams in terms of triangle-
count and node-degree analyses. (a) and (b) describe one graph stream while (c)
and (d) depict another. Although the two graph streams have the same triangle
count (60), they have very different node-degree types (10 vs. 6) and counts
(skewed vs. less skewed) for specific node-degrees labeled in different colors.

Fig. 2. The distribution of node-degree counts (and processing times) of edge
samples generated by the existing reservoir-based sampling methods over the
Youtube graph stream (Section 5) when the capacity of the reservoir is set to
5 K.

Furthermore, except for PIES which does not estimate the
triangle counts, Fig. 2 shows that the non-uniform sampling
methods (NeiSampling and StreamSampling) have slightly bet-
ter results than the uniform sampling ones in estimating the
information of node degrees while they spend much more time
than the latter. Fig. 2 implies that it is more cost-efficient to
estimate the triangle counts using the uniform reservoir-based
sampling while it is more effective in estimating the specific topo-
logical characteristics by non-uniform reservoir-based sampling.
Therefore, to meet the requirement of the applications to analyze
both the node degrees and the triangle counts, a new reservoir-
based sampling method should inherit the advantages of both
categories of uniform and non-uniform sampling while alleviating
their disadvantages.

Specifically, in designing such a new one-pass stream sam-
pling method, three factors should be taken into consideration.
First, the specific connectivity among the edges should be consid-
ered, similar to the non-uniform reservoir-based sampling meth-
ods, while reducing the processing times. Second, the constraint
of the static capacity of the reservoir should be alleviated dur-
ing the non-uniform sampling process so that the edge samples
produced by the new method are no longer replaced by the
newly sampled edges to avoid the loss of the connectivity already
preserved in the current edge samples. Third, to estimate the
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Table 1
The comparisons of the cost and accuracy among the reservoir-based sampling
methods.
Methods Cost Accuracy

Triangle count Node degree

Uniform
reservoir-based
sampling

Triest Low High Low
Triest-IMPR High High Low
GPS-Post Medium High Medium
GPS-In High High Medium
Mascot Low High Low
GSH Low Medium Low

Non-uniform
Reservoir-based
sampling

PIES Low Impossible Medium
NeiSampling High High Medium
StreanSampling High High Medium

T-Sample Low High High

Table 2
The symbols used in this paper.
G = (V , E) Graph stream G with node set V and edge set E

c Capacity of the base reservoir

Rbase Base reservoir

Rincre Incremental reservoir

numi Total number of edges, among the front i− 1 edges
satisfying the prerequisite for entering Rincre

pini Probability of the ith edge being preserved in Rbase in
T-Sample

pi Sampling probability of each of the front i edge at the
arrival of ith edge in T-Sample

pincrei Probability of the ith edge entering Rincre in T-Sample

Tcapacity Total capacity of T-Sample

Ttime Total processing time of T-Sample

p(△mean) Mean probability of the edges in a graph stream satisfies
the prerequisite of entering Rincre

p(△)i Probability of triangles formed by the front i− 1 edges and
the ith edge

p(△)T−Sample
i Probability of triangles formed by the front i− 1 edges and

the ith edge via T-Sample

triangle counts in a very short time efficiently, the idea of the
uniform reservoir-based sampling can be leveraged while design-
ing a method for counting the triangles with smaller estimation
errors and variances. Motivated by these insights, we propose
in this paper a new reservoir-based sampling method, called T-
Sample that employs a dual-sampling mechanism and is capable
of producing connected edge samples for analyzing both the
triangle counts and node degrees of a large graph stream. Table 1
shows the cost and accuracy of the reservoir-based sampling
methods. Compared with the existing uniform and non-uniform
reservoir-based sampling methods, T-Sample can estimate the
triangle counts and node degrees accurately at low costs.

3. Design and analysis of T-Sample

In this section, we first elaborate on the design of T-Sample.
Then, we analyze T-Sample in detail to learn the probabilities
of an edge being sampled by uniform reservoir-based sampling
and non-uniform reservoir-based sampling respectively, which
is followed by the description of T-Sample’s memory usage and
processing time. The notations frequently used in this paper and
their definitions are presented in Table 2.

3.1. Dual sampling

T-Sample, as a one-pass sampling method for which each
edge of a graph stream is processed only one time, employs

Fig. 3. T-Sample’s dual sampling mechanism, with uniform sampling in solid
black lines and non-uniform sampling in dashed black lines while p∗i denotes
the probability of entering a reservoir respectively for the ith edge.

a dual sampling mechanism (uniform and non-uniform) with
the help of triangles in the graph stream. The key idea behind
the dual sampling mechanism is that the newest edge sample
produced by the non-uniform sampling can form at least one
triangle with the edge samples that the uniform sampling has
produced thus far. Specifically, such a sampling process relies on
two types of reservoirs, base reservoir and incremental reservoir,
to estimate the triangle counts while simultaneously obtaining
the actual connectivity information of a graph stream based on
node degrees (their types and counts).

Base reservoir. T-Sample’s uniform sampling employs a reser-
voir with a static capacity, namely, a base reservoir Rbase, to learn
the sampling probabilities of the edges in a graph stream by
employing the uniform setting (Section 2). These probabilities are
used to infer the probabilities of the triangles formed by the edge
samples, which in turn are used to estimate the triangle counts
as described in Section 4. An important characteristic for the edge
samples preserved in the base reservoir is that these edges are
updated frequently with the arrival of each new edge in a graph
stream while the number of the edges preserved in it is static.

Incremental reservoir. T-Sample’s non-uniform sampling em-
ploys a reservoir with a dynamic capacity, namely, an incremental
reservoir Rincre, to produce the connected edge samples. The pre-
requisite for an edge to enter the incremental reservoir is that
the edge can form triangles with the edges currently preserved
in the base reservoir. An edge once sampled by the non-uniform
sampling cannot be removed from the incremental reservoir.
Therefore, the volume of the edges preserved in the incremental
reservoir, is always non-decreasing. To limit the memory space
used by the incremental reservoir, we design a parameter to
control the probability of an edge entering into the incremental
reservoir by exploiting the density/sparsity of the connectivity of
a graph stream. Before we derive the sampling probabilities, we
first present the work flow of T-Sample with its dual-sampling
mechanism.

As illustrated in Fig. 3, at the very beginning of T-Sample’s
process, the front c edges of a graph stream are directly preserved
in the base reservoir of capacity c. From this point on, whether a
newly arrived edge is sampled or not by T-Sample depends on if the
edge has a chance to be preserved in either the base reservoir or
the incremental reservoir. Notice that any edge of a graph stream
can only be preserved in at most one of the two reservoirs. Fig. 3
depicts the T-Sample’s dual sampling process: the ith (i > c) edge
will first try to enter the base reservoir and, when this effort fails,
it then tries to enter the incremental reservoir.

Generally speaking, each edge in a graph stream has a chance
to be preserved in the base reservoir and thus the probabilities
of the triangle formations based on the whole graph stream can
be inferred accurately. On the other hand, the edges that fail to
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enter the base reservoir have chances of entering the incremental
reservoir by leveraging the important structures of triangles that
express the basic and cohesive connectivity among the edges in
a graph stream. Thus, the edge samples, preserved in both the
base and incremental reservoirs, are able to largely preserve the
connectivity.

3.2. Sampling probabilities

Due to the dual sampling mechanism, the sampling probability
of an edge in T-Sample is analyzed from two cases as follows:
that in uniform sampling and that in non-uniform sampling. The
former is used to estimate the total triangle counts while the
latter helps determine the total memory usage and infer the
actual connectivity among the edge samples.

Uniform sampling. Recall from Section 2 that pini = min{1, c
i }

is the probability of the ith edge entering the base reservoir with
a capacity of (c) and pout = 1

c is the probability of an edge already
preserved in the base reservoir being removed from it later due
to the entrance of a newly sampled edge. Thus, the sampling
probability of any of the front i edges at the time when the ith
edge (i > c) is being processed is given in Lemma 1.

Lemma 1. Suppose that the ith edge (i > c) is being processed in a
graph stream, then the sampling probability (pi) of any of the front
i edges is equal to pi = c

i .

Proof. Suppose that the kth edge is currently preserved in the
base reservoir, meaning that it has entered into the base reservoir
without being replaced in the remainder of (i−k) sampling steps.
Thus, the sampling probability of the kth edge at the time of
processing the ith edge is given as,

pi = pink ×
i∏

j=k+1

(1− pinj + pinj × (1− pout )) (3)

Though pink = 1 if k ≤ c and pink =
c
k if k > c , the processes of

computing pi for the two cases are similar. To simplify the proof,
suppose k > c , then pi is computed as,

pi =
c
k
× [(

j− c
k+ 1

+
c

k+ 1
×

c − 1
c

)× · · ·

× (
i− c
i
+

c
i
×

c − 1
c

)] =
c
i
.

(4)

Non-uniform sampling. Since the size of the incremental
reservoir is non-decreasing with i, the sampling probability for
edges to be preserved in it must be properly controlled to limit
its memory usage while preserving the topological structures
approximately in terms of node-degree types and counts.

Intuitively, a more densely connected graph stream tends to
have a correspondingly higher triangle counts, implying that a
newly arrived edge is more likely to form at least one triangle
with edges preserved in the base reservoir and thus meet the
perquisite for entering the incremental reservoir. On the other
hand, the opposite is true for a sparsely connected graph stream,
i.e., a newly arrived edge is less likely to meet the prerequi-
site. Based on this intuition, the parameter c

c+numi
helps indicate

whether a graph stream being sampled is densely or sparsely
connected, where numi is the total number of edges satisfying
the prerequisite for entering the incremental reservoir among the
front i − 1 edges and can be calculated during the process of
counting the triangles (Section 4). That is, the lower the value
of this parameter, the more densely connected a graph stream
is. Thus, we use this parameter c

c+numi
to control the probability

of an edge entering the incremental reservoir and further limit
T-Sample’s memory usage.

Specifically, in face of a densely connected graph stream, the
value of c

c+numi
decreases rapidly as i increases, meaning that

the probability of an edge entering the incremental reservoir will
diminish rapidly. This helps limit the number of edges added to
the incremental reservoir when sampling a densely connected
graph stream for which there are indeed many edges already
preserved in the incremental reservoir. On the other hand, for
a sparely connected graph stream, the value of c

c+numi
decreases

very slowly as i increases, meaning that the probability of an edge
entering the incremental reservoir will remain relatively steady.
This helps obtain as many connected edge samples as possible
for uncovering the original connectivity of a sparsely connected
graph stream. Therefore, the probability pincrei of the ith edge
entering the incremental reservoir is given as,

pincrei = 1meetPre
i × (1− pini )×

c
c + numi

, (5)

where 1meetPre
i signifies whether an edge meets the prerequisite

to enter the incremental reservoir. In other words, in an actual
sampling process, 1meetPre

i = 1 means the ith edge meets the
prerequisite, or 1meetPre

i = 0 otherwise. The sampling process of T-
Sample is described in Algorithm 1. Lines 4–9 of the pseudocode
decide whether an edge can enter Rbase or not, according to pini =
c
i . If an edge is denied of its entrance to Rbase, pincrei is evaluated
by Lines 10–15 to decide whether it can enter Rincre or not.

Algorithm 1: T-Sample
Input: E = {e1, e2, ..., en}: a graph stream and c: the capacity of Rbase;
Output: S: set of edge samples;

1 Rbase ← {e1, ..., ec} and Rincre ← ∅ ;
2 for i← c + 1 to n do
3 numi ← numi−1;
4 pini =

c
i ;

5 Generate r1 randomly from (0,1];
6 if r1 < pini then
7 Remove an edge from Rbase randomly;
8 Rbase ← Rbase ∪ {ei};

9 else
10 if ei can form triangles with the edges in Rbase then
11 numi ← numi + 1;
12 Generate r2 randomly from (0,1];
13 if r2 < c

c+numi
then

14 Rincre ← Rincre ∪ {ei};

15 S = Rbase ∪ Rincre;

3.3. Total reservoir capacity and processing time

Total reservoir capacity. From the above description, the total
capacity of the reservoirs used by T-Sample is dynamic because
of the unknown capacity of the incremental reservoir. Never-
theless, it can be described quantitatively as follows to estimate
T-Sample’s memory cost.

As described above, with the increase in the number of the
edges preserved in the incremental reservoir, the probability of
the edges entering this reservoir decreases. Suppose that the
set TE = {te1, te2, . . . , tef } contains the edges which can form
triangles with the edges currently preserved in the base reservoir
during the whole sampling process, where TE ⊆ E. Combined
with the probability of entering the incremental reservoir de-
scribed in Eq. (5), T-Sample’s total reservoir capacity Tcapacity is
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described quantitatively as follows.

Tcapacity = c +
∑
ei∈TE

pincrei

= c +
∑
ei∈TE

(1− pini )×
c

c + numi
× p(△mean)

< c +
|E|∑

i=c+1

(1−
c
i
)×

c
i
× p(△mean)

< c + p(△mean)×
|E|∑

i=c+1

c
i
,

(6)

where let p(△mean) be the mean probability of an edge in a graph
stream satisfying the prerequisite of entering the incremental
reservoir and is determined by the specific connectivity of a large
graph stream. Although the specific value of p(△mean) is unknown
without prior knowledge of the connectivity of a graph stream
being sampled, it can be used to show that the more connected
edges in the original graph stream, the more capacity is required
by the incremental reservoir.

According to the Equation 2.1 in [28], we have the following
equation:
|E|∑

i=c+1

c
i
=

c
c + 1

+ · · · +
c
|E|
≃ c × ln(

|E|
c

). (7)

Thus, we have:

Tcapacity < c(1+ ln(
|E|
c

)p(△mean))≪ c(1+ ln(
|E|
c

)). (8)

Therefore, the design of the capacity of the incremental reser-
voir overcomes the disadvantage of the static reservoir capac-
ity used by the existing non-uniform reservoir-based sampling
methods to produce connected edge samples. On the other hand,
the total capacity of T-Sample’s reservoirs is much smaller than
the total volumes of a graph stream and is subject to the capacity
of the base reservoir and the connectivity of a graph stream itself,
as expressed in Eq. (8)).

Processing time. As described in Section 1, T-Sample is de-
signed to carry out the two tasks of counting triangles and esti-
mating node degrees simultaneously by using the dual sampling
mechanism. Therefore, T-Sample’s processing time (Ttime) can be
given as,

Ttime = Tun + Tnon−un + Ttc(pre), (9)

where Tun and Tnon−un are the times of producing edge samples
to estimate node degrees in T-Sample’s uniform and non-uniform
sampling processes respectively and Ttc(pre) is the processing time
of counting triangles which overlaps with the processing time
of determining whether an edge meets the prerequisite for en-
tering the incremental reservoir. In other words, the operation
of counting the triangles formed by any two edges in the base
reservoir and the ith edge can also be used to confirm whether
the ith edge satisfies the prerequisite for entering the incremen-
tal reservoir. For an existing uniform reservoir-based sampling
method to finish the two tasks, i.e., Triest-IMPR, the processing
time (Uniformtime) is given as,

Uniformtime = Uniformun + Uniformtc, (10)

where Uniformun and Uniformtc are the processing times of pro-
ducing edge samples and counting triangles in the uniform
reservoir-based sampling method respectively. Thus, in contrast
to the existing method, T-Sample spends slightly more time
in non-uniform reservoir-based sampling to produce the same
number of edge samples in the base reservoir as those by the

existing method. However, Tnon−un is relatively small because
T-Sample’s non-uniform sampling only determines whether an
edge can enter a reservoir based on the given sampling prob-
ability. The experimental results of PIES in Section 2 confirm
that such non-uniform sampling spends very little time even
based on the whole graph stream. Therefore, T-Sample inher-
its the advantage of the short processing time of the existing
uniform reservoir-based sampling methods while preserving the
connectivity approximately of a large graph stream with a limited
memory usage.

4. Estimations for triangle counts and node degrees

In this section, we first propose a new, improved method to
count the total number of triangles based on T-Sample’s uniform
reservoir-based sampling process. Then, we prove that T-Sample
is able to produce connected edge samples, which is the basis for
uncovering information of the node degrees.

4.1. Triangle counts

To reduce the estimation errors and variances caused by exist-
ing triangle-counting approaches, we propose a new method to
count triangles, referred to as TS-Triangle. To better understand
TS-triangle and its comparisons with the state-of-the-art meth-
ods, the ideas of obtaining the ground-truth of triangle counts and
the estimation of the triangle counts via sampling are described
as follows.

The ground-truth of triangle counts. The key idea behind TS-
Triangle is to distinguish two ways triangles (△i) are formed by
the front i edges in a graph stream, i.e., those (△i−1) formed
exclusively by the front i−1 edges and those (△{i−1,i}) formed by
any two edges of the front i− 1 edges and the ith edge. The first
group of triangles can in turn be divided into two groups, those
formed exclusively by the front i− 2 edges and those formed by
any two edges of the front i−2 edges and the (i−1)th edge, and
this recursive process can continue for the front i− 3 edges, i− 4
edges, . . . , etc. Based in thus recursive way of triangle formations,
an iterative equation can be used to obtain the ground-truth of
triangle counts in a graph stream.

△
i
= △

i−1
+△

{i−1,i}
= △

c
+

i∑
j=c+1

△
{j−1,j}, (11)

where △i−1
= △

i−2
+ △

{i−2,i−1} and △i−2, △i−3, . . . , △c+1 can be
expressed in the same iterative way while △c is the number of
triangles formed by the front c edges.

The estimation of triangle counts via sampling. As the order
of computing △{c,c+1}, . . . , △{i−1,i} (i > c) is exactly the same as
that of a typical reservoir-based sampling method processing the
front i edges, the total number of triangles (△i) formed by the
front i edges can be obtained by the sum of triangles from the
(c + 1)th sampling step through the ith step. Thus, based on a
sampling method, the estimated value (labeled as △i

estimated) of △
i

is given as,

△
i
estimated =

n∑
i=3

∑
α∈△τ

i

E(λα)
p(△α)

, (12)

where △τ
i is the set of all triangles formed by any two sampled

edges from the front i − 1 edges and the ith edge and p(△α)
is the probability of the triangle α being formed by any two of
the front i − 1 edges and the ith edge. Furthermore, λα = 1
denotes the triangle α can be obtained by two sampled edges of
the front i − 1 edges and the ith edge, λα = 0 otherwise. Based
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on LEMMA 1 in [10], it is obvious that E(λα) = p(△α) and thus
E(△i

estimated) = △
i.

The estimation of triangle counts via T-Sample. To estimate
the triangle counts by T-Sample, it is necessary to obtain the
probability (p(△)T−Sample

i ) of the triangles formed by any two of
the front i − 1 edges and the ith edge during the T-Sample’s
process. As described in Lemma 1 in Section 3, each edge of the
front i − 1 edges in T-Sample’s uniform sampling process has
the same chance c

i−1 to be preserved in the base reservoir at the
time of the ith edge’s arrival. Thus, p(△)T−Sample

i = min{1, ( c
i−1 )

2
}

and the estimation of the total number of triangles, denoted by
△TS−Triangle, is given as,

△TS−Triangle =

n∑
i=3

mT−sample
i

p(△)T−Sample
i

, (13)

where mT−Sample
i denotes the number of triangles formed by the

edge samples obtained from the front i−1 edges and the ith edge
in T-Sample’s uniform sampling.

Although in this paper we focus on leveraging the total num-
ber of triangles to support a description of the overall connectivity
of a graph stream, the idea of counting the local triangles (△(µ)i)
that a specific node (µ) participates in among the front i edges
is similar to that of counting the global triangles (△i) (the total
number of triangles) in a graph stream as described in Eq. (11).
Once the probability of any triangle obtained from the front i
edges is estimated, TS-Triangle can be easily extended to estimate
△(µ)i using Eq. (13) by replacing mT−Sample

i with m(µ)T−sample
i

which denotes the number of triangles that a specific node (µ)
participates in and can be obtained from the edge samples.

Comparison with Triest-IMPR. As one of the most represen-
tative triangle-counting algorithms for large graph streams using
sampling methods, Triest-IMPR [13] has theoretically smaller es-
timation variance than other methods, such as Triest [13], Mas-
cot [10] and Neighbor-Sampling [22]. Since Triest-IMPR uses a
similar idea of iterative counting of triangles (Eq. (12)), it is neces-
sary for Triest-IMPR to compute the probability p(△α) (α ∈ △τ

i ).
In Triest-IMPR, the probability (p(△)Triest−IMPR

i ) of each triangle
being formed by two sampled edges from the front i−1 edges and
the ith edge is based on Lemma A.1 in [13] and the total number
of triangles (△i

Triest−IMPR) is expressed as,

△
i
Triest−IMPR =

n∑
i=3

mTriest−IMPR
i

p(△)Triest−IMPR
i

, (14)

where p(△)Triest−IMPR
i = min{1, c×(c−1)

(i−1)×(i−2) } and mTriest−IMPR
i is the

number of triangles formed by any two of the edge samples
among the (i − 1) edges and the ith edge in Triest-IMPR. Based
on how probability p(△)Triest−IMPR

i is inferred, Triest-IMPR does not
consider the specific sampling probabilities of the edges forming
the triangles, which increase the estimation errors and variances
as explained below.

Based on Eq. (12), the estimation variance of the total number
of triangles △τ can be given as,

Var(△i
estimated) = Var(

1
p(△)i

∑
α∈△τ

i

α)

=
1

p(△)i2
∑
α∈△τ

i

∑
β∈△τ

i

Cov(α, β)

=
1

p(△)i2
[

∑
α∈△τ

i

Var(α)+
∑
α∈△τ

i

∑
(β∈△τ

i α ̸=β)

Cov(α, β)]

(15)

According to Eq. (15), Var(α) = p(△)i−p(△)2i . If the two triangles
(α and β) do not share any edge, then Cov(α, β) = 0. Otherwise,

Cov(α, β) < p(α) − p(α) × p(β) = p(△)i − p(△)2i . Therefore, the
estimation variance of the total number of triangles is decided by
the probability p(△)i. The larger the p(△)i value, the smaller the
estimation variance is. According to the above description of T-
Sample and Triest-IMPR, when i > c+1, the relationship between
p(△)T−Sample

i and p(△)Triest−IMPR
i is given as,

p(△)T−Sample
i

p(△)Triest−IMPR
i

>
c × (i− 2)
(c − 1)× c

=
i− 2
c − 1

> 1. (16)

Thus, the following relationship is established,

Var(△i
TS−Triangle) < Var(△i

Triest−IMPR). (17)

4.2. Node degrees

The premise for estimating node degrees of a large graph
stream is that the obtained edge samples have connectivity. In
T-Sample, since the edge samples produced by uniform sampling
are rarely connected as discussed in Section 2, the actual con-
nectivity among the edge samples produced by T-Sample mainly
stems from the following two types of connectivity.

Connectivity between the edges preserved in the base reser-
voir and those in the incremental reservoir. Since the prerequi-
site for the edges entering Rincre is their connectivity with edges
in Rbase to form triangles, the edges being preserved in the in-
cremental reservoir must be connected with the edges currently
preserved in the base reservoir.

Connectivity among the edges preserved in the incremental
reservoir. If the incremental reservoir has zero or small capacity
after T-Sample’s process, meaning that the graph stream is very
sparsely connected, it is sufficient for the edges in the base and
incremental reservoirs to characterize the connectivity of a very
sparse graph stream. Otherwise, the edges in Rincre are indeed
connected as explained below.

Definition of the triangles that the edges in Rincre participating
in. Since the prerequisite for the ith edge being preserved in
Rincre, the ith edge must form triangles with the wedges in Rbase
at the time of the arrival of the ith edge. Note that a wedge is
a triangle with one of the latter’s edges removed. Let Rwedge be
the set of wedges in the base reservoir that can form triangles
with edges in the incremental reservoir with f edge samples,
i.e., Rwedge = Rt1

wedge ∪ · · · ∪ R
tf
wedge, where R

tj
wedge (0 ≤ j ≤ f ) is

the set of the wedges that can form triangles (R
tj
triangle) with the

jth edge entering Rincre at the time it enters, tj. Then Rtriangle =

Rt1
triangle∪· · ·∪R

tf
triangle (|Rtriangle| ≥ f ) is the set of all triangles formed

by wedges in Rwedge with edges in Rincre.
Three relationships based that the edges in Rincre are disconnected.

We observe that for any pair of disconnected edges in Rincre,
there are exactly three possible relationships between their cor-
responding wedges in Rwedge, as shown in Fig. 4, namely, sharing
no common nodes (Fig. 4(a)) (no repetitive nodes among the
nodes forming the triangles in Rtriangle), sharing one common node
(Fig. 4(b)) (no repetitive edges among the edges forming the
triangles in Rtriangle), and sharing one common edge (Fig. 4(c))
(one edge shared by two triangles in Rtriangle given the way that
triangles form).

Zero-probability that the edges in Rincre are disconnected. How-
ever, the probability of any triangle pair in Rtriangle satisfying
any of the three relationships, or equivalently, any edge pair in
Rincre being disconnected, is almost zero (zero-probability). The
analysis of the probability of the triangles in Rtriangle from the
perspective of edges to satisfy the relationships of (b) and (c) in
Fig. 4 is similar to that from the perspective of nodes to satisfy
the relationship in 4(a). Therefore, for simplicity, we take Fig. 4(a)
for example to explain the zero-probability of the edges in Rincre
being disconnected.
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Fig. 4. Three distinct edge-wedge relationships for triangles formed by any
pair of disconnected edges in Rincre and their corresponding wedges in Rwedge .
If all the triangles in Rtriangle formed between Rincre and Rwedge satisfy any of
these three edge-wedge relationships, the edges in the incremental reservoir
are disconnected.

Specifically, suppose there are M triangles that node µ partic-
ipates in the original graph stream, referred to as µ′s triangles.
Given the definition of the relationship shown in Fig. 4(a), only
one of µ′s triangle satisfying this particular relationship (sharing
no nodes between any triangle pair) can be in Rtriangle. However,
for µ′s M triangles, there are C0

M + · · · + CM
M = 2M groups of

triangles that can be in Rtriangle. Due to the arbitrary order of edges
in a graph stream, the probability peach of any triangle being in
Rtriangle can be considered the same. The probability pµ

(one) of only
one of µ′s triangles in Rtriangle to satisfy the relationship of Fig. 4(a)
is given as,

pµ

(one) =
C1
M

2M × peach × (1− peach)M−1. (18)

From Eq. (18), the larger M means the smaller pµ

(one). Suppose
µi has the minimum number (Mi) of triangles in the original
graph stream among the three nodes µi, νi and αi forming the
ith triangle △(µi, νi, αi) (0 < i ≤ |Rtriangle|) in Rtriangle. Thus, the
probability P(△)all of all the triangles in Rtriangle whose formations
satisfy the relationship of Fig. 4(a), is expressed as,

P(△)all <

i=|Rtriangle|∏
i=1

(pµi
(one)), (19)

where the meaning of pµi
(one) is similar to that of pµ

(one). As shown
in Eq. (18), pµi

(one) itself is a small value. For example, suppose
Mi = 1 for each i (0 < i ≤ |Rtriangle|), peach = 1 and |Rincre| = 10,
then |Rtriangle| ≥ 10, pµi

(one) = 0.5 and P(△)all < 0.510
≃ 0.

Furthermore, in an actual sampling process with T-Sample over
a graph stream representing a real-world application scenario
as described in Section 1 and evaluated in Section 5, Mi ≥ 1,
peach ≪ 1 and |Rincre| ≫ 10 that means P(△)all is very close to
zero. Therefore, the edge samples produced by T-Sample based
on the design of Section 3 are certain to be connected.

5. Evaluation

This section presents the evaluation of T-Sample based on ex-
tensive data-driven simulations. The objective of this evaluation
is to assess T-Sample’s efficacy on its connectivity estimations in
terms of triangle counts and node degrees (types and counts), in
comparison to baseline methods that represent the state of the
art.

Platform and Workload. The simulations are conducted on
a computer with Xeon(R) E5-2620 CPU which is running at
2.10 GHz and has 8 cores, 4 G memory space and 64-bit Ubuntu
Linux OS. Each experiment, which employs a single core with
at most 4 GB of RAM, entails 20 runs of the simulation so

Table 3
Summary of graph datasets, where |V |, |E| and △total denote the total numbers
of nodes, edges and triangles in a graph stream G = (V , E), respectively.
Graph |V | |E| △total

DBLP 317,080 1,049,866 2,224,385
Youtube 1,134,890 2,987,624 3,056,386
Live-journal 4,847,571 68,475,391 285,730,264
Orkut 3,072,441 117,184,899 627,577,371
Twitter 41,652,230 1,468,365,182 34,824,916,864
Friendster 65,608,366 1,806,067,135 4,173,724,142

that the results reported are statistically stable and meaningful.
T-Sample can be applied in many applications represented by
graph streams and we choose the most frequently used graphs to
evaluate the sampling method. The workload traces, summarized
in Table 3 and downloadable from [29] and [30] include six public
real-world graph datasets (graph streams) of which two each
contain more than a billion edges.

Baseline methods. From consideration of the low cost and
high accuracy of the existing sampling methods as described
in Table 1, the following state-of-the-art reservoir-based sam-
pling methods, GPS Post-Stream (GPS-Post) [8], Triest-IMPR [13],
GSH [9] and PIES [24], are chose as the evaluation baselines for
T-Sample. Although In-Stream (GPS-In), proposed in [8], shows
smaller estimation errors and variances than GPS-Post, it con-
sumes much more time than GPS-Post and thus is not selected
as a baseline. In GPS-Post, the weight of a newly arrived edge is
set as the number of the triangles formed by it and the edges
preserved in the reservoir thus far. This setting causes relatively
small estimation variances and errors for triangle counting, as
shown in [8]. All these sampling schemes are implemented in C++.

Capacity of the reservoir. As described in Section 3, for T-
Sample, the edge samples preserved in the base reservoir are
used to estimate triangle counts while those preserved in both
the base and incremental reservoirs are used to obtain infor-
mation on node degrees. However, for all the baseline methods,
only one reservoir is used to preserve edge samples. Therefore,
when estimating the triangle counts, the baseline methods set
the capacity of the reservoir equal to that of T-Sample’s base
reservoir, i.e., |Rbaseline| = |Rbase|. On the other hand, when the
baseline schemes are used to estimate the node degrees, there are
two cases for comparison with T-Sample in terms of estimation
accuracy, time and memory costs. In the first case, the capacity
of the reservoir for the baseline sampling schemes is set to be
the same as that of T-Sample’s base reservoir, which means that
T-Sample will use more total memory capacity to obtain infor-
mation about node degrees. The second case sets the reservoir
capacity for the baseline schemes to be the sum of those for the
base and incremental reservoirs of T-Sample, |Rbaseline| = |Rtotal| =

|Rbase| + |Rincre|.

5.1. Estimations on triangle counts

Simulation results on triangle counts are evaluated in two
metrics, estimation error and estimation variance.

1. Estimation error. Let Xtrue denote the ground truth of a
property X , Xt be the tth estimated value of X and XT the
mean estimated value of X after T simulation runs. The
estimation error of the property X after T simulation runs
is measured as: Err(XT ) = 1

T

∑T
t=1(

|Xtrue−Xt |
Xtrue

). T is set at 20

in this paper. The ground-truth values (Xtrue) of the triangle
counts over the five graph streams used in the evaluation
are given in Table 3 in the △total column and can also be
obtained from Eq. (11) of Section 4.
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Fig. 5. T-Sample’s estimation errors, Err(X20), over four different graph streams
as a function of base reservoir capacity (in terms of the number of edge samples).

Fig. 6. T-Sample’s confidence bounds over Orkut and Friendster as a function
of base reservoir capacity (in terms of the number of edge samples) with
Xestimated = X20(±1.96×

√
Var(X20)).

Fig. 7. The mean estimation errors and variances when these sampling methods
are used to estimate the triangle counts with |Rbaseline| = |Rbase| = {3× 103, 5×
103, 3× 104, 105

} respectively over the four datasets.

2. Estimation variance is used to evaluate the confidence
of the estimation results. The estimation variance of XT

(labeled as Var(XT )) is Var(XT ) =
∑T

t=1(
(Xt−XT )2

T ). As de-
scribed in [31], the high confidence bound of the estimation
value is computed as XT + 1.96×

√
Var(XT ) while the low

confidence bound is XT − 1.96×
√
Var(XT ).

For ease of describing the evaluation results among different
sampling methods, we simply use the name of a sampling method
to stand for a specific algorithm of counting the triangles. For
example, T-Sample uses the algorithm of TS-Triangle to count the
triangles, and thus we use the notation of T-Sample to describe
the experimental results of TS-Triangle. Figs. 5(a) and 5(b) show
that T-Sample estimates the total number of triangles with small
estimation errors ranging from 0.40 to 0.029, which decrease
with an increasing base reservoir capacity, over the four different
graph streams. Furthermore, Figs. 6(a) and 6(b) show that the
confidence intervals are small. For example, Fig. 6(b) shows that
the high confidence ranges from 1.01 to 1.98 while the low confi-
dence ranges from 0.6 to 0.97 over Friendster. Importantly, both
the high and the low confidence intervals are decreasing with an
increasing base reservoir capacity over Orkut and Friendster.

Fig. 8. The node-degree types inferred by edge samples as a function of the
based reservoir capacity (in terms of the number of edge samples), over Youtube
and Orkut with |Rbaseline| = |Rbase| and |Rbaseline| = |Rtotal| respectively.

Comparisons with the baselines. As explained in Section 2,
since PIES cannot be used to estimate the triangle counts, the
baseline methods for T-Sample include GPS-Post, Triest-IMPR and
GSH. Fig. 7(a) shows that T-Sample can estimate the counts of
triangles with 71.4%, 51%, 9.6% and 2% more accuracies than the
best performance of the baseline methods over DBLP, Youtube,
Orkut and Twitter. Due to the small size of DBLP and the limited
number of sampling times, Fig. 7(b) shows T-Sample just exhibits
56.7% larger estimation variance than Triest-IMPR. Furthermore,
Fig. 7(b) shows that T-Sample has 27.6%, 56.4% and 40.6% re-
spectively smaller variances than the method that performs the
best among GPS-Post, Triest-IMPR and GSH over the other three
datasets while T-Sample has 2.8, 105 and 4110 times respectively
more accuracies than the worst performance of the baseline
methods.

5.2. Estimations on node degrees

In this paper, we evaluate node degrees in terms of node-
degree types and node-degree counts described as follows.

Node-degree types refer to the different node degrees (i.e.,
type i means node degree of i) of a graph stream inferred by
the sampled edges and its inference accuracy is measured by the
node coverage, i.e., the total number of nodes of all degree types
inferred by the edge samples in the original graph stream (G)
divided by the total number of the nodes in G. Note the number
in the nominator of this division can be determined from the
graph dataset given all the inferred node-degree types, and the
denominator is directly given in the dataset. These measures are
collectively used to indicate how closely can the edge samples
infer specific and local connectivity. For example, with |Rbaseline| =

|Rbase| = 7000, Figs. 8(a) and 8(b) show that T-Sample obtains at
least 2.45 and 6 times more node types than the baseline methods
over Youtube and Orkut. Furthermore, given a fixed capacity of
the base reservoir, Figs. 8(a) and 8(b) show that T-Sample obtains
on average 12 times more node-degree types than the four base-
line methods over Youtube and Orkut when |Rbaseline| = |Rbase|.
Figs. 8(c) and 8(d) further show that T-Sample still produces on
average 5.6 times more node-degree types than the four baseline
methods over Youtube and Orkut when these methods consume
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Fig. 9. The percentage coverage of node-degree types inferred by edge samples
as a function of the base reservoir capacity (in terms of the number of edge
samples), over Youtube and Live-journal with |Rbaseline| = |Rbase| and |Rbaseline| =

|Rtotal| respectively.

the same total memory as T-Sample (|Rbaseline| = |Rtotal|). For
example, |Rbaseline| = |Rtotal| = 16400, T-Sample can obtain 0.41
times more node types than GPS-Post, Triest-IMPR, GSH and PIES
over Youtube.

Furthermore, Fig. 9 shows that T-Sample can cover a much
higher percentage of nodes whose connectivity can be inferred
by edge samples from the perspective of node-degree types over
Youtube and Orkut, whether |Rbaseline| = |Rbase| or |Rbaseline| =

|Rtotal|. For example, Figs. 9(c) and 9(d) show that the percentage
of nodes covered by all node-degree types obtained by T-Sample
is more than 98% of all nodes of the original graph stream by
using a base reservoir whose capacity is only a tiny fraction of the
volume of the original graph stream (i.e., 0.1% of the total volumes
over Youtube and 0.03% over Live-journal). With the increase of
the sample size over the two datasets, the four baseline methods
can produce higher node coverages of node-degree types but still
at levels lower than T-Sample, as shown in 9(c) and Fig. 9(d).
Besides, GPS-Post shows the best node coverages of node-degree
types among the four baseline methods because it considers
the connectivity during the sampling process as described in
Section 2.

Node-degree counts refer to the numbers of nodes with dif-
ferent node degrees and are measured by the distributions of
node-degree types inferred by edge samples (or the ground truth
from the dataset) among the nodes in a graph stream. This mea-
sure indicates how closely the node-degree counts inferred by
edge samples reflect the ground truth with a very small sample
set. Fig. 10 shows that, whether |Rbaseline| = |Rbase| (104 in Youtube
and 105 in twitter) or |Rbaseline| = |Rtotal| (2.5 × 104 in Youtube
and 5×105 in twitter), T-Sample obtains the node-degree counts
that are much closer to the ground-truth values than the four
baseline methods, as measured in the complementary cumula-
tive distribution function (CCDF), over YouTube and Twitter. For
example, Fig. 10(a) shows that the respective distributions with
degree > 20, the ground-truth, T-Sample, GPS-Post, Triest-IMPR,
GSH and PIES are 0.03853, 0.0378, 0.00581, 0.00051, 0.000568
and 0.00027. Figs. 10(b) and 10(d) also show T-Sample can ob-
tain the degree distribution closer to the ground-truth value
than the baseline methods. Furthermore, the node-degree counts

Fig. 10. The distributions of node-degree counts over Youtube and Twitter with
|Rbaseline| = |Rbase| and |Rbaseline| = |Rtotal| respectively. Note that each data point
(x, y) in the figures indicates that 100 × y% of nodes are of degree equal to or
smaller than x.

Fig. 11. The total reservoir capacities (in terms of the number of edge samples)
of T-Sample as a function of the base reservoir capacity for the four graph
streams.

distributions obtained by the baseline methods do not change
significantly with the increase of the sample size, as shown in
Fig. 10, because these methods are not able to produce connected
edge samples.

5.3. Memory costs

Fig. 11 shows the total reservoir capacities used by T-Sample
for the four different graph streams as a function of the base
reservoir capacity, suggesting that the higher the capacity of the
base reservoir, the more memory usage T-Sample consumes. On
the other hand, the total capacity is also affected by the specific
connectivity of a graph stream. For example, Fig. 11(b) shows
that the Twitter graph stream consumes more memory than the
Friendster graph stream while the total volumes of the former is
smaller than that of the latter, because the former is much more
densely connected than the latter as reflected by their triangle
counts.

5.4. Processing time

Fig. 12 shows that GPS-Post consistently consumes much more
time than the other methods over Orkut because it employs
the time-consuming weighted setting (Section 2). Furthermore,
GPS-Post consumes more time than that reported in [8] because
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Fig. 12. The processing time over Orkut with |Rbaseline| = |Rbase| and |Rbaseline| = |Rtotal| respectively.

the experiments in [8] used much more CPUs (i.e., 16 cores of
two Intel Xeon E5-2687 W 3.1 GHz CPUs) than those in this
paper (i.e., one core of one Intel(R) Xeon(R) CPU). Besides, GSH’s
processing time is slightly less than T-Sample and Triest-IMPR,
while it causes larger estimation errors and variances on triangle
counts as shown in Fig. 7. Because PIES only preserves the edge
samples without estimating triangle counts, it thus consumes the
least amount of time among all methods. For the same capac-
ity of base reservoir, Fig. 12(a) shows that T-Sample consumes
slightly more time than Triest-IMPR, Fig. 12(b) shows the exact
opposite. Considering the superior estimation results of T-Sample
on both node degrees and triangle counts, T-Sample is much
more cost-effective than the baseline methods. For example, T-
Sample obtains at least 7 times more node-degree types with
|Rbase| = 104 and |Rtotal| = 3 × 104 than PIES with |Rbaseline| =

{105, 2.9×105
} respectively while it costs at most 1.5X more time

than PIES.
According to the energy expression Q = P × T , where Q

refers to the consumed energy, P refers to the power rating of the
used machines and T is the time cost of the evaluated algorithm,
the more processing time means the more energy consumed by
the algorithm. Therefore, from Fig. 12, we can infer that GPS-
Post consistently consumes much more energy than the other
methods while PIES consumes the least energy among the five
methods and the remaining three methods consumes similar
energy. From consideration the estimation accuracy, T-Sample
performs better than the baseline methods as T-Sample obtains
7 times more node-degree types at the cost of 1.5X more energy
than PIES.

6. Conclusions

In this paper, we make the same assumption as that by
many existing reservoir-based sampling methods [8–10,13,22],
that each edge in a graph stream is stored for only one time
and the deleted edges are no longer stored to reduce the storage
overhead. This is a reasonable assumption, particularly for graph
streams used to express the current relationships among the
users of social networks, the molecules in bioinformatics and
the nodes in large computer networks where the volumes of
the edges are always increasing while the relatively insignificant
number of deleted edges will not likely change the connectivity of
the graph streams fundamentally. Thus, when the data in applica-
tions (i.e., online social networks, attributed networks, computer
networks and biological networks) is preserved in the form of
edge streams [32], the reservoir-based sampling methods can be
employed to characterize the applications. On the other hand,
when the graphs are organized in the form of nodes and their
respective neighbors, other sampling methods oriented towards
nodes will be more effective to estimate the properties of graphs.

Furthermore, we propose a new reservoir-based sampling
method, called triangle-induced sampling or T-Sample. Signif-
icantly different from existing reservoir-based sampling meth-
ods that produce rarely connected edge samples, T-Sample is

a first attempt at counting the triangles accurately by inferring
the probability of the triangles formed by the edge samples
of the graph stream precisely while simultaneously inferring
information about the node degrees with a limited memory
usage by producing connected edge samples. Extensive dataset-
driven experimental results show that T-Sample can estimate
the triangle counts even 50% more accurate than the baseline
methods and meanwhile can obtain more than 90% node-degree
types at smaller time and memory costs.

7. Future work

Graph sampling is a broad concept and one specific sampling
technique cannot characterize all the properties of graphs in any
forms. Therefore, many researches in the field of graph sampling
can be further proceeded. From the perspective of graph storages,
this paper aims at graphs in the form of streams to count triangles
and estimate node degrees. In the future, we would pay attention
to developing sampling techniques to characterize other forms of
graphs, such as online social network and attributed networks are
preserved in adjacency lists. From the perspective of estimation
goal, this paper is to characterize edge connectivity in terms of
triangle counts and node degrees, other forms of connectivity,
such as motif estimation, link prediction and so on would be
studied. Furthermore, from the perspective of real applications,
T-Sample can perform well in the graph streams which may add
connectivity during the sampling process. However, the data in a
large graph can be added or deleted, for example, the friendship
in social networks can be added or removed, and we would
design sampling techniques to deal with fully dynamic graphs.
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