
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020 4587

GC-Steering: GC-Aware Request Steering and
Parallel Reconstruction Optimizations

for SSD-Based RAIDs
Suzhen Wu, Member, IEEE, Weidong Zhu, Student Member, IEEE, Yingxin Han, Hong Jiang , Fellow, IEEE,

Bo Mao , Member, IEEE, Zhijie Huang, Member, IEEE, and Liang Chen

Abstract—Solid-state disk (SSD)-based redundant array of
independent disks (RAIDs) have been widely deployed in high-
end enterprize systems to provide high-performance and highly
reliable storage for data-intensive computing. However, SSD-
based RAIDs suffer from significant performance degradation
whenever user I/O requests conflict with the ongoing garbage col-
lection (GC) operations which introduce tail latency. Moreover,
the performance characteristics of SSDs make the traditional
HDD-based RAID reconstruction algorithms are not compati-
ble with or suitable for SSD-based RAIDs. In this article, we
proposed GC-aware request steering (GC-Steering), a scheme
aware of the GC process within an SSD-based RAID, to signifi-
cantly boost the performance and reliability of SSD-based RAIDs.
GC-Steering effectively outsources the popular read requests and
all write requests addressed to the SSD currently in the GC state
to a staging space, such as a dedicated spare SSD or the reserved
space of each SSD within the RAID. GC-Steering also accelerates
the performance of the failure-recovery process by both request
steering and parallel recovery. Our extensive evaluations on a
lightweight GC-Steering prototype driven by HPC-like and real-
world enterprize workloads show that the GC-Steering scheme
significantly reduces the average response time by an average of
63.3% and 65.8%, compared with the state-of-the-art local GC
and global GC schemes. Moreover, the GC-Steering scheme also
significantly reduces the average response times by an average
of 62.3% during RAID reconstruction than the normal state.

Index Terms—Garbage collection (GC), parallel reconstruc-
tion, request steering, solid-state disk (SSD)-based redundant
array of independent disks (RAIDs).

Manuscript received May 22, 2019; revised July 29, 2019, October 13,
2019, and December 13, 2019; accepted February 7, 2020. Date of publication
February 17, 2020; date of current version November 20, 2020. This work was
supported in part by the National Natural Science Foundation of China under
Grant U1705261, Grant 61972325, Grant 61872305, and Grant 61702569, in
part by U.S. NSF under Grant CCF-1704504 and Grant CCF-1629625, and in
part by the Fuzhou Science and Technology Project under Grant 2019-G-55.
This article was recommended by Associate Editor C. Yang. (Corresponding
author: Bo Mao.)

Suzhen Wu, Weidong Zhu, and Yingxin Han are with the Computer
Science Department, Xiamen University, Xiamen 361005, China (e-mail:
suzhen@xmu.edu.cn).

Hong Jiang and Zhijie Huang are with the Computer Science and
Engineering Department, University of Texas at Arlington, Arlington, TX
76019 USA (e-mail: hong.jiang@uta.edu).

Bo Mao is with the Software School, Xiamen University, Xiamen 361005,
China (e-mail: maobo@xmu.edu.cn).

Liang Chen is with the College of Engineering, Fuzhou Institute of
Technology, Fujian 350506, China.

Digital Object Identifier 10.1109/TCAD.2020.2974346

I. INTRODUCTION

ACCORDING to IDC’s latest report on the enterprize
storage market, the flash-based storage category gen-

erated $2.1 billion in sales during the first quarter of 2018
which is a year-over-year increase of nearly 55 percent, out-
pacing the overall enterprize storage market [1]. Flash-based
solid-state disks (SSDs) have emerged as alternatives to hard
disk drives (HDDs), increasingly replacing or coexisting with
HDDs in desktops, enterprize storage systems, and large-scale
data centers [2]–[4]. Flash-based SSDs are made of semicon-
ductor chips which offer many benefits, such as low-power
consumption, high robustness to vibrations and temperature,
and most importantly, high small-random-read performance.
However, SSDs also have some disadvantages compared with
HDDs, such as high cost per GB, the garbage collection (GC)
induced performance degradation and the limited number of
program/erase (P/E) cycles [5].

Besides the read and write operations that are common in
both HDDs and SSDs, GC is a key operation which is time-
consuming within flash-based SSDs. Generally speaking, the
granularity of a read or write operation is a page (2 KB–4 KB),
and an erase operation, which generally writes all 1 s, is a
block (128 KB–256 KB) consisting of multiple pages (e.g.,
64 or 128). The processing time of an erase operation is an
order of magnitude more than that of a read or write oper-
ation [5], [6]. On the other hand, the flash translation layer
(FTL) within SSDs performs out-of-place writes instead of
in-place write that HDDs use, which results in a large num-
ber of invalid pages within flash blocks. To free up more flash
space for subsequent write data, these blocks are selected to be
erased by the GC operation. It first copies all the valid pages
in a victim block into a free block and then erases the vic-
tim block, which is an obviously time-consuming process. The
user I/O performance is significantly affected by the GC oper-
ations due to the severe contention between the external user
I/O requests and the internal GC-induced requests [7]–[11].
Moreover, the internal GC-induced performance degradation
is also the primary cause of slowdowns for flash-based storage
systems, which can cause significant tail latency [12], [13].

Along with the increasing requirements of the performance,
capacity, and reliability of the high-performance computing
and enterprize storage systems, applying the redundant array
of independent disks (RAIDs) [14] algorithm to SSD-based

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-4819-4583

4588 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

disk arrays is promising and feasible [15], [16]. Though the
disks within a disk array are independent, the performance
is restricted by the slowest device in the array. Therefore,
the intermittent GC operations of the individual SSDs within
an SSD-based RAID will cause serious performance variabil-
ity and degradation [12], [17], [18]. Kim et al. [19] found
that the uncoordinated GC operations of the individual SSDs
significantly degraded the performance of SSD-based RAIDs.

Moreover, recent studies have revealed that flash-based
disks also show significant probability of failures in large-scale
data centers. The analysis on the data collected over a period
of nearly four years from a majority of flash-based SSDs at
Facebook data centers reveals that SSD failures are relatively
common events with 4.2%–34.1% of SSDs reporting uncor-
rectable errors [20]. Another study on flash reliability based
on the data collected over a six-year period on SSDs used in
Google data centers finds that 1%–2% of flash-based SSDs
are replaced annually due to the suspected hardware problems
over the first four years in the production [21]. These failure
studies also imply that it is important and urgent to investi-
gate and improve the failure-recovery process for SSD-based
RAIDs.

To address both the performance and reliability issues of
SSD-based RAIDs alluded to above, we propose GC-aware
request steering (GC-Steering) scheme that is aware of the GC
process within an SSD-based RAID. The main idea behind
GC-Steering is to fully exploit the workload characteristics
and utilize the prereserved space (e.g., staging space, such
as a dedicated SSD or the reserved space of each SSD within
RAID) in an SSD-based RAID to alleviate the negative impact
of the GC/recovery operations on the system performance
and reliability. GC-Steering proactively migrates “hot” read
data to the staging space, thus the subsequent read requests
addressed to an SSD currently in the GC state can be alterna-
tively serviced by the staging space without being interfered
with the ongoing GC process. For the incoming write requests
addressed to an SSD currently in the GC state, GC-Steering
temporally stores them to the staging space. As a result, the
contention between the external user I/O requests and the
internal GC/recovery-induced I/O requests is significantly alle-
viated, if not completely eliminated. Moreover, the recovery
performance is also significantly accelerated because: 1) the
contention between user I/O requests and reconstruction-
induced I/O requests is alleviated by temporarily redirecting
all write requests and popular read requests originally target-
ing at the degraded SSD-based RAID to the staging space and
2) the parallel access characteristics of flash-based SSDs are
exploited during the failure-recovery process.

We implement a lightweight prototype of GC-Steering by
integrating it into the Linux software RAID module. To assess
the effectiveness of the GC-Steering scheme, we conduct
extensive trace-driven experiments driven by a wide range of
HPC-like and realistic enterprize workloads. The evaluation
results show that the GC-Steering scheme reduces the aver-
age response times than the local GC (LGC) and global GC
(GGC) schemes by an average of 63.3% and 65.8%, respec-
tively. Moreover, the GC-Steering scheme also significantly
reduces the average response times by an average of 62.3%

during the failure recovery period than that during the normal
state.

In summary, this article makes the following contributions.
1) By fully exploits the workload characteristics and uti-

lizes the staging space in SSD-based RAID, GC-Steering
alleviates the negative impact of the GC operations on
the performance and reliability of SSD-based RAIDs.

2) To the best of our knowledge, GC-Steering is the first
study on fully understanding and improving the failure-
recovery process in SSD-based RAIDs. It improves
the reconstruction efficiency by the proposed request
steering and parallel recovery techniques.

3) We conduct extensive experiments on a lightweight GC-
Steering prototype and the evaluation results show that
GC-Steering significantly reduces the average response
times in both normal operational period and reconstruc-
tion period, thus improving both the performance and
reliability of SSD-based RAIDs.

The remainder of this article is organized as follows.
Background and motivation are presented in Section II.
We describe the design details of the GC-Steering scheme
in Section III. The performance evaluation is presented in
Section IV. The related work is presented in Section V. We
conclude this article and point out the directions for future
research in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe how GC operations affect
the performance SSD-based storage. Then we elaborate on
why the existing failure-recovery algorithms of HDD-based
RAIDs are not suitable for SSD-based RAIDs. We conclude
the section by presenting and analyzing the workload charac-
teristics to motivate our proposed new scheme for SSD-based
RAIDs.

A. Adverse Impact of GC on SSD-Based Storage

Due to the unique physical features of NAND flash, read, and
write operations are performed on a minimal unit of page while
erase operations are performed on a unit of block. Especially,
write requests are serviced out-of-place rather than in-place
since data can only be written to erased pages (also known as,
free pages), where the in-place (before-write) pages become
invalid (stale) after out-of-place write operations. At some
point, invalid pages in a block, called a victim block, must
be freed by copying (read followed by write) the data in the
valid pages in that block into a free block, before the vic-
tim block is erased and made available for subsequent write
data. This process is known as the GC process that signifi-
cantly affects the user I/O performance of SSD-based storage
systems [7], [13], [22], [23]. Fig. 1(a) shows the microscopic
analysis of the average response times driven by the Financial
workload on a single SSD. The SSD is filled up before the
evaluations and we can see that larger latencies are occurred
due to the frequent GC operations.

On the other hand, due to the limited number of erase
cycles of each memory cell in a block, GC also signifi-
cantly affects the reliability (endurance) of flash-based SSDs.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4589

(a) (b)

Fig. 1. Example of the performance impact of GC operations on a (a) single
SSD and (b) SSD-based RAID5.

Generally, a single-level-cell (SLC) memory cell can withstand
up to 100 000 write cycles (or erase cycles) before failing
while a 2-bit multilevel-cell (MLC) memory cell can typi-
cally withstand up to 10 000 write cycles before failing [5].
What is worse, a 3-bit triple-level-cell (TLC) memory cell can
only sustain about 1000 write cycles before failing, meaning
that the write endurance of TLC flash is much lower than
that of SLC/MLC flash chips. Therefore, how to address the
GC-induced performance and reliability problems has become
a critically important challenge when deploying flash-based
SSDs into HPC and enterprize storage systems.

This negative GC impact on an SSD-based RAID is
arguably much more significant than on an individual
SSD [24]–[26]. For example, the frequency of GC operations
in an SSD-based RAID consisting of multiple SSDs, say N,
is at least N times higher than that in the latter. Consequently,
user I/O requests have a much higher probability to be blocked
or interfered with GC-induced internal I/O requests. Previous
study by Kim et al. [19] has revealed that the uncoordinated
LGC process on individual SSDs in an SSD-based RAID
degrades the whole system performance and causes a serious
performance variability of SSD-based RAIDs. Fig. 1(b) shows
an example which depicts how the default LGC scheme affects
the performance of SSD-based RAIDs. In an extreme case,
such as one illustrated in the figure, the uncoordinated but
consecutive occurrences of the GC processes among the indi-
vidual SSDs can render the SSD-based RAID in the degraded
performance state almost all the time. The performance vari-
ability will no doubt lead to service level agreement (SLA) and
service level objective (SLO) violations, thus directly affect-
ing the system availability [27]. Moreover, the GC-induced
performance degradation also causes significant tail latency
problem [28]–[30].

The first solution to address the problem is GGC proposed
by Kim et al. [19] which forces all the SSDs in an SSD-
based RAID to initiate the GC operations at the same time.
However, GGC makes the SSD-based RAID unavailable for
the incoming user I/O requests during the GC period. The
reason is that all the SSDs in an SSD-based RAID are busy
with dealing with the internal GC operations and have no free
resources to service the external user I/O requests. Although
GGC can guarantee a much longer high-performance period, it
introduces many unavailable periods for the end users, which
also lead to SLA and SLO violations for many applications,
particularly those required to be available 24/7. Thus, it is
desirable to design a new SSD-based RAID scheme to be

available to service the user I/O requests all the time. The
key challenge is to reduce the interference between the exter-
nal user I/O requests and the internal GC/recovery-induced
internal I/O requests.

B. Failure-Recovery for SSD-Based RAIDs

Failure recovery is critically important for RAID in case
of a disk failure. Existing failure recovery algorithms are
mainly designed for HDD-based RAIDs. For HDDs, sequen-
tial read/write operations are much faster than their random
counterparts. Thus, existing failure-recovery algorithms try to
make the reconstruction I/O requests sequential on HDDs
within HDD-based RAIDs. However, different from HDDs,
flash-based SSDs are made of semiconductor chips and have
abundant internal access parallelism [31]. By exploiting the
internal parallelism of flash-based SSDs, random accesses
can be performed much more efficiently on SSDs than on
HDDs [32], [33]. Moreover, flash-based SSDs have the read-
write performance asymmetry, in which the read performance
is much higher (about 10×) than the write performance. It
implies that the hot-spare SSD for replacement during RAID
reconstruction will likely become a performance bottleneck
when the lost data is regenerated and written to it from the
relevant data read (in parallel) from all the active SSDs.

On the other hand, a recent Samsung report reveals that
failures of flash-based SSDs typically occur in the SSD con-
troller rather than in the individual silicon chips [34]. The
SSD controller failure makes the whole SSD unusable and
thus triggering the RAID reconstruction process immediately
within SSD-based RAIDs. Some studies on the data collected
from a large number of flash-based SSDs installed in both
Facebook data centers and Google data centers reveal that SSD
failures are common events with 4.2%–34.1% of SSDs report-
ing uncorrectable errors and 1%–2% of SSDs being replaced
annually due to suspected hardware problems [20], [21]. These
studies and findings make it abundantly clear why it is crit-
ically important and urgent to accelerate the failure-recovery
process for SSD-based RAIDs.

C. Trace Characteristics and Motivation

It is important to understand the workload characteristics for
the storage system design, particularly for flash-based storage
systems where the unique features of flash memory and their
interactions with workloads accentuate this importance [35].
For this purpose, we categorize and differentiate flash pages
into the following three distinct types based on how data stored
in a page is accessed by the applications.

1) Read Intensive Data (RI): If almost all the accesses
(>90%) to a data page are read requests, this page is
defined as RI.

2) Write Intensive Data (WI): If almost all the accesses
(>90%) to a data page are write requests, this page is
defined as WI.

3) Mixed Data (MIX): If the accesses to a data page are
interleaved with read requests and write requests, this
page is defined as MIX.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 2. Distribution of (a) read and (b) write requests on the three types of
data pages in MSR traces.

TABLE I
WORKLOAD CHARACTERISTICS

Fig. 2 shows the access patterns on these three types of
data pages in Microsoft Research Cambridge (MSR) traces
as that shown in Table I. Fig. 2(a) illustrates the distribu-
tion of read requests among the RI data pages and MIX data
pages and Fig. 2(b) shows the distribution of write requests
among WI data and MIX data pages. The bars are not 100%
means that some write requests may update the RI data
pages (Write_Access_to_RI_Data) and some read requests
may access the WI data pages (Read_Access_to_WI_Data),
due to the RI and WI data are defined to be 90%, not 100%.
We can see that an average of 89.8% read requests access
the RI data pages and an average of 95.5% write requests
access the WI data pages. Only a small portion of the requests
access the MIX data pages. These observations are also con-
sistent with those reported in the previous studies [36]–[38].
More importantly, these findings on the workload character-
istics imply that the hot read data blocks are not frequently
updated by write requests.

Based on the above analysis and device characteristics of
flash-based SSDs and SSD-based RAIDs in HPC and enter-
prize environments, it is clearly that the design of SSD-based
RAIDs is fundamentally different from that of HDD-based
RAIDs to significantly improve performance and reliability of
SSD-based RAIDs. This, combined with awareness and under-
standing of the workload characteristics, motivates design of
GC-Steering that proactively migrates the hot data blocks
within an SSD-based RAID to a prereserved space (e.g., a
staging space, such as a dedicated SSD or the reserved space
within individual SSDs of RAID) to significantly alleviate,
if not entirely eliminate, the contention between the exter-
nal user I/O requests and the internal GC/recovery-induced
I/O requests. Moreover, the internal parallelism of flash-based
SSDs should be fully exploited to further accelerate the failure
recovery process. This helps improve the user I/O performance
and RAID failure-recovery efficiency simultaneously.

Fig. 3. System overview of GC-Steering within the RAID controller software
for SSD-based RAIDs.

III. DESIGN OF GC-STEERING

In this section, we first present a system overview of GC-
Steering, followed by a description of the GC-aware request
processing and the parallel reconstruction workflows in GC-
Steering. The data consistency issues are discussed at the end
of this section.

A. System Overview

The design objectives of GC-Steering are to improving
both the performance and reliability of SSD-based RAIDs by
addressing GC/recovery-induced interference. To achieve the
goals, the main idea behind GC-Steering is to temporarily redi-
rect the popular read requests and all write requests originally
addressed to any SSD in the GC state to a staging space,
thus significantly reducing the contention between the exter-
nal user I/O requests and the internal GC/recovery-induced I/O
requests. Furthermore, by redirecting many I/O requests away
from the degraded SSD-based RAID to the staging space dur-
ing RAID reconstruction and exploiting the parallelism within
flash-based SSDs, both the user performance degradation and
reconstruction performance degradation caused by the failure-
recovery process can be alleviated. Currently, GC-Steering is
based on SSD-based RAID5 organization.

Fig. 3 shows a system overview of GC-Steering. In our
design, GC-Steering can be incorporated into any existing
SSD-based RAID schemes, such as hardware RAID and soft-
ware RAID. As an example, Fig. 3 illustrates how GC-Steering
is augmented to the RAID controller software with five key
functional components: 1) administration interface; 2) popular
data identifier; 3) staging space manager; 4) request redi-
rector; and 5) reclaimer. Administration Interface provides
an interface for system administrators to configure the GC-
Steering design options. Popular Data Identifier is responsible
for monitoring the popularity of read data blocks to help
Staging Space Manager migrate popular read data blocks to
the staging space. Staging Space Manager is responsible for
migrating popular data blocks from the operational SSD-based
RAID to the staging space and managing the data layout of
the redirected data in the staging space. Request Redirector
is responsible for redirecting all write requests and popular

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4591

Fig. 4. Data structures of GC-Steering.

read requests to the staging space during GC and reconstruc-
tion periods, while Reclaimer is responsible for reclaiming
the write data back to the SSD-based RAID after the GC or
reconstruction process completes.

To provide a flexible design space, the staging space can
be different persistent configurations of SSD-based storage
devices. For example, the persistent configurations can be a
dedicated SSD or the reserved space of each SSD within an
SSD-based RAID. Moreover, in order to recover data on the
failed disk to the staging space during RAID reconstruction,
the size of the staging space must be the same or larger than
that of an SSD within the RAID. The staging space also can
be shared by multiple RAIDs within the data center. In what
follows, we will illustrate the workflow based on these two
design configurations. Moreover, GC-Steering is automatically
activated when an SSD starts to process the GC operation or
when the reconstruction thread is initiated, and is deactivated
when all write data in the staging space is reclaimed back
to the SSD-based RAID. Thus, GC-Steering does not signifi-
cantly affect the normal operations and is deactivated during
the normal period for SSD-based RAIDs.

B. Data Structures

Two important data structures are designed in GC-Steering
to record the redirected data blocks and identify popular read
data, namely, D_Table and R_LRU, as shown in Fig. 4. The
first data structure is D_Table which is a log table to manage
the redirected data in the staging space. It contains the logs of
all redirected data blocks, including the following important
variables.

1) D_Offset and R_Offset indicate the offsets of the redi-
rected data block in the SSD-based RAID and the
staging space, respectively.

2) Length indicates the length of the redirected data block.
3) Flag indicates whether it is redirected read data block

from the SSD-based RAID (Flag is set to be false) or
redirected write data block from the user application
(Flag is set to be true).

The second data structure is R_LRU which is an LRU-style
list to identify the popular read data blocks on each SSD. It
stores the information (i.e., D_offset and Length of read data)
of the most recently read requests for each SSD within the
SSD-based RAID. Based on R_LRU, the popular read data
can be identified and proactively migrated to the staging space.
In order to reduce the space overhead of the staging space, not
all popular read data blocks within the SSD-based RAID are
migrated. In our current design, only up to 10% of popular data
blocks are migrated. Moreover, when the popular data blocks
in the SSD-based RAID are read by user applications, they

(a) (b)

Fig. 5. I/O processing workflow and the data layout in GC-Steering. (a) I/O
processing workflow. (b) Data layout in GC-Steering if the staging space is
the reserved space of each SSD within RAID.

are concurrently migrated to the staging space and D_Table is
accordingly updated with Flag set to false. Thus, the migration
overhead of popular data blocks is reduced without affecting
the system performance of the SSD-based RAID.

C. GC-Aware Request Processing Workflow

GC operations within SSD-based RAIDs conflict with the
user requests directly and degrade the system performance.
When an SSD within the SSD-based RAID is dealing with
the GC operation, the incoming user I/O requests addressed
to that SSD are checked to determine whether they should be
issued to that SSD or the staging space. Fig. 5(a) shows the
request processing workflow in GC-Steering for an incoming
read request, assuming that SSD 4 is currently in the GC state.
For a read request, GC-Steering first checks whether there is an
entry associated with the requested data in D_Table or not. If
such an entry is found in D_Table, the read request is serviced
by the staging space. If not, the read request is processed by
the SSD-based RAID. On the other hand, for a read request
that is not addressed to the SSD in the GC state, it is directly
serviced by the corresponding SSDs within the SSD-based
RAID. R_LRU is updated accordingly to record the popular
read data.

Fig. 5(a) also shows how GC-Steering deals with the incom-
ing write requests. For the write requests, if they are addressed
to the SSD currently in the GC state, GC-Steering uses the
write redirection scheme to temporarily store the write data
in the staging space. A write request addressed to the SSD
currently in the GC state is replaced by a write request to
the staging space. In order to maintain the reliability of the
redirected write data, GC-Steering concurrently updates the
corresponding parity to its correct position in the same stripe
in the SSD-based RAID. In this case, if the redirected write
data in the staging space is lost, it can be reconstructed from
the surviving SSDs within the SSD-based RAID. When a
write request is redirected to the staging space, a correspond-
ing entry is created and added to D_Table. Consequently, the
incoming read requests must be checked first in D_Table to
keep the fetched data always up-to-date. The entry in the
D_Table will be deleted upon the write data is reclaimed back
to the SSD-based RAIDs.

The data distribution is different in case of different staging
space configurations. If the staging space is configured as a
dedicated SSD, the data layout is the same as that shown in

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 5(a). If the staging space is the reserved space in each
SSD within the SSD-based RAID, the data layout is quite
different. Fig. 5(b) shows how the read data and write data
are stored in the reserved space of each SSD within RAID.
First, the hot read data is stored in an interleaved fashion
and organized in an RAID0-style for performance. Since the
loss of the hot read data in the staging space does not cause
data failure, RAID0, which does not incur any write ampli-
fication, is suitable for guaranteeing high performance and
high reliability. Second, the write data is also stored in an
interleaved way but organized in an RAID1-style for redun-
dancy. RAID1 can provide high reliability against an SSD
failure. Upon the failure of an SSD within RAID, the redi-
rected write data in the reserved space of that SSD can be
correctly recovered from its mirroring SSD. Although RAID1
has lower storage efficiency than RAID5, the staging space is
only used temporally to store the redirected write data during
GC or RAID reconstruction period, thus incurring low storage
overhead.

Upon the completion of the GC operations within SSDs, the
redirected write data in the staging space will be reclaimed
back to its correct location in RAID. Since the correspond-
ing parity has already been updated in its correct position
when the write data is redirected to the staging space, GC-
Steering does not need to consider the corresponding parity
when reclaiming the redirected write data. To ensure data con-
sistency, the corresponding log entry of the reclaimed data
is deleted from D_Table after the reclaim process completes.
Moreover, to improve the efficiency of the reclaim process,
the sequential data blocks in the staging space are first merged
into a large data block before the reclaim process. Moreover,
once the write data is reclaimed from the staging space to
the original RAID, the whole flash block is erased. Thus, the
GC management in the staging space is simple and efficient
without data coping overhead.

D. Parallel Reconstruction Workflow

When an SSD fails within SSD-based RAIDs, the RAID
reconstruction process is immediately initiated. The replace-
ment SSD can be a newly added SSD (indicated by ①) or a
staging space (indicated by ②), as shown in Fig. 6(a). If the
replacement SSD is a newly added SSD, GC-Steering focuses
on redirecting user I/O requests to the staging space during
RAID reconstruction to improve both the reconstruction effi-
ciency and user I/O performance. During RAID reconstruction,
all write requests addressed to the degraded RAID are redi-
rected to the staging space after determining whether they
should overwrite their previous locations or write to new loca-
tions according to D_Table. On the other hand, for each read
request, D_Table is first checked to determine whether the
read data is in the staging space. If the read request hits
D_Table, it is directly serviced by the staging space instead
of the degraded RAID that is busy dealing with the failure-
recovery process. Otherwise, it is serviced by the degraded
SSD-based RAID. After the reconstruction process completes,
the redirected write data is reclaimed back to the SSD-based
RAID. To ensure data consistency, the corresponding entry of

(a) (b)

Fig. 6. (a) Reconstruction workflow and (b) parallel reconstruction enhance-
ment in GC-Steering when using the reserved space on each SSD within
RAID as the replacement SSD.

the reclaimed data in D_Table is deleted after the reclaim oper-
ation completes. If the replacement SSD is the staging space,
the previously redirected write data in the staging space must
be first reclaimed back to the SSD-based RAID before initi-
ating the reconstruction process. After completing the reclaim
process, the data originally stored in the staging space is
invalidated and the RAID reconstruction process is initiated.

In the GC-Steering design, the staging space has two possi-
ble configurations, i.e., a dedicated SSD or the reserved space
on each SSD within the SSD-based RAID. If the staging space
is a dedicated SSD, the degraded RAID performs the tra-
ditional RAID reconstruction workflow. Because SSDs have
asymmetric read and write performance characteristics, with
the read operation being much faster than the write opera-
tion, the writing of the reconstructed data to the newly added
SSD can become a performance bottleneck in traditional RAID
reconstruction for SSD-based RAIDs.

If the staging space is the reserved space on each SSD
within SSD-based RAID, the parallel reconstruction workflow
is performed by the degraded RAID, as shown in Fig. 6(b). In
this case, the reconstructed data of the failed SSD is written in
parallel to the staging space. Although the read areas and the
write areas within each SSD are interleaved, SSDs can process
them concurrently without any disk head seek overhead that
HDDs require. Therefore, the parallel access feature of SSDs
can be fully exploited to improve the RAID reconstruction
performance [32], [33]. Moreover, it must be noted that the
staging space is organized in a RAID5-style for redundancy
with a smaller stripe unit size after the previously redirected
data stored in it is reclaimed back. The stripe unit size of
the staging space is defined as the original stripe unit size
divided by (N-2), where N is the number of SSDs in an SSD-
based RAID. In this way, the reconstructed data block can be
written in parallel to the staging space, as that illustrated in
Fig. 6(b). As a result, the performance bottleneck due to writ-
ing the reconstructed data can be eliminated for SSD-based
RAIDs with the reserved-space design. If a second SSD fails,
the data in the staging space of the failed SSD is first recon-
structed to the newly added SSD, followed by reconstructing
the remaining lost data of the failed SSD.

E. Data Consistency

Data consistency in the GC-Steering design includes the
following two aspects: 1) the redirected write data must be

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4593

reliably stored in the staging space until the data reclaim pro-
cess completes and 2) the key data structure (i.e., D_Table)
must be safely stored.

First, the redirected write data must be reliably stored in the
staging space. Since the staging space may also fail before
the redirected write data is reclaimed, the redirected write
data being stored in the staging space must be protected by
a redundancy scheme. In GC-Steering, when writing data to
the staging space, the corresponding parity in the same stripe
is concurrently updated to its correct location to prevent data
loss caused by a possible failure of the staging space. If the
staging space is a dedicated SSD, the failure of the dedicated
SSD does not cause data loss because the redirected write data
can be reconstructed by the data and parity on the surviving
SSDs. If the staging space is the reserved space of each SSD
within SSD-based RAID, the write data is protected by the
RAID1-style redundancy. Thus, the failure of a single SSD
does not cause data loss. Moreover, the redirected write data
is sequentially stored in the staging space with the append-only
mode. When the redirected write data in the staging space is
reclaimed, the contiguous blocks can be erased effectively to
free up space for subsequent write data. In case of a power
failure, the data stored in the staging space is not lost due
to the persistency characteristics of flash storage. Upon the
power is recovered, the data stored in the staging space is still
accessible.

Second, to prevent the loss of D_Table in the event of a
power supply failure or a system crash, GC-Steering stores
the contents of D_Table in a nonvolatile RAM (NVRAM).
Since D_Table is in general small, it will not incur notable
extra hardware cost to the RAID system. In order to reduce
the write penalty due to D_Table updates, GC-Steering stores
the contents of D_Table in battery-backed RAM, a de facto
standard form of NVRAM. In this case, a small battery can
delay shutdown until the content of D_Table in the RAM is
safely saved to an area of SSDs. On the other hand, in order to
improve the write performance by using the write-back strat-
egy, NVRAM is commonly deployed in the RAID controller.
Consequently, it is easy and reasonable to use NVRAM to
store the contents of D_Table.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup
and methodology. Then we evaluate the effectiveness and
performance of the GC-Steering scheme by comparing it
against LGC and GGC schemes through extensive trace-driven
evaluations.

A. Experimental Setup and Methodology

We implement a lightweight prototype of GC-Steering on
top of the Linux software RAID (i.e., Linux MD). All experi-
ments are conducted on a Dell PowerEdge T320 node with an
Intel Xeon E5-2407 CPU and 16-GB memory. In this system,
a SAMSUNG HE253GJ SATA HDD (250 GB) is used to host
the operating system (Ubuntu 14.04 with Linux kernel version
3.13), the Linux software RAID module and other software.

An LSI Logic MegaRAID SAS 2208 controller is used to
connect 7 Intel DC S3510 120-GB SSDs.

In the evaluation, we compare the performance of
GC-Steering with two state-of-the-art schemes, LGC and
GGC [19], in terms of average response time and tail latency.
The GC activities in SSDs are detected with the read profiling
technique by issuing read requests and monitoring the read
response [12], [31]. If these read requests are not returned
within a timeout window, GC-Steering marks the SSD in
the GC state. Retry operations are also performed to check
whether the SSD is still in the GC state. Moreover, with the
new LightNVM module in the Linux kernel and the open
channel SSDs, the GC operations can be tracked and con-
trolled by the host easily [39]. In practice, the RAID controller,
such as the ones in pure flash array products from Pure
Storage [40] or HP Nimble Storage [41], can track the GC
activities and manage the data layout among flash devices
directly. Thus, GC-Steering can be easily embedded into these
flash array products to further improve system performance
and reliability.

In the experiments, all the RAID schemes use the same
number of SSDs to provide a fair comparison. To ensure that
SSDs reach the steady state (i.e., with regular GCs) when new
write requests arrive during the experimental running period,
we fill the entire space on each SSD with valid data prior to
measuring the performance, a common practice called simula-
tion “warm-up” [19]. In the GGC scheme, when any one SSD
within an RAID initiates its GC process, all the other SSDs
of the RAID also initiate their GC processes. By default, the
staging space in the GC-Steering prototype is the prereserved
space of each SSD within the SSD-based RAID.

We use a mixture of HPC-like workloads and realistic
enterprize-scale workloads to study the performance of our
proposed the GC-Steering scheme. For HPC-like workloads,
we choose the read/write and bursty workloads, i.e., the
HPC_W and HPC_R traces, whose main characteristics are
described in Table I. For realistic enterprize-scale workloads,
the Fin1 trace is collected from the OLTP applications run-
ning at a large financial institution [42]. The other traces are
collected from storage volumes in an enterprize data center by
MSR [43]. Since most MSR traces are one-day workloads with
bursty and idle periods, we only choose 1-h traces with bursty
periods to replay. These traces represent different access pat-
terns in terms of read/write ratio, IOPS, and average request
size, as summarized in Table I.

B. Performance in the Normal State

1) Results and Analysis: The first design goal of GC-
Steering is to address the GC-induced performance degra-
dation. We first conduct experiments on an RAID5 system
consisting of five SSDs with a stripe unit size of 64 KB, driven
by the different workloads in the normal operational state.
Fig. 7(a) and (b) shows the comparisons of average response
times and GC counts, both normalized to those of LGC, among
the LGC, GGC, and GC-Steering schemes, respectively.

First, GC-Steering outperforms LGC and GGC in terms
of average response time by 63.3% and 65.8% on average,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4594 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 7. Comparisons of (a) normalized average response time and (b) GC
counts for LGC, GGC, and GC-Steering.

respectively. The significant performance improvement comes
from the fact that an average of 85.5% user I/O requests during
the GC period are redirected to the staging space. Therefore,
the contention between user I/O requests and GC-induced
requests is significantly alleviated. From the point of view of
user applications, the long latency caused by GC operations is
significantly reduced [13], thus significantly reducing the aver-
age response time. On the other hand, GC-Steering performs
better under write-intensive workloads (e.g., HPC_W) than
under read-intensive workloads (e.g., HPC_R), because GC
operations in SSD-based RAID are much more frequent under
the former than that under the latter. Since GC-Steering works
to steer user I/O requests away from SSDs in the GC state to
reduce the GC impact, the more frequent the GC operations
are, the more positive performance impact GC-Steering will
have. Furthermore, GC-Steering does not reduce nor increase
the GC count, as shown in Fig. 7(b), because GC-Steering
merely steers away user I/O requests during GC period without
changing when, how and whether GC happens. This feature of
GC-Steering makes it orthogonal to and ready to be integrated
with existing GC optimizing schemes to further improve the
overall system performance.

Second, GGC outperforms LGC for the realistic enterprize-
scale workloads, but the reverse is true for the HPC-like
workloads. More specifically, LGC outperforms GGC in aver-
age response time by 24.9% and 36.1% for the HPC_W
and HPC_R workloads, respectively. The reason is that the
two HPC-like workloads have larger average request size
and higher I/O intensity than the realistic enterprize-scale
workloads, resulting in much higher GC frequency in the
experiments driven by the former than in the latter. In GGC,
once an SSD within an RAID initiates its GC process, all the
other SSDs of the RAID must start their GC processes no mat-
ter how much free space is available in them. Therefore, the
total GC count of GGC is much larger than that of LGC, as

Fig. 8. Write amplification within GC-Steering due to the extra write requests
to the staging space.

shown in Fig. 7(b). Moreover, under the two HPC-like work-
loads the tail latency in the GGC scheme is much more serious
than that in the LGC scheme. The results are different from
those in the original GGC study because we are using differ-
ent platforms. We use RAID-5 as the baseline and use a real
RAID-5 system with Intel SSDs in the experiments, instead
of a RAID-0 with an SSD-extended DiskSim simulator used
in the GGC study [19]. On the other hand, GGC outperforms
LGC in terms of average response time in the experiments
driven by the enterprize-scale workloads, albeit by only 6.7%
on average. The reason is that even though GGC forces all
SSDs to conduct GC operations simultaneously to alleviate
the contention between user I/O requests and GC-induced I/O
requests, the user access latency in GGC during the coordi-
nated GC period, in which GCs in all SSDs are simultaneously
activated, is much higher than that in LGC, which offsets
some, but not all performance gains of GGC.

During the GC period, GC-Steering temporally redirects
write data and popular read data to the staging space which
will incur the write amplification problem. Here, the write
amplification is defined as the write requests performed in the
block level, including these write requests issued to the staging
space by GC-Steering, divide the user write requests. In order
to investigate the write amplification problem, we intercept
the write requests issued in the block device level to calcu-
late the write amplification outside of SSDs. Fig. 8 shows the
write amplification results. We can see that GC-Steering only
increases write requests by an average of 2.8%, up to 4.3% for
the write-intensive workload. The reason is that GC-Steering
only redirects write data and popular read data during GC
periods. In the normal state, GC-Steering performs the same
as the LGC and GGC schemes. Thus, the write amplification
problem associated with GC-Steering is negligible.

To investigate the impact of the three schemes on tail
latency under the different workloads, we plot the I/O laten-
cies at the 95th, 98th, 99th, and 99.9th percentiles, and
the cumulative distributions of the request-response times in
Figs. 9 and 10, respectively. First, GC-Steering consistently
and significantly outperforms the other two schemes in the
tail latency performance. While tail latency is mainly caused
by the GC operations of SSDs within the RAID set, the GC-
induced performance degradations are alleviated by the request
redirections in the GC-Steering scheme. As a result, the per-
centage of requests with long latency is reduced accordantly.
Second, GGC has a much more serious tail latency problem
than the other two schemes under the HPC-like workloads and

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4595

(a)

(e) (f) (g) (h)

(b) (c) (d)

Fig. 9. I/O latencies at the 95th, 98th, 99th, and 99.9th percentiles achieved by the LGC, GGC, and GC-Steering schemes, the lower the better. GC-Steering
is consistently the best performer. (a) HPC_W. (b) HPC_R. (c) Financial. (d) hm_0. (e) mds_0. (f) prxy_0. (g) rsrch_0. (h) wdev_0.

(a)

(e) (f) (g) (h)

(b) (c) (d)

Fig. 10. Cumulative response time distributions for the LGC, GGC, and GC-Steering schemes driven by the different workloads, where the x-axis shows the
request-response times and the y-axis indicates the fraction of requests with response times lower than the corresponding values on the x-axis. These results
show why GC-Steering has the best tail-latency performance among all the schemes. (a) HPC_W. (b) HPC_R. (c) Financial. (d) hm_0. (e) mds_0. (f) prxy_0.
(g) rsrch_0. (h) wdev_0.

Financial trace. The reason is that GGC forces all the SSDs to
start their GC processes when any SSD within the RAID set
initiates the GC process. During the GC period, the RAID set
is unavailable and the user I/O requests will be waiting in the
queue until all the SSDs complete their GC processes, which
significantly increases the percentage of requests with long
latencies, exacerbating the tail latency problem. The results are
consistent with the previous results on average response times
showing that the GGC scheme has inferior system performance
to the LGC and GC-Steering schemes.

2) Sensitivity Study: The GC-Steering performance is likely
influenced by several important factors, including the number
of SSDs in an RAID, the stripe unit size and the design choice.
Fig. 11 shows the sensitivity study on the response time results
in GC-Steering driven by the different workloads.

Number of SSDs: To examine the sensitivity of GC-Steering
to the number of SSDs in an RAID, we conduct experiments
on RAID5 systems consisting of different numbers of SSDs

(5 and 7) with a stripe unit size of 64 KB. Fig. 11(a) shows
the experimental results for GC-Steering, indicating that the
average response time decreases with the number of SSDs in
a RAID. The reason is that more SSDs in an RAID system
imply higher parallelism for the I/O process, concurrently
reducing the number of I/O requests and the total write data
addressed to individual SSDs. Consequently, the GC count of
each SSD is reduced accordingly, resulting in reduced aver-
age response time. More SSDs in an RAID imply not only
a lower GC count, but also reductions of the I/O latency and
queueing in each SSD, further reducing the average response
time. On the other hand, the performance improvement of
GC-Steering under the HPC-like workloads is much more
significant than that under the realistic enterprize workloads,
because the former is much more intensive than the latter.

Stripe Unit Size: To examine the impact of the stripe
unit size of the RAID system in GC-Steering, we conduct
experiments on a RAID5 system consisting of five SSDs with

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 11. Sensitivity study of the (a) number of SSDs, (b) stripe unit size, and (c) staging space design on the response time in GC-Steering.

stripe unit sizes of 4 KB, 64 KB, and 128 KB, respectively.
Fig. 11(b) shows that no clear and consistent patterns seem to
emerge about the relationship between the average response
time and the stripe unit size in GC-Steering. Previous studies
have revealed that optimal stripe unit size is highly depended
on workload characteristics [44], i.e., the access types (read
or write) and request sizes, which is consistent with the
results illustrated in Fig. 11(b). For these workloads, read/write
ratios and request sizes are different and MIX, thus no such
an optimal fixed stripe unit size is existed. For enterprize
and HPC workloads, optimal stripe unit size should be care-
fully configured and is still an open problem for SSD-based
RAIDs [45].

Design Choice of Staging Space: By default, we configure
the prereserved space (short for Reserved) of each SSD within
the SSD-based RAID as the staging space in GC-Steering.
In our design, the staging space in GC-Steering can also be
configured with a dedicated SSD (short for Dedicated). To
examine the impact of the different types of staging space on
the GC-Steering performance, we conduct experiments on a
RAID5 system consisting of five SSDs with a stripe unit size
of 64 KB and configure the two mentioned types of staging
space. Fig. 11(c) shows that the average response time with the
staging space configured by a dedicated SSD is longer than
that with the staging space configured with the prereserved
space of each SSD within RAID. The reasons are twofold.
First, flash-based SSDs, consisting of concurrently accessible
chips (e.g., parallel channels) and without any mechanically
moving parts like those in HDDs, offer much more parallelism
than that with a dedicated SSD to service both the normal user
I/O requests and the redirected user I/O requests, thus reducing
the average response time. Second, a staging space configured
with the prereserved space of each SSD has much more SSDs
to service the normal user I/O requests during non-GC periods
than that configured with a dedicated SSD. The dedicated SSD
is idle when there are no GC operations in all SSDs within a
RAID, but the prereserved space of each SSD is not.

C. Reconstruction Performance

The other design goal of GC-Steering is to improve the
RAID reconstruction efficiency. We conduct experiments on a
RAID5 system consisting of six SSDs with a stripe unit size
of 64 KB driven by the different workloads. For LGC, GGC,
and GC-Steering (Dedicated), five SSDs service the user I/O
requests and the remaining SSD acts as the replacement SSD
for all three schemes and jointly used as the staging space for

Fig. 12. Average response time during RAID reconstruction, normalized to
the average response time when there is no reconstruction.

GC-Steering. Fig. 12 compares the three schemes in terms of
average response time during the RAID reconstruction period,
normalized to the response time when no reconstruction is
underway. The RAID reconstruction bandwidth is set to range
between 1 MB/s and 10 MB/s. In the experiments, we find that
the Linux MD software favors the reconstruction process but
not user I/O requests, thus the reconstruction speed is always
at the maximum of 10 MB/s. Consequently, the reconstruction
times for the three schemes are almost the same. However,
Fig. 12 shows that for the LGC and GGC schemes, the average
user response time during RAID reconstruction is increased by
an average of 45.6% and 47.3% above that in the normal state,
respectively.

On the other hand, for GC-Steering with prereserved space
on each SSD within an RAID (Reserved) and a dedicated SSD
(Dedicated), the average response times are 62.3% and 10.1%
lower than that in the normal state, respectively. The large
discrepancy in improvement between the two GC-Steering
configurations stems from two factors. First, there are more
SSDs to service user I/O requests during RAID reconstruction
for Reserved GC-Steering than for Dedicated GC-Steering,
thus reducing the number of user I/O requests addressed to
each SSD within an RAID accordingly. Second, the paral-
lelism characteristics of flash-based SSDs are exploited during
the RAID reconstruction process. In detail, the reconstruction-
induced write operations can be performed in parallel on
surviving SSDs [as that shown in Fig. 6(b)], thus alleviating
the write bottleneck on the replacement SSD. Consequently,
Reserved GC-Steering reduces the average response time
more significantly than Dedicated GC-String during RAID
reconstruction.

To evaluate how the maximum RAID reconstruction
bandwidth affects reconstruction performance, we conduct

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4597

Fig. 13. Impact of the maximum reconstruction bandwidth on the average
response time and reconstruction time, normalized to the average response
time when maximum reconstruction bandwidth is 10 MB/s in GC-Steering.

experiments that measure reconstruction time and average
response time as a function of different maximum reconstruc-
tion bandwidth, 10 MB/s, 20 MB/s, and 50 MB/s, respectively.
Fig. 13 plots the experimental results on a RAID5 system con-
sisting of five SSDs with a stripe unit size of 64 KB. The
reconstruction time decreases with the increasing maximum
RAID reconstruction bandwidth. The reason is that the Linux
MD software favors the reconstruction process, keeping the
RAID reconstruction speed always at the allowed maximum
bandwidth. As a result, the user response time is sensitive
to and increases proportionally with the increasing maximum
reconstruction bandwidth [46] that significantly encroaches on
the bandwidth available to user requests. For example, the
average user response time increases by an average of 36.3%
and 63.1% under the maximum reconstruction bandwidth of
20 MB/s and 50 MB/s compared with that under the maximum
reconstruction bandwidth of 10 MB/s, respectively.

V. RELATED WORK

Most of the existing studies on SSD-based RAIDs focus
on the following two issues: 1) parity update problem and
2) GC-induced performance degradation problem. This article
falls into the latter category and focuses on improving the
performance and reliability of SSD-based RAIDs.

To address the first problem, Balakrishnan et al. [15]
proposed Diff-RAID to distribute the parity unevenly across
the disk array and proactively replace the SSD degraded the
fastest to improve the reliability of SSD-based RAID5 based
on their observations that balancing the write traffic among
SSDs of an SSD-based RAID5 has an unintended effect of
causing correlated failures of these SSDs. However, Diff-
RAID does not reduce the number of parity updates on the
SSDs and the performance degrades further due to the skewed
parity updates. It essentially trades performance for reliabil-
ity for SSD-based RAIDs. Flash-aware RAID [47] reduces
the number of internal write operations caused by parity
updates by using a delayed parity update strategy and a par-
tial parity technique. The elastic striping and anywhere parity
scheme [48] reconstructs new stripes with updated data chunks
without updating the old parity chunks to reduce the par-
ity update operations. Based on the elastic striping scheme,
Pan et al. [49] proposed a grouping-based elastic striping
scheme to separately write data chunks in different groups
into SSDs by exploiting the workload characteristics.

TABLE II
COMPARISON OF THE RELATED STUDIES TO GC-STEERING

Logging is an effective technique to transform small random
writes into large writes in storage systems. HPDA [16], an
enhanced hybrid RAID4 disk array composed of both HDDs
and SSDs, uses two HDDs to service as the dedicated logging
parity device, thus avoiding the parity updates on the SSD-
based RAID. Similar to HPDA, LDM [50] uses two mirrored
HDDs as a logging write buffer that temporally absorbs the
small write requests. EPLog [51] mitigates the parity update
overhead by redirecting the parity traffic to a separate log HDD
and uses the elastic parity construction scheme to eliminate
the need for prereading data in parity computations. By con-
verting small random writes into large writes, the frequency
of parity updates is reduced, thus improving both the system
performance and reliability.

However, none of the above studies considers the GC activ-
ities of SSDs in SSD-based RAIDs. Kim et al. [19] find that
the uncoordinated GC operations on individual SSDs amplify
the performance degradation of SSD-based RAIDs. To address
the problem, they propose an RAID-level GGC mechanism
to reduce the performance variability for SSD-based RAIDs.
However, GGC forces all SSDs in an SSD-based RAID to
process the GC operations at the same time, rendering the
SSD-based RAID unavailable to service the applications dur-
ing the coordinated GC period. Inspired by the study of I/O
Workload Outsourcing [52] that optimizes the reconstruction
performance for HDD-based RAIDs, GC-Steering effectively
exploits the workload characteristics and the reserved space
on each SSD within SSD-based RAIDs, to alleviate the neg-
ative performance and reliability impact of GC operations on
SSD-based RAIDs. Importantly, GC-Steering does not block
the applications at any time, which is much more acceptable
to end users than GGC. Moreover, our evaluation platform
and configurations, with real SSDs and RAID-5, are quite dif-
ferent from those of the GGC paper (SSD-extended DiskSim
and RAID-0). Table II summarizes studies most closely related
to GC-Steering. Different from the existing studies, GC-
Steering treats individual constitute SSDs of an RAID as black
boxes, thus oblivious of the SSD internal GC workflow, and
instead focuses on the RAID reconstruction to improve both
performance and reliability of SSD-based RAID5/6.

However, RAID reconstruction has not been studied for
SSD-based RAIDs. To the best of our knowledge, GC-
Steering is the first study to consider the failure-recovery
for SSD-based RAIDs in the literatures. HDD-based RAID
reconstruction has been studied extensively in the previous
studies [46], [52], [53]. However, these studies on HDD-based
RAID reconstruction try to either make the reconstruction
I/O requests sequential on HDDs [54], [55] or alleviate
the interference between user I/O requests and reconstruc-
tion I/O requests [46], [52]. The evaluations of GC-Steering

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

demonstrate that alleviating the interference between user I/O
requests and reconstruction I/O requests can also improve
the RAID reconstruction efficiency for SSD-based RAIDs.
Moreover, this article reveals that significant access paral-
lelism can be exploited in SSD-based RAIDs reconstruction
by leveraging the high random-access performance of flash-
based SSDs, which is shown to be highly beneficial for
SSD-based RAIDs. GC-Steering is consistent with the existing
performance optimizations on SSD-based storage systems by
randomizing the I/O requests [32], [33]. This article represents
but a first phase of substantial work required to investigate
efficient failure recovery algorithms for SSD-based RAIDs.

VI. CONCLUSION

Straightforwardly applying the RAID algorithms to SSD-
based disk arrays can not fully exploit the device advantages
of flash-based SSDs and may degrade the performance and
reliability of SSD-based RAIDs. Especially, the GC opera-
tions being performed on individual SSDs can cause severe
performance variability and tail latency in SSD-based RAIDs.
Moreover, the traditional HDD-based RAID reconstruction
algorithms are not suitable for SSD-based RAIDs. To address
these problems, we propose the GC-Steering scheme to alle-
viate the GC impact on the performance and reliability of
SSD-based RAIDs by exploiting both the flash device and
workload characteristics to alleviate the contention between
user I/O requests and GC/recovery-induced internal requests.
The extensive evaluation on a lightweight prototype of GC-
Steering shows that GC-Steering reduces the average response
times than the state-of-the-art schemes LGC and GGC by an
average of 63.3% and 65.8%, respectively. Moreover, GC-
Steering also significantly reduces the user response time
during the RAID reconstruction period by an average of
62.3%.

REFERENCES

[1] (2018). Worldwide Enterprise Storage Market. [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=prUS43964118

[2] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to SSDs: Analysis of tradeoffs,” in Proc. 4th
Eur. Conf. Comput. Syst. (EuroSys), Mar. 2009, pp. 145–158.

[3] A. M. Caulfield et al., “Understanding the impact of emerging non-
volatile memories on high-performance, IO-intensive computing,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (SC), New
Orleans, LA, USA, Nov. 2010, pp. 1–11.

[4] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best use of
solid state drives in high performance storage systems,” in Proc. 25th
ACM Int. Conf. Supercomput. (ICS), Tucson, Arizona, Jun. 2011,
pp. 22–32.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf. (USENIX), Boston, MA, USA, Jun. 2008, pp. 57–70.

[6] N. Shahidi, M. Arjomand, M. Jung, M. Kandemir, C. R. Das, and
A. Sivasubramaniam, “Exploring the potentials of parallel garbage col-
lection in SSDs for enterprise storage systems,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal. (SC), Salt Lake City, UT, USA,
Nov. 2016, pp. 561–572.

[7] J. Lee, Y. Kim, G. M. Shipman, S. Oral, F. Wang, and J. Kim, “A
semi-preemptive garbage collector for solid state drives,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Austin, TX, USA,
Apr. 2011, pp. 12–21.

[8] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching less for better
performance: Balancing cache size and update cost of flash memory
cache in hybrid storage systems,” in Proc. 10th USENIX Conf. File
Storage Technol. (FAST), San Jose, CA, USA, Feb. 2012, p. 25.

[9] S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in
Proc. 10th USENIX Conf. File Storage Technol. (FAST), San Jose, CA,
USA, Feb. 2012, p. 13.

[10] G. Wu and B. He, “Reducing SSD read latency via NAND flash program
and erase suspension,” in Proc. 10th USENIX Conf. File Storage Technol.
(FAST), San Jose, CA, USA, Feb. 2012, p. 10.

[11] (2017). SNIA SSS Performance Test Specification (PTS) Testing Service.
[Online]. Available: http://www.snia.org/forums/sssi/ptstest

[12] S. Wu, Y. Lin, B. Mao, and H. Jiang, “GCaR: Garbage collection aware
cache management with improved performance for flash-based SSDs,”
in Proc. 30th Int. Conf. Supercomput. (ICS), Istanbul, Turkey, Jun. 2016,
pp. 1–12.

[13] S. Yan et al., “Tiny-tail flash: Near-perfect elimination of garbage col-
lection tail latencies in NAND SSDs,” in Proc. 15th USENIX Conf. File
Storage Technol. (FAST), Santa Clara, CA, USA, Feb. 2017, pp. 15–28.

[14] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. Int. Conf. Manag. Data
(SIGMOD), Chicago, IL, USA, Jun. 1988, pp. 109–116.

[15] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi,
“Differential RAID: Rethinking RAID for SSD reliability,” in Proc. 5th
Eur. Conf. Comput. Syst. (EuroSys), Paris, France, Apr. 2010, pp. 15–26.

[16] B. Mao et al., “HPDA: A hybrid parity-based disk array for enhanced
performance and reliability,” ACM Trans. Storage, vol. 8, no. 1, p. 4,
2012.

[17] N. Jeremic, G. Mühl, A. Busse, and J. Richling, “The pitfalls of deploy-
ing solid-state drive RAIDs,” in Proc. 4th Annu. Int. Conf. Syst. Storage
(SYSTOR), Haifa, Israel, May 2011, pp. 1–13.

[18] Y. Li, P. P. C. Lee, and J. C. S. Lui, “Analysis of reliability dynamics
of SSD RAID,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1131–1144,
Apr. 2016.

[19] Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow, and F. Wang,
“Harmonia: A globally coordinated garbage collector for arrays of solid-
state drives,” in Proc. 27th IEEE Symp. Mass Storage Syst. Technol.
(MSST), Denver, CO, USA, May 2011, pp. 1–12.

[20] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” in Proc. ACM SIGMETRICS Int.
Conf. Meas. Model. Comput. Syst. (SIGMETRICS), Portland, OR, USA,
Jun. 2015, pp. 177–190.

[21] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in pro-
duction: The expected and the unexpected,” in Proc. 14th USENIX Conf.
File Storage Technol. (FAST), San Jose, CA, USA, Feb. 2016, pp. 67–80.

[22] S. Wu, H. Li, B. Mao, X. Chen, and K.-C. Li, “Overcome the GC-
induced performance variability in SSD-based RAIDs with request
redirection,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 5, pp. 822–833, May 2019.

[23] P. Yang et al., “Reduce garbage collection overhead in SSD based
on workload prediction,” in Proc. 11th USENIX Workshop Hot Topics
Storage File Syst. (HotStorage), Renton, WA, USA, Jul. 2019, pp. 1–6.

[24] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. Chien, and
H. Gunawi, “The tail at store: A revelation from millions of hours of
disk and SSD deployments,” in Proc. 14th USENIX Conf. File Storage
Technol. (FAST), San Jose, CA, USA, Feb. 2016, pp. 263–276.

[25] S. Wu, B. Mao, Y. Lin, and H. Jiang, “Improving performance for flash-
based storage systems through GC-aware cache management,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 10, pp. 2852–2865, Oct. 2017.

[26] J. Kim, K. Lim, Y. Jung, S. Lee, C. Min, and S. H. Noh, “Alleviating
garbage collection interference through spatial separation in all flash
arrays,” in Proc. USENIX Annu. Techn. Conf. (USENIX), Renton, WA,
USA, Jul. 2019, pp. 799–812.

[27] J. L. Hennessy and D. A. Patterson, “Towards availability benchmarks:
A case study of software RAID systems,” in Computer Architecture: A
Quantitative Approach, 4th ed. Cambridge, MA, USA: Elsevier, 2006.

[28] J. Dean and L. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[29] J. Li, N. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the tail:
Hardware, OS, and application-level sources of tail latency,” in Proc. 5th
ACM Symp. Cloud Comput. (SOCC), Seattle, WA, USA, Nov. 2014,
pp. 1–14.

[30] H. Lu, B. Saltaformaggio, R. Kompella, and D. Xu, “vFair: Latency-
aware fair storage scheduling via per-IO cost-based differentiation,” in
Proc. 6th ACM Symp. Cloud Comput. (SOCC), Nov. 2015, pp. 125–138.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GC-STEERING AND PARALLEL RECONSTRUCTION OPTIMIZATIONS FOR SSD-BASED RAIDs 4599

[31] B. Mao and S. Wu, “Exploiting request characteristics and internal par-
allelism to improve SSD performance,” in Proc. 33rd IEEE Int. Conf.
Comput. Design (ICCD), New York, NY, USA, Oct. 2015, pp. 447–450.

[32] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives,” in Proc. 11th ACM SIGMETRICS Int. Conf. Meas.
Model. Comput. Syst. (SIGMETRICS), Seattle, WA, USA, Jun. 2009,
pp. 81–192.

[33] H. Kim, D. Shin, Y. Jeong, and K. Kim, “SHRD: Improving spatial
locality in flash storage accesses by sequentializing in host and ran-
domizing in device,” in Proc. 15th USENIX Conf. File Storage Technol.
(FAST), San Jose, CA, USA, Feb. 2016, pp. 271–284.

[34] (2017). Samsung Report. [Online]. Available:
http://news.cnet.com/8301-13924_3-9876557-64.html

[35] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving
NAND flash memory lifetime with write-hotness aware retention man-
agement,” in Proc. 31st Int. Conf. Massive Storage Syst. Technol.
(MSST), Santa Clara, CA, USA, Jun. 2015, pp. 1–14.

[36] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans.
Storage, vol. 4, no. 3, p. 10, 2008.

[37] Y. Yang and J. Zhu, “Write skew and Zipf distribution: Evidence and
implications,” ACM Trans. Storage, vol. 12, no. 4, p. 21, 2016.

[38] Q. Li et al., “Access characteristic guided read and write cost regulation
for performance improvement on flash memory,” in Proc. 14th USENIX
Conf. File Storage Technol. (FAST), San Jose, CA, USA, Feb. 2016,
pp. 125–132.

[39] M. Bjørling, J. Gonzalez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conf. File Storage
Technol. (FAST), Feb. 2017, pp. 359–374.

[40] (2017). Data Reduction in Pure Storage. [Online]. Available:
https://www.purestorage.com/products/purity/purity-reduce.html

[41] (2017). With Nimble, Less Is More. [Online]. Available:
https://www.nimblestorage.com/its-all-about-data-reduction/

[42] (2017). OLTP Application I/O. [Online]. Available:
http://traces.cs.umass.edu/index.php/Storage/Storage

[43] (2017). Block I/O Traces in SNIA. [Online]. Available:
http://iotta.snia.org/tracetypes/3

[44] F. Salmasi, H. Asadi, and M. GhasemiGol, “Impact of stripe unit size
on performance and endurance of SSD-based RAID arrays,” Scientia
Iranica, vol. 20, no. 6, pp. 1978–1998, 2013.

[45] S. Wu, W. Yang, B. Mao, and Y. Lin, “MC-RAIS: Multi-chunk
redundant array of independent SSDs with improved performance,” in
Proc. 15th Int. Conf. Algorithms Archit. Parallel Process. (ICA3PP),
Nov. 2015, pp. 18–32.

[46] S. Wu, H. Jiang, and B. Mao, “Proactive data migration for improved
storage availability in large-scale data centers,” IEEE Trans. Comput.,
vol. 64, no. 9, pp. 2637–2651, Sep. 2015.

[47] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,” IEEE Trans. Comput., vol. 60,
no. 61, pp. 80–92, Jan. 2011.

[48] J. Kim, J. Lee, J. Choi, D. Lee, and S. Noh, “Improving SSD reliability
with RAID via elastic striping and anywhere parity,” in Proc. 43th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), Budapest, Hungary,
Jun. 2013, pp. 1–12.

[49] Y. Pan, Y. Li, Y. Xu, and Z. Li, “Grouping-based elastic striping with
hotness awareness for improving SSD RAID performance,” in Proc. 45th
Annu. IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), Rio de Janeiro,
Brazil, Jun. 2015, pp. 160–171.

[50] S. Wu, B. Mao, X. Chen, and H. Jiang, “LDM: Log disk mirroring with
improved performance and reliability for SSD-based disk arrays,” ACM
Trans. Storage, vol. 12, no. 4, pp. 1–22, 2016.

[51] Y. Li, H. Chan, P. P. C. Lee, and Y. Xu, “Elastic parity logging for SSD
RAID arrays,” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Depend. Syst.
Netw. (DSN), Toulouse, France, Jun. 2016, pp. 49–60.

[52] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “WorkOut: I/O work-
load outsourcing for boosting the RAID reconstruction performance,” in
Proc. 7th USENIX Conf. File Storage Technol. (FAST), San Francisco,
CA, USA, Feb. 2009, pp. 239–252.

[53] N. Wang, Y. Xu, Y. Li, and S. Wu, “OI-RAID: A two-layer RAID archi-
tecture towards fast recovery and high reliability,” in Proc. 46th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), Toulouse, France,
Jun. 2016, pp. 61–72.

[54] M. Holland, “On-line data reconstruction in redundant disk arrays,”
Dept. Elect. Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Rep. CMU-CS-94-164, Apr. 1994.

[55] L. Tian et al., “PRO: A popularity-based multi-threaded reconstruction
optimization for RAID-structured storage systems,” in Proc. USENIX
Conf. File Storage Technol. (FAST), San Jose, CA, USA, Feb. 2007,
pp. 277–290.

Suzhen Wu (Member, IEEE) received the B.E. and
Ph.D. degrees in computer science and technol-
ogy and computer architecture from the Huazhong
University of Science and Technology, Wuhan,
China, in 2005 and 2010, respectively.

She has been an Associate Professor with the
Computer Science Department, Xiamen University,
Xiamen, China, since August 2014. She has
over 50 publications in journal and international
conferences, including the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the
ACM Transactions on Storage, FAST, LISA, ICS, ICCD, MSST, ICDCS,
DATE, SRDS, and IPDPS. Her research interests include computer architec-
ture and storage system.

Dr. Wu is a member of ACM.

Weidong Zhu (Student Member, IEEE) received
the B.E. degree in computer science and technol-
ogy from the Huazhong University of Science and
Technology, Wuhan, China, in 2016. He is currently
pursuing the master’s degree with the Computer
Science Department, Xiamen University, Xiamen,
China.

His research interests include flash-based storage
systems, SSD-based disk arrays, key-value store, and
data deduplication.

Yingxin Han is currently pursuing the master’s
degree with the Computer Science Department,
Xiamen University, Xiamen, China.

His research interests include flash-based storage
systems and SSD-based disk arrays.

Hong Jiang (Fellow, IEEE) received the B.Sc.
degree in computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 1982, the M.A.Sc. degree in computer
engineering from the University of Toronto, Toronto,
Canada, in 1987, and the Ph.D. degree in com-
puter science from Texas A&M University, College
Station, TX, USA, in 1991.

He is currently the Chair and the Wendell H.
Nedderman Endowed Professor with the Computer
Science and Engineering Department, University of

Texas at Arlington, Arlington, TX, USA. His present research interests
include computer architecture, computer storage systems and parallel I/O,
high-performance computing, big data computing, cloud computing, and
performance evaluation. He has over 300 publications in major journals
and international conferences in the above areas, including the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the PROCEEDINGS OF IEEE, TACO, TOS,
ISCA, MICRO, ATC, FAST, EUROSYS, and SOCC.

Dr. Jiang is a member of ACM.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

4600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Bo Mao (Member, IEEE) received the B.E. degree
in computer science and technology from Northeast
University, Shenyang, China, in 2005, and the Ph.D.
degree in computer architecture from the Huazhong
University of Science and Technology, Wuhan,
China, in 2010.

He is an Associate Professor with the Software
School, Xiamen University, Xiamen, China. He has
over 50 publications in international journals and
conferences, including the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the
ACM Transactions on Storage, FAST, LISA, ICS, ICCD, MSST, ICDCS,
DATE, SRDS, Cluster, and IPDPS. His research interests include storage
system and cloud computing.

Dr. Mao is a member of ACM.

Zhijie Huang (Member, IEEE) received the Ph.D.
degree in computer science and technology from the
Huazhong University of Science and Technology,
Wuhan, China, in 2016.

He is currently a Postdoctoral Research Associate
with the Computer Science and Engineering
Department, University of Texas at Arlington,
Arlington, TX, USA. He has published many
papers in major journals and international con-
ferences, including the IEEE TRANSACTIONS ON

COMMUNICATIONS, the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE COMMUNICATIONS

LETTERS, INFOCOM, and ISIT. His research interests include coding the-
ory and its application, dependable and secure systems, storage systems and
parallel I/O, and embedded systems.

Liang Chen received the B.E. and master’s degrees
in computer science and technology from the
Huazhong University of Science and Technology,
Wuhan, China, in 2006 and 2008, respectively.

He is currently a Lecture with the College of
Engineering, Fuzhou Institute of Technology, Fujian,
China. His research interests include flash-based
SSDs and SSD-based disk arrays.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 03,2020 at 16:52:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

