
Improving the Performance of
Deduplication-Based Storage Cache via

Content-Driven Cache Management Methods
Yujuan Tan , Congcong Xu, Jing Xie, Zhichao Yan , Hong Jiang , Fellow, IEEE,

Witawas Srisa-an , Xianzhang Chen , and Duo Liu

Abstract—Data deduplication, as a proven technology for effective data reduction in backup and archiving storage systems, is also

showing promises in increasing the logical space capacity for storage caches by removing redundant data. However, our in-depth

evaluation of the existing deduplication-aware caching algorithms reveals that they only work well when the cached block size is set to

4 KB. Unfortunately, modern storage systems often set the block size to bemuch larger than 4 KB, and in this scenario, the overall

performance of these caching schemes drops below that of the conventional replacement algorithmswithout any deduplication. There

are several reasons for this performance degradation. The first reason is the deduplication overhead, which is the time spent on

generating the data fingerprints and their use to identify duplicate data. Such overhead offsets the benefits of deduplication. The second

reason is the extremely low cache space utilization caused by read andwrite alignment. The third reason is that existing algorithms only

exploit access locality to identify block replacement. There is a lost opportunity to effectively leverage the content usage patterns such as

intensity of content redundancy and sharing in deduplication-based storage caches to further improve performance.We propose CDAC,

a Content-driven Deduplication-Aware Cache, to address this problem. CDAC focuses on exploiting the content redundancy in blocks

and intensity of content sharing among source addresses in cachemanagement strategies.We have implementedCDAC based on LRU

and ARC algorithms, called CDAC-LRU andCDAC-ARC respectively. Our extensive experimental results show that CDAC-LRU and

CDAC-ARC outperform the state-of-the-art deduplication-aware caching algorithms, D-LRU, andD-ARC, by up to 23.83X in read cache

hit ratio, with an average of 3.23X, and up to 53.3 percent in IOPS, with an average of 49.8 percent, under a real-world mixedworkload

when the cache size ranges from 20 to 50 percent of the workload size and the block size ranges from 4KB to 32 KB.

Index Terms—Data deduplication, storage cache, content sharing

Ç

1 INTRODUCTION

DUE to the exceptional performance of solid state drives
(SSDs) relative to hard drive disks (HDDs), SSDs have

been widely adopted as a storage cache to boost the storage
performance in large-scale HDD-based primary storage sys-
tems [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. However,
with the increasing intensity of modern workloads, the
demand on the cache capacity is poised to quickly outgrow
the limited capacity of SSD devices. Thus, some researchers
have proposed to apply the data deduplication [12], [13],
[14], [15], [16] or compression techniques [17], [18], [19] to
effectively increase the cache logical capacity by reducing
data footprints.

Data deduplication focuses on identifying and removing
redundant data to reduce data footprints. It uses an appro-
priate hash algorithm [20] to generate a unique content-
based identifier, commonly referred to as a data fingerprint,
for each data unit (e.g., a file or data chunk). However, due
to its high cost in generating fingerprints and their use for
uniqueness identification [21], [22], deduplication is less
popular in performance-sensitive primary storage sys-
tems [23], [24], [25] than in backup and archival storage sys-
tems [26], [27] where performance is less critical than the
former. In many cases, to avoid the performance degrada-
tion, deduplication is implemented away from the critical
data path, i.e., in an off-line mode. However, for many other
cases where data must be deduplicated along the critical
data path, such as SSD-based storage caches in primary
storage systems, in-line deduplication is a requirement and
also the focus of this paper.

While implementing the in-line deduplication in SSD
caches, the duplicate data identification and elimination
operations lay on the data read/write critical path. That is,
the duplicate data are identified and removed before writ-
ing to the SSD caches. The deduplication overhead, in terms
of the time spent on generating the data fingerprints and
their use to identify duplicate data, would extend the data
read/write access latency and degrade the performance of
the overall storage system. Thus, the deduplication-based
SSD caches need to be carefully designed and managed to

� Yujuan Tan, Congcong Xu, Jing Xie, XianzhangChen, andDuo Liu are with
the College of Computer Science, Chongqing University, Chongqing 400044,
China. E-mail: {tanyujuan, xzchen109}@gmail.com, xucc1996@foxmail.
com, {jing.xie, liuduo}@cqu.edu.cn.

� Zhichao Yan is with the HewlettPackard Enterprise, San Jose, CA 95002.
E-mail: yanzhichao.hust@gmail.com.

� Hong Jiang is with the University of Texas Arlington, Arlington, TX
76019. E-mail: hong.jiang@uta.edu.

� Witawas Srisa-an is with the University of Nebraska Lincoln, Lincoln, NE
68588. E-mail: witty@cse.unl.edu.

Manuscript received 16 Oct. 2019; revised 9 June 2020; accepted 16 July 2020.
Date of publication 29 July 2020; date of current version 18 Aug. 2020.
(Corresponding author: Yujuan Tan.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TPDS.2020.3012704

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9055-5389
https://orcid.org/0000-0002-9055-5389
https://orcid.org/0000-0002-9055-5389
https://orcid.org/0000-0002-9055-5389
https://orcid.org/0000-0002-9055-5389
https://orcid.org/0000-0002-2806-9312
https://orcid.org/0000-0002-2806-9312
https://orcid.org/0000-0002-2806-9312
https://orcid.org/0000-0002-2806-9312
https://orcid.org/0000-0002-2806-9312
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0003-0021-5696
https://orcid.org/0000-0003-0021-5696
https://orcid.org/0000-0003-0021-5696
https://orcid.org/0000-0003-0021-5696
https://orcid.org/0000-0003-0021-5696
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0000-0002-3040-2065
https://orcid.org/0000-0002-3040-2065
https://orcid.org/0000-0002-3040-2065
https://orcid.org/0000-0002-3040-2065
https://orcid.org/0000-0002-3040-2065
mailto:tanyujuan@gmail.com
mailto:xzchen109@gmail.com
mailto:xucc1996@foxmail.com
mailto:xucc1996@foxmail.com
mailto:jing.xie@cqu.edu.cn
mailto:liuduo@cqu.edu.cn
mailto:yanzhichao.hust@gmail.com
mailto:hong.jiang@uta.edu
mailto:witty@cse.unl.edu

reap the benefits of increased logical capacity and cache hit
ratios brought by data deduplication without paying a high
price for the deduplication-induced overhead, thus improv-
ing the overall storage performance.

A recent study, CacheDedup [12], addressed this problem
by proposing two deduplication-aware cache replacement
algorithms, D-LRU and D-ARC, that decomposed metadata
from data in the cache to enhance the performance of dedu-
plication-based SSD caches. This is the only published work
addressing the problem thus far, to the best of our knowl-
edge. However, our in-depth evaluation of D-LRU and
D-ARC reveals that they only work well when the cache
block size is set to 4KB. When block size is larger than 4 KB,
i.e., 8 KB, 16 KB, 32 KB and 64 KB, with lower deduplication
rate, they performed worse because of the deduplication
overhead than the conventional replacement algorithms
LRU and ARC [28] without any deduplication, as described
in Section 2. These results clearly indicated that, when the
block size is larger than 4 KB, a likely trend in SSD products
as device capacity keeps growing rapidly and each cached
block consists of multiple pages to increase throughput and
amortize cache management cost, the deduplication over-
head more than offsets the benefits of deduplication, signifi-
cantly degrading the storage performance. In other words,
D-ARC and D-LRU will no longer be useful for future SSDs
due to their heavy deduplication overhead and inefficient
caching policies.

The reason for the inefficient cache design in Cache-
Dedup [12] can be explained in part by the fact that data
deduplication changes how blocks are cached and evicted
significantly, thus changing their locality properties. In con-
ventional caches, each block is identified by a unique source
address; the source address is the address of the block in the
underlying storage system, and the cache maintains a map-
ping from the source address to the cache block address in
the storage cache. The source addresses of all blocks are
independent of one another. But with data deduplication, each
block is identified by its data content that can be common to and
pointed to by multiple source addresses; As a result, this content
sharing among multiple source addresses whose block con-
tents are identical causes their accesses to be dependent of
one another. The more source addresses are associated with
the same content, the more intense their content sharing
will be. This renders any conventional cache replacement
algorithms ineffective in deduplication-based caches due to
their tendency to consider each source address indepen-
dently and replace the cached blocks based on the access
locality of each independent source address. As such, exist-
ing deduplication-aware cache algorithms, like D-LRU and
D-ARC, only use the access frequency of source addresses
as a hint for block replacement. For example, D-LRU identi-
fies the hot/cold source addresses according to the last
access time and removes the coldest source address when
the cache is full. This is very similar to LRU except that
D-LRU may need to remove multiple source addresses to
find one free block while LRU needs to remove only one
source address, since each block in deduplication-aware
cache may be pointed to by multiple source addresses. In
doing so, both D-LRU and D-ARC miss the opportunity to be
even more effective and efficient by leveraging the intensity of con-
tent redundancy and sharing in caching replacement algorithms.

This observation motivates us to propose CDAC, a Con-
tent-driven Deduplication-Aware Caching management
approach. CDAC exploits the intensity of content sharing
and hotness in the design of its cache algorithms. CDAC con-
sists of two complementary techniques: Reference-Count
based Eviction (RCE) and Bitmap based Hotness Identifica-
tion (BHI). In particular, RCE focuses on evicting a cold block
based on its reference count [29], which is a measure of con-
tent sharing intensity and hotness, in terms of the total num-
ber of the source addresses pointing to that block. BHI helps
identify a hot/cold block based on finer-grained access pat-
terns to parts of the block captured by an access bitmap that
records the access status of each individual small part within
the block. If most individual small parts within a block are
accessed recently, it would be regarded as a hot block; other-
wise, as a cold block. This avoids the false-positive identifica-
tion of hot blocks, in which one or a few tiny parts of a block
being “hot” render that entire block “hot”.

When the cache is full, CDACwill first use BHI to identify
candidate cold blocks and then use RCE to determine
whether the cold blocks need to be deleted. The combination
of BHI and RCE enables the cache replacement algorithm to
fully and accurately exploit the content sharing intensity and
hotness. We have implemented CDAC based on LRU and
ARC, called CDAC-LRU and CDAC-ARC respectively. Our
extensive experimental results showed that CDAC-LRU and
CDAC-ARC outperform D-LRU and D-ARC by up to 23.83X
in read cache hit ratio, with an average of 3.23X, and up to
53.3 percent in IOPS, with an average of 49.8 percent under
real-world workloads.

The rest of this paper is organized as follows. Section 2
quantitatively analyzes CacheDedup, the only known related
work, to provide insight andmotivation to the CDACdesign.
Section 3 details the design of CDAC. Section 4 evaluates
CDAC, Section 5 describes the related work and Section 6
concludes the paper.

2 BACKGROUND AND MOTIVATION

To the best of our knowledge, CacheDedup is the only
knownwork that addresses the issue of deduplication-aware
cache management [12]. It proposes an architecture that uses
a separate Data Cache and Metadata Cache to integrate the
data caching and deduplication metadata caching, as illus-
trated in Fig. 1. Data Cache stores the cached data blocks,
and Metadata Cache stores the source addresses and data
fingerprints of these blocks and maintains the mapping.
Based on this architecture, two deduplication-aware caching
replacement algorithms, D-LRU and D-ARC, are designed

Fig. 1. Architecture of CacheDedup.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 215

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

based on the traditional LRU and ARC algorithms. D-LRU
uses two LRU lists to manage Metadata Cache and Data
Cache separately. In Data Cache, it performs deduplication
on the blocks pointed to by the fingerprints stored in Meta-
data Cache. D-LRU does not synchronize the block evictions
in Data Cache and correspondingmetadata eviction inMeta-
data Cache to improve performance. For example, when
Data Cache is full, D-LRUwill first replace unmapped blocks
inMetadata Cache. If no such block is available, it then evicts
the source addresses from Metadata Cache until such block
is found. Except for using the ARC algorithm, D-ARC man-
ages Metadata Cache and Data Cache in the same way as
D-LRU. In addition, compared with the traditional ARC
algorithm, D-ARC can retainmore source addresses inMeta-
data Cache even if it needs to be deleted, so when the data
blocks pointed to by these source addresses remain in Data
Cache, the hit ratios can be improved.

D-LRU and D-ARC can improve cache hit rates by
removing redundant cached blocks to increase the logical
cache capacity. However, such improvements are limited
due to their inability to explore the intensity of content
redundancy and content sharing in cache replacement algo-
rithms. In conventional caches, each block is identified by a
unique source address and all the source addresses of all
blocks are independent of one another. On the other hand,
data deduplication identifies each block by its data content
that can be common to and pointed to by multiple source
addresses. Thus it is inappropriate to treat each source
address independently and select the blocks to be replaced
based on the access locality of each independent source
address alone. As such, D-LRU and D-ARC only use the
access frequency of each source address as a hint to identify
the hot/cold blocks. This fundamentally changes the cach-
ing behaviors to the point that considering spatial and tem-
poral localities of source addresses to improve caching
performance is no longer sufficient,as will be shown by the
results of our investigation to evaluate the performances
and shortcomings of D-LRU and D-ARC.

In our experiments, we created a practical CacheDedup
prototype as a virtual block device under the hypervisor
used by multiple virtual machines. Our workload consists
of Webmail server and FTP file server, with a total of about
68.7GB data. We created a virtual machine and exercised it
with the specified workload. We then recorded the I/O
results, which are shown and analyzed next. We provide
the detailed description of our experimental setup in
Section 4.

2.1 IOPS and Hit Ratios

Fig. 2 shows the IOPS for ARC andD-ARC, LRU andD-LRU,
as a function of the block size, ranging from 4 KB to 64 KB,
when the cache size is between 20 to 40 percent of the work-
ing set size. Here, we only show results with cache size of 20,
30 and 40 percent to save space, because the results under
other cache sizes are similar. From these results, it can be
seen that for 4 KB blocks, D-ARC and D-LRU obtain higher
IOPS than ARC and LRU for all cache sizes tested. However,
for blocks larger than 4 KB (i.e., 8 KB, 16 KB, 32 KB and 64
KB), the IOPS of D-ARC and D-LRU are lower than that of
ARC and LRU, even though D-ARC and D-LRU obtain
higher hit ratios than ARC and LRU, as shown in Tables 1
and 2. As shown in Fig. 2, when the cache size is 20 percent,
the IOPS of D-ARC and D-LRU are about 7.2 and 9.0 percent
higher than ARC and LRU for 4 KB blocks. Note that we cal-
culated the former by dividing the IOPS of ARCwith the dif-
ference between the IOPS of D-ARC and that of ARC. The
latter was calculated by dividing the IOPS of LRC with the
difference between IOPS of D-LRU and that of LRU.

However, when the block size grows to 8 KB, the IOPS of
D-ARC andD-LRU are about 10.9 and 9.1 percent lower than
those of ARC and LRU, respectively. When the block size
grows to 16 KB, the IOPS of D-ARC and D-LRU further
degrade to 19 and 17.8 percent lower than those of ARC and
LRU, respectively. This occurs in spite of higher cache hit
ratios of 8.10 (63.00-54.90 percent) and 13.01 percent (59.51-
46.50 percent) than those of ARC and LRU for 8 KB blocks,
and 6.53 (46.80-40.27 percent) and 13.67 percent (44.89-31.22
percent) higher than those of ARC and LRU for 16 KB blocks.
These results clearly show that for D-ARC and D-LRU,
increased cache hit ratios when the block size is 4 KB can
improve overall storage performances. However, if the block
size exceeds 4KB, the increased cache hit ratios do not

Fig. 2. A comparison between ARC, D-ARC, D-LRU, and LRU in IOPS as a function of the block size and cache size.

TABLE 1
A Comparison Between ARC and D-ARC in the Cache Hit
Ratios as a Function of the Block Size and Cache Size

Cache 20% Cache 30% Cache 40%

ARC D-ARC ARC D-ARC ARC D-ARC

4KB 69.76 79.05 72.37 86.44 75.15 93.74
8KB 54.90 63.00 59.34 72.17 67.52 83.02
16KB 40.27 46.80 47.67 57.92 55.38 68.32
32KB 29.21 35.02 37.20 46.02 45.22 56.80
64KB 23.48 27.70 30.27 37.48 37.04 46.56

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

improve the overall storage performances due to the offset-
ting overheads of deduplication, whichwe examine next.

2.2 Deduplication Ratio and Overhead

To better understand the inefficiency of D-ARC and D-LRU,
we measured their deduplication ratios and overhead.
The deduplication ratio here is defined by the amount of
removed data divided by the total amount of processed data.
The deduplication overhead is defined by the percentage of
the time spent on the data deduplication during data cach-
ing, including the fingerprints generation and uniqueness
identification.

Figs. 3 and 4 show the deduplication ratios, deduplication
overhead, and increased cache hit ratios of D-ARC and
D-LRU, as a function of the block size ranging from 4 KB to
64 KB, and the cache size ranging from 20 to 40 percent. As
shown in Figs. 3a and 4a, when the block size increases from
4 KB to 64 KB, the deduplication ratios are significantly
reduced. This is because, when the cache size is fixed and the
block size becomes large, the number of blocks stored in the

cache becomes smaller, and when the deduplication granular-
ity is the block size, fewer identical blocks can be found. There-
fore, the deduplication ratio is lower. Further, when the
deduplication ratio becomes low, the redundant data to be
eliminated becomes small, and the logical capacity of the cache
becomes small. As a result, the hit ratio also become lower. As
can be seen from the results shown in Fig. 3b and 4b, as the
block size increases, the increased hit ratios of D-ARC and
D-LRU relative to ARC and LRU becomes smaller. When the
block is large, a small increase in hit ratio is not able to improve
the IOPS and overall storage performances.

Figs. 3c and 4c show the deduplication overhead of
D-ARC and D-LRU. As can be seen from the results, the
deduplication overhead increases when the block size
becomes large. Taking D-ARC for example , when the block
size is 4 KB and the cache size is 20 percent, the deduplication
time only accounts for 6.48 percent of the total time. But
when the block size increases to 64 KB, the deduplication
time can be up to 50.58 percent of the total time (as shown in
Fig. 4c). This high deduplication overhead stems from two
reasons. First, when the block size is large, the cache hit ratio
will be lower, so more read requests will be missed in the
cache, requiring more new data to be read from the underly-
ing storage system. For each new data read into the cache, its
fingerprint needs to be calculated and the uniqueness of the
fingerprint needs to be identified. Therefore, the more new
data is read from the underlying storage system, the more
fingerprint calculation and uniqueness identification it
requires, leading to longer deduplication time and higher
deduplication overhead. Second, when the block size is
larger, the time for calculating the fingerprint of each block is
also long, and the deduplication overhead is also high.

TABLE 2
A Comparison Between LRU and D-LRU in the Cache Hit Ratios

as a Function of the Block Size and Cache Size

Cache 20% Cache 30% Cache 40%

LRU D-LRU LRU D-LRU LRU D-LRU

4KB 62.55 74.66 69.48 84.69 72.86 92.70
8KB 46.50 59.51 56.93 70.45 65.31 81.82
16KB 31.22 44.89 44.80 55.46 53.41 67.52
32KB 23.69 32.91 33.12 41.75 43.61 56.08
64KB 18.91 25.69 25.80 33.35 36.95 46.41

Fig. 3. The deduplication ratio, increased hit ratios, and deduplication overhead of D-ARC as a function of the block size and cache size.

Fig. 4. The deduplication ratio, increased hit ratios, and deduplication overhead of D-LRU as a function of the block size and cache size.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 217

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

According to our preliminary study, as shown in Figs. 3
and 4, we can conclude that as the block size gets larger, the
deduplication ratio and the cache hit ratio decrease; while
the cache hit ratio decreases, the deduplication overhead
becomes higher. This high deduplication overhead (repre-
sented the deduplication time) directly leads to increased
access latency and reduced IOPS.

2.3 Misidentified Hot Blocks

In addition, in order to further explore the reasons for the
low efficiency of D-ARC and D-LRU, we studied the hot/
cold blocks determined by the D-ARC and D-LRU algo-
rithms. According to our preliminary study, it is found that
when the cache block is large, a large portion of hot blocks
have only a small hot portions. These blocks are generated
because a small part of each block is frequently accessed. We
refer to these blocks as misidentified hot blocks. In D-ARC
and D-LRU, since they treat these misidentified hot blocks as
completely hot blocks, they will not actively evict them to
make room for some potentially hotter blocks, which will
seriously affect the cache utilization rate and cache hit rate.

Fig. 5 plots the partial hit ratios to measure the severity of
the misidentified hot blocks using D-LRU and D-ARC algo-
rithms. Here, we define each request to access less than
50 percent of the cache block data as a partial hit of the cache
block. When a partial cache block hit occurs, the corre-
sponding block will be identified as a fully hot block. There-
fore, the number of partial cache block hits is able to
represent the number of misidentifications of hot blocks.
The partial hit ratios (i.e., defined as the number of the total
hits divided by the number of the partial cache block hits)
can represent the percentage of hot blocks that are not cor-
rectly identified among all blocks.

As can be seen from the results of Fig. 5, inmost cases, there
are a large number of partial cache block hits in D-LRU and
D-ARC. For example, when the cache size is set to 20 percent
of the working set size and the cache block is 8 KB, the partial
hits of the cache block using the D-LRU algorithm account for
39.73 percent of the total hits, and the partial hits of the cache
block using D-ARC algorithm account for 37.55 percent of the
total hits.When the block size is increased to 16 KB, the partial
hit ratio is increased to 57.60 and 55.06 percent respectively.
These results clearly show that using D-LRU and D-ARC
algorithms, there are a large number of partial cache block
hits. These partial cache block hits will generate many incor-
rectly identified cache blocks and severely affect cache utiliza-
tion and hit ratios.

3 CDAC DESIGN

CDAC focuses on exploiting the intensity of content sharing
and hotness in cache management strategies. It consists of
two complementary techniques, Reference-Count based
Eviction (RCE) and Bitmap based Hotness Identification
(BHI). Both are designed based on the architecture of Cache-
Dedup shown in Fig. 1.

According to the architecture, there are two caches, Data
Cache and Metadata Cache. Data Cache stores the cached
data blocks, while Metadata Cache stores the source
addresses and data fingerprints of the data blocks. A free
block in Data Cache refers to a block that does not have any
source address in Metadata Cache. When Data Cache is full
and no free blocks exist in Data Cache, it needs to delete
some of the source addresses in Metadata Cache to generate
free blocks. The selection of source addresses to be deleted
and free blocks to be generated is closely related to the cache
hit ratios. Therefore, in CDAC, RCE and BHI focus on how to
select the source addresses to be deleted and free blocks to be
generated to improve the cache hit ratios. In this section, we
will describe their design in detail. In addition, CDAC sup-
ports write-back policy. For any block written to CDAC due
to a new write request or read miss, CDAC will calculate its
fingerprint to check if it is already inMetadata Cache. If so, it
means that the same block is already stored in Data Cache,
and only the source address of the block needs to be inserted
into the Metadata Cache. Otherwise, it will allocate a sepa-
rate new block in Data Cache to store the new block data,
and insert the corresponding source address and fingerprint
intoMetadata Cache.

3.1 Referenced-Count-Based Eviction

RCE selects the free blocks and the associated source
addresses to be deleted based on the reference count of each
data block. The reference count, which is the total number
of the source addresses pointing to that block, is a measure
of the intensity of content sharing and hotness. A block with
a high reference count should stay in cache longer than one
with a lower reference count since it is pointed to by more
source addresses. This higher reference count implies that
more data read requests will likely be directed to this block,
making it a hotter target that can help increase the hit rate
and improve the storage performance.

However, while reference-count based eviction can help
produce more cache hit rates, using reference count as the
only hint to find the block to be replaced is not effective,
unless it is jointly considered with access temporal locality
of the associated source addresses. As an example, Fig. 6

Fig. 5. Partial hit ratios of D-LRU and D-ARC.

Fig. 6. An example of cached blocks.

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

shows three blocks in Data Cache: A, B and C. Block A and
Block C are referenced 2 times; Block B is referenced 3 times.
While using the referenced count to identify the hot/cold
blocks, Block B is the hottest, and Block C and Block A are
the coldest. Therefore, since the referenced count of Block B
is greater than that of Block C and BlockA, BlockA and Block
C and their associated source addresses will be removed
before Block B to make room for the new block. However,
among all blocks, Block A has the highest access count, and
Block C is not at the LRU position. Therefore, according to
the access locality, in the near future, Block A and Block C is
more likely to be accessed than Block B. Replacing Block A
and Block C will be likely to reduce the cache hit ratio. Fur-
thermore, storing Block B wastes both the space of Data
Cache (i.e., storing block B) andMetadata Cache (i.e., storing
three source addresses of Block B, B1, B2 and B3), if Block B
will not be accessed in the near future.

To address this problem, RCE takes both reference count
and access locality into consideration to find the free blocks
and associate source addresses to be deleted. While for
the access locality, RCE considers both the access recency
and access frequency based on the following three basic
assumptions.

� First, the source address of a highly referenced data
block is likely to be accessed again in the near future;

� Second, the source address that is frequently accessed
recently is likely to be accessed again.

� Third, the source address of the LRU position located
inMetadata Cachemay no longer be accessed.

Based on the above three assumptions, RCE focuses on
the source addresses in the LRU position and divides the
data blocks pointed to by these source addresses into two
categories: one is the data block that is referenced only once,
and the other is the block that is referenced multiple times.
For each source address in the LRU position, if it points to
the block of the former category, RCE will delete it. Other-
wise RCE moves it to the MRU position to keep it and fur-
ther observe how its access frequency and the reference
count of the data block pointed to by this source address
will change in the next cycle. Here a cycle refers to the time
required for the source address to go from the MRU posi-
tion to the LRU position, and the access frequency is repre-
sented by the access count. During each cycle, RCE will
reduce its access count periodically to attenuate the contri-
bution of the old accesses to the access locality. Therefore, in
the next cycle, if the access count of the source address is
reduced below zero or the reference count of the data block
pointed by the source address is reduced to zero, the source
address will be deleted; otherwise it will be retained and go
to next cycle. In addition, before moving the source address
to the MRU position, RCE will decrement the reference
count of the data block it points to by 1 if its access account
is smaller than zero. This is because the source address
should actually be deleted since its access locality (i.e., stays
in the LRU position with very low access frequency) is
poor, but considering the data block it points to is very hot,
RCE retains it, only reducing the corresponding reference
count without actually deleting it, referred to false deletion.

Algorithm 1 shows the pseudocode of RCE. Table 3
defines the corresponding symbols. It uses CBi

to represent

the number of the source addresses pointing to block Bi,
CSi to represent the number of the source addresses point-
ing to block f(Si) when Si is last located at the LRU position,
and ASi to represent the access count of the source address
Si. Each time a new source address Si enters M, CSi is set to
0. When the source address Si reaches the LRU position, CSi

will be set to CBi
. At this time, if Si is the first time to reach

the LRU position, and CBi
is greater than 1, meaning that

more than one source address pointing to block Bi, then Si

will be retained and moved to the MRU position. In the next
cycle, when Si reaches the LRU position again, it will check
both the reference count CBi

and the access count ASi , if the
CBi

¼ 0 or ASi � 0, RCE will delete it.

Algorithm 1. RCE Pseudocode

Remarks: Each time a new source address Si enters into M,
CSi is set to be 0 and CBi

is incremented by 1; Each time
source address Si is accessed, ASi is incremented by 1;
Input: A list of source addresses inM, the data blocks in D;
Initialization: Set Si = SL, Bi = f(SL);
if Bi 2 D And CBi

> 1 then
if CSi 6¼ 0 then
if ASi � 0 then
Remove Si to the delete queue;

else
ASi = ASi - � * (CSi / CBi

);
if ASi � 0 then
CBi

= CBi
- 1;

CSi = CBi
;

Move Si to the MRU location inM;
else
ASi = ASi - �;
CSi = CBi

;
if ASi � 0 then
CBi

= CBi
- 1;

Move Si to the MRU location inM;
else
Move Si to the delete queue;

In addition, whenever Si arrives LRU position, RCE
decreases ASi to reduce the contribution of its old accesses to

TABLE 3
Variable Definition

Symbol Definition

D Data Cache
M Metadata Cache
Si A source address in M
Bi A data block in Data Cache
f(Si) Function that maps a source address to a data block
CBi

The number of the source addresses that pointing to the
block Bi

CSi The number of the source addresses pointing to the
block f(Si) when Si is last located in the LRU position

ASi The access count of the source address Si

SL The source address in the LRU position in M
FlagSi A flag that is used to indicate the last hit type of block f

(Si) in the current cycle for BHI, including INIT, READ,
WRITE and NULL

PSi The percentage of the small parts that have been
accessed for Si

HSi The hotness value of Si

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 219

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

the access locality. While it first reaches LRU position, RCE
reduces ASi by a preset default value �. At other times, RCE
reduces ASi by � � ðCSi=CBi

). Here CSi=CBi
represents the

hotness change of the data block pointed to by the source
address in a cycle fromMRU position to LRU position. If CBi

is greater thanCSi andCSi=CBi
is smaller than 1, it means that

more source addresses have been added to the cache and the
data block pointed to by the source addresses are becoming
hotter; otherwise if CBi

is smaller than CSi and CSi=CBi
is

greater than 1, it means that a few source addresses have been
deleted and the hotness of this data block has been reduced.
Therefore, based on the value of � � ðCSi=CBi

), the value of
the access count will also changewith the hotness of the corre-
sponding data block fSi . If the data block gets hotter, the value
� � ðCSi=CBi

) will be less than the default value �; otherwise if
the data block gets cold, the value � � ðCSi=CBi

) will be greater
than the default value �, which can be used to speed up the
reduction of the access count.

We take Fig. 6 as an example to briefly introduce the
working process of RCE. To simplify the description, the �
is set to 3. As shown in Fig. 6, the Data Cache contains three
blocks, and the Metadata Cache shows the corresponding
source address and the number of accesses (access counts).
When a new block arrives, CDAC will selectively delete the
source address from the LRU position in Metadata Cache to
generate some free blocks available in Data Cache (i.e., the
block without a source address point). Therefore, CDAC
first deletes the source address C2 located at the LRU posi-
tion. However, according to RCE, since the reference count
of Block C pointed by C2 is greater than 1, RCE does not
directly delete C2, but reduce its access count by �. Since its
access count is still greater than 0 after attenuation, it will be
moved to the MRU position without changing the reference
count according to the algorithm. Then B2 reaches the LRU
position, because the reference count of Block B pointed by
B2 is greater than 1, B2 will also move to the MRU position
through the same process, but because the access counts is
smaller than � , So the reference count of Block B is reduced
from 3 to 2. Then when B1 reaches LRU position, its opera-
tion is the same as B2 because they point to the same block
and have the same access count. Thus, the reference count
of Block B is reduced to 1. Finally, when B3 reaches LRU
position. Since the reference count of the Block B pointed by
C3 is only 1, RCE will directly deleted B3. Therefore, in Data
Cache, Block B becomes a free block and is evicted to make
room for a new block.

3.2 Bitmap-Based Hotness Identification

In storage caches, the block size is fixed and all requests need
to be aligned to the cache’s block size. In conventional cache
replacement algorithms, a block is identified as hot or cold
completely determined by the access frequency or the last
access time of its source address, regardless of the valid con-
tent for each access. For example, there are two cached
blocks, A and B, with a block size of 4 KB; if block A is
accessed before block B, block B will be identified as hotter
than block A, even if block B only accesses 1 KB of data, and
Block A accesses 4 KB of data. At this point, if the cache is
full, Block A will be deleted and Block B will be retained.
However, Block B contains only 1 KB of valid data, while
Block B requires 4KB of cache space, resulting in lower space

utilization. Furthermore, as the size of the cached block
increases, this space utilizationwill decrease, whichwill seri-
ously affect the cache hit ratio.

Algorithm 2. BHI Pseudocode

(1)The block whose source address is in the LRU location
inM;
Remarks: A new source address enters the cache, FlagSi is set
to be INIT; Then if it is hit by a read or write request, FlagSi is
changed to READ or WRITE;
Input: a list of source addresses inM, the data blocks in D;
Initialization: Set Si = SL, Bi = f(SL);
if Bi 2 D then
if PSi � a And FlagSi == READ then
FlagSi = NULL;
Move Si to the MRU position in M;

else
identify Si as a candidate cold source address to be
deleted;

else
remove Si to the delete queue;

(2)The block whose source address is just accessed;
Input: a list of source addresses inM, the data blocks in D;
Initialization: Si is accessed, Bi = f(Si);
mark FlagSi as READ or WRITE;
recalculateHSi and update;
ifHSi � b then
Move Si to the MRU position in M;

To solve this problem, BHI uses fine-grained access pat-
terns to identify hot/cold blocks. In a block I/O system,
before generating a block request, it merges multiple conse-
cutive I/O requests at the physical address into one block
I/O request. Therefore, it is feasible to explore fine-grained
access patterns to help identify hot/cold blocks. For each
block, BHI breaks it into multiple small parts and then uses
bitmaps to record the access status of each part. If most of the
parts in a block have been accessed recently, the blockwill be
recognized as a hot block; otherwise, it will be considered as
a cold block. The access status of multiple individual parts of
a block makes it possible to more accurately identify the con-
tent hotness of the block, especially for large blocks, mini-
mizing false-positive hot block identifications. In addition,
BHI only recognizes the hot blocks from the read-intensive
cache blocks, regardless of the write-intensive cached blocks.
This is because each write changes the block content every
time, we believe that unless another read or write operation
of the same content occurs, the written content should not be
considered hot content. Therefore, when identifying the hot
block, if the write content pointed by one source address is
not shared with other source address (processed by RCE) or
is no longer read, it is excluded from the hot block identifica-
tion in BHI.

Based on the architecture shown in Fig. 1, BHI divides the
address space of each source address into multiple small parts
and uses bitmaps to record the access status of each part. If one
part is accessed, the corresponding position in the bitmap is set
to 1, otherwise it is set to 0. In addition, BHI adds a flag to indi-
cate the last hit type for each source address in a cycle, includ-
ing INIT, READ, WRITE, and NULL. INIT indicates the new
source address added to the cache; NULL indicates that the

220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

source address did not hit during the cycle; READ andWRITE
indicate that the last hit of the source address in the cycle is
data read or write. Algorithm 2 shows the pseudocode of BHI.
As described in Algorithm 2, we divide these blocks into two
categories: the block whose source addresses is at the LRU
position to be deleted and the block whose source address is
just accessed at any position. BHI uses separate mechanism to
dealwith them.

(1) For the block whose source address Si is in the LRU
location in M, BHI first checks the number of the accessed
parts. If the percentage of the accessed parts PSi is greater
than or equal to the preset threshold a, and the last hit of
the source address Si is data read during this period (i.e.,
FlagSi is equal to READ), the source address Si will be
retained and moved the MRU position and FlagSi will be
reset to NULL. Otherwise Si will be identified as a candi-
date cold source address to be deleted. It is worth noting
that BHI processes each source address separately, even
though some of them share the same data block. This is rea-
sonable because the bitmap used by BHI mainly focuses on
the effective access content for each access, and RCE has
resolved the content sharing among source addresses.

We use an simple example to illustrate how this process
works. As show in Fig. 7, the cache can only hold 3 blocks, and
the percentage threshold for access portion is set to 50 percent.
For simplicity, we assume that each block has only one source
address, so we use blocks instead of the source addresses to
illustrate how BHI works. In this example, at times T1, Block
A, B and C enter the cache; their flags are set to INIT. At time
T2 and T3, Block A is read and Block C is write, respectively,
and their flags are changed toREADandWRITE, respectively.
At time T4, BlockDneeds to enter the cache but there is no free
blocks. So BHI checks the access status of Block B at the LRU
position. Since the access portion of block B is smaller than 50
percent but its flag is INIT, BlockB is deleted.At timeT5, Block
E needs to enter the cache. At this time, Block A is at the LRU
position. Because the access portion of BlockA exceeds 50 per-
cent and its flag is READ, Block Awill not be deleted; it moves
to theMRUposition and its flag is setNULL. Then BHI checks
Block C. While for Block C, since its access portion is only 25
percent and its flag is WRITE, it is deleted. So after time T5,
Block E enters the MRU location in the cache, Block C is

deleted, and Block A’s flag is set to NULL. At time T6, when
accessing Block A again, block A moves to the MRU position
and its flag is set to READagain.

(2) While for the block whose source address is just
accessed, BHI checks its accessed part to determine its
access popularity, and then determines whether to move it
as a hot block to the MRU position as. The access popularity
quantification is described in

Hotness ¼ Max
NP

TNP
;
ðCHP � TNBM � TNP Þ

TNP

� �
: (1)

In Formula (1), TNP represents the Total Number of Parts
in the cache block, and NP represents the Number of the
Parts accessed this time, so ðNP=TNP Þ represents the per-
centage of the accessed data this time; TNBM represents the
Total Number of times the Block is moved to the MRU posi-
tion, and CHP represents the Cumulative Hits of all Parts
after entering the cache, so ðCHP � TNBM � TNP Þ=TNP
represents the average number of times each data part
has not been moved to the MRU position when hit. There-
fore, Hotness (i.e., used to quantify the access popularity)
is equal to the maximum value between NP=TNP and
ðCHP � TNBM � TNP Þ=TNP .

BHI uses the hotness value obtained from Formula (1) to
determine whether the block just accessed is a hot block. The
process is describe in Algorithm 2. As shown in Algorithm 2,
if the Hotness value exceeds a preset hot threshold, BHI will
recognize it as a hot block and move it to the MRU position;
otherwise, the block will remain stationary. In other words,
it means that if the percentage of the data parts accessed this
time is large enough, or the block is hit multiple times with-
out moving to the MRU position, the block will reach the
MRUposition and be recognized as a hot block.

3.3 CDAC: Combining RCE and BHI Together

When the cache is full, CDAC combines RCE and BHI
together to find free blocks. It first uses BHI to check if the
source address in the LRU position is recognized as a cold
source address. If it is a cold source address, CDAC then
uses RCE to identify if it needs to be deleted. Algorithm 3
describes its working process. The source address in the
LRU position needs to be constantly checked and deleted
until a free block is found. The combination of BHI and RCE
enables CDAC to more accurately identify the cold blocks
and associated addresses to improve the cache hit ratios
and IOPS, as quantitatively evidenced in Section 4.

Algorithm 3. CDAC Pseudocode

Input: a list of source addresses inM, the data blocks in D;
while There is no free block in D do
Si = SL;Bi = f(SL);
if Bi 2 D then
run BHI;
if Si is identified as a candidate cold source address then
run RCE;

else
move Si to the delete queue;

remove the source addresses in the delete queue;

Fig. 7. The working process of BHI.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 221

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

4 EXPERIMENTAL EVALUATION

In this section, we assess the benefits of CDAC with exten-
sive experimental evaluations.

4.1 Experimental Setup

1) Baseline Approaches. The most relevant work to CDAC
is CacheDedup with its two deduplication-aware
caching algorithms, D-LRU and D-ARC, as described
in Section 2. We have developed a CacheDedup pro-
totype and use D-LRU and D-ARC as the baseline
deduplication-aware caching algorithms. Moreover,
to fairly compare the efficiency of CDAC to that of
D-LRU and D-ARC, we also implemented CDAC
based on the LRU and ARC algorithms, referred to as
CDAC-LRU and CDAC-ARC respectively. CDAC-
LRU and CDAC-ARC are also implemented based on
CacheDedup architecture, that is, they manage Meta-
data Cache and Data Cache separately like D-LRU
and D-ARC. But unlike D-LRU and D-ARC, CDAC-
LRU and CDAC-ARC implements the hot/cold block
identification module through RCE and BHI instead
of using the traditional hot/cold block identification
mechanism used in LRU and ARC. At the same time,
we also implemented LRU and ARC, which are used
as baseline non-deduplication-aware caching algo-
rithms to highlight the benefits of data deduplication
brought about by CDAC.

2) Storage Setup. We implemented CacheDedup as the
client-side flash cache in Gluster Filesystem [30],
which is a free and open source scalable network file
system. The client and server each run on a nodewith
an Intel i7-6700K CPU and 16 GB of RAM. The client
side uses a 256 GB MLC SATA SSD as the cache, and
the server uses a 2 TB 7.2K RPM SATA disk as the tar-
get. Both nodes run Linux with kernel 3.10.0. We
installed a hypervisor in Gluster and created a virtual
machine to run our experimental workload.

3) Experimental Workload. To evaluate CDAC, we used
two datasets. First, we replayed the public FIU
traces [31] collected fromaVMhosting the departmen-
tal websites for webmail and online course manage-
ment (WebVM), a file server used by a research group
(Homes), and a departmental mail server (Mail). Sec-
ond, we collected a real dataset from aWebmail server
and a FTP file server hosted in a unit within a corpora-
tion; we refer this dataset as a mixed dataset. This
mixed dataset contains the real data read and write
operations with real data content, unlike the public
FIU traces that only have the statistical features. Table 4
shows the statistical characteristics of all the datasets.

4) Performance Metrics. We compare CDAC to baseline
approaches on two performance metrics, cache hit
ratio and IOPS. Cache hit ratio is a key metric to mea-
sure the caching efficiency of any caching algorithm.
A higher cache hit ratio will produce better storage
performance for a specified storage system. IOPS
measures the overall storage performance. Improving
IOPS is the goal for all the deduplication-aware cach-
ing algorithms implemented in SSD caches. As a side
note, in a virtual environment, even if we are not

running any other applications, the performance
results (especially IOPS) will be slightly different
each time the same algorithm and the same workload
are used. Therefore, in this section, we only show the
average performance results after three runs.

4.2 Performance

We evaluated the cache performance for each dataset with dif-
ferent total cache sizes from 20 to 80 percent, and different
block sizes from 4 KB to 64 KB. For FIU traces, since the public
dataset has only 4 KB sized request, we merged the requests
with consecutive source addresses into larger sized request
and generate corresponding new fingerprints. Therefore, the
minimum part of each block is set to 4 KB. In addition, in
CDAC-ARC and CDAC-LRU, we set the threshold � in RCE
to the average access count of all cache blocks, and set the
threshold a and b used in BHI as the median of the access part
of all blocks and the median of the hotness value of all blocks,
respectively. All three parameters change dynamically accord-
ing to the change of block access characteristics.

4.2.1 Cache Hit Ratio

Cache hit ratio is a key metric to measure the caching effi-
ciency. Here we mainly show the overall hit ratio (i.e., for
both read and write requests) and the read hit ratio alone to
evaluate CDAC’s benefits. We did not show write hit ratios
because the write requests in these datasets are very intensive
and all of the cache replacement algorithms handle themwell.

Figs. 8 and 9 show the cache hit ratio for WebVM, Homes
and Mail traces with a block size of 4 KB. It is worth noting
that when the block size is 4 KB, BHI will not work since the
smallest part of each block is set to 4 KB. Therefore, the
results of CDAC shown in Figs. 8 and 9 contain only the per-
formance results of RCE. From these results, it can be seen
that CDAC-LRU and CDAC-ARC significantly improve the
read hit ratios for all the traces.

For example, with WebVM trace (see Fig. 8a), the average
read hit ratio of CDAC-LRU is 13.09X (

P80%
size¼20%

CDAC LRU
LRU =7)

higher than that of LRU and 4.67X (
P80%

size¼20%
CDAC LRU

D LRU =7)
higher than that of D-LRU. The CDAC-ARC’s average read
hit ratios is 1.73X higher than that of ARC and 1.27X than that
of D-ARC. These results clearly show that using the reference
counts that represent the intensity of the content sharing
among source addresses helps preserve a lot of hot data
blocks and associated source addresses.

Figs. 10 and 11 show the read hit ratios and overall hit
ratios for WebVM and Mail traces when the block size is
from 8 KB to 64 KB. As can be seen from the results, both
CDAC-LRU and CDAC-ARC obtain higher read hit ratios
and overall hit ratios, especially the read hit ratios, than

TABLE 4
The Statistical Characteristics of the Datasets

Name Total I/Os I/Os
(GB)

Working
Set(GB)

Write-to-read
ratio

Unique
Data(GB)

WebVM 54.5 2.1 3.6 23.4
Homes 67.3 5.9 31.5 44.4
Mail 1741 57.1 8.1 171.3
Mixed 68.7 6.2 3.98 28.9

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

their corresponding baseline approaches. For example,
when the page size is 16 KB and the cache size is 20 percent,
the performance gap between D-ARC’s read hit ratio and
CDAC-ARC’s read hit ratio is the largest, reaching 23.83X

(i.e., 11:20
0:47 ¼ 23:83). We observe that these improvements to

the cache hit ratios have three characteristics.
First, CDAC’s performance improvement in read hit ratios

is greater than overall hit ratios. There are two reasons: at first,

Fig. 8. Read hit ratio of FIU traces with the block size of 4KB.

Fig. 9. Overall hit ratio of FIU traces with the block size of 4KB.

Fig. 10. Read hit ratio of WebVM and Mail traces with block size from 8KB to 64KB.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 223

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

in our experimental datasets, the write requests are very
intensive and all cache replacement algorithms handle them
well, so CDAC’s improvement in write hit ratio is very lim-
ited; second, for all the datasets, the proportion of write
requests is much higher than read requests (see Table 4), so
the read hit ratios contribute much less to the overall hit ratios
than the write hit ratios. Therefore, CDAC does not signifi-
cantly improve the overall hit ratios as it does for read hit
ratios.

Second, as the block size increases, the amount of cache
space required for maximum improvement in CDAC
increases. Taking the read hit ratio as an example, for the
WebVM trace (see Fig. 10, when the block size is 8 KB,
CDAC-LRU has the greatest improvements to the baselines
when the cache size is 30 percent; but when the block size is
increased to 16 KB and 32 KB, CDAC achieves the greatest
improvements on the baselines when the cache size is 40
and 50 percent respectively. This is because as the block size
increases, the percentage of valid content per data block
may decrease in each access; in addition, the larger the
blocks, the less the number of data blocks that can be stored
in the cache. Therefore, at the same cache size, the sum of
the effective block content in the cache becomes less. If the
cache is larger, CDAC can take advantage of the more popu-
lar content to improve the cache hit ratios and achieve better
performance improvements. But if the cache size exceeds a
certain amount, the cache replacement algorithm is less effi-
cient and the contribution of CDAC will be smaller.

Three, when the block size is fixed, CDAC’s overall per-
formance advantages over the baselines become more pro-
nounced as the block size decreases. This achievement can
be contributed to BHI technique. Recall that, BHI divides a
large block into multiple small parts. The combination of
the access status of multiple small parts within a block is

able to more accurately identify the hotness/coldness of
each block. This benefit is further magnified by larger
blocks. But for D-LRU, D-ARC, LRU and ARC, when the
block size increases, it becomes more difficult for them to
find the redundant blocks and accurately identify the hot/
cold blocks, leading to lowered overall hit ratios.

4.2.2 IOPS

IOPS and latency are widely used metrics to measure stor-
age system performances. Here we only show the IOPS of
the mixed dataset since the public FIU trace does not have
the actual data content. Fig. 12 compares CDAC-ARC,
CDAC-LRU, D-ARC, D-LRU, ARC and LRU in IOPS as a
function of the block size, from 4 KB to 32 KB, and the cache
size, from 20 to 50 percent of the working set size. As can be
seen from the results in Fig. 12, CDAC-ARC and CDAC-
LRU obtain much higher IOPS than D-ARC and ARC, D-
LRU and LRU consistently in all cases. On average, CDAC-
ARC and CDAC-LRU outperform D-ARC and D-LRU by
49.7 percent (

P50%
size¼20%

CDAC ARC�D ARC
D ARC =4) and 46.7 percent

(
P50%

size¼20%
CDAC LRU�D LRU

D LRU =4) for 4 KB blocks, 49.2 and 53.3
percent for 8 KB blocks, 51.1 and 48.3 percent for 16 KB
blocks, and 52.6 and 47.5 percent for 32KB blocks. The IOPS
of CDAC-ARC and CDAC-LRU are higher than those of
ARC and LRU by 61.04 and 60.65 percent for 4 KB blocks,
45.14 and 52.2 percent for 8 KB blocks, 28.12 and 28.13 percent
for 16 KB blocks, and 24.81 and 22.97 percent for 32 KB blocks.
Such high IOPS of CDAC benefits from its much higher cache
hit ratios than those of the baseline systems due of its efficient
caching replacement algorithms of RCE and BHI.

However, CDAC’s improvements in IOPS are less drastic
than those in cache hit ratios shown in Figs. 13 and 14, partic-
ularly read hit ratios. The reasons are twofold. First, CDAC’s

Fig. 11. Overall hit ratio of WebVM and Mail traces with block size from 8KB to 64KB.

224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

two optimization techniques, RCE and BHI, operate on the
critical path of data reads andwrites. As a result, the process-
ing overhead they incur necessarily lengthens the data read/
write response time, which in turn negatively impacts IOPS.
Second, in our experiment workload, the number of data
read operations that directly benefit from caching is only
20 percent of the total I/O operations,making IOPS improve-
ment far less drastic thanwhat read hit ratios would imply.

5 RELATED WORK

Data deduplication is usually used to reduce the data foot-
print to save the bandwidth required for data transmission
and the capacity required for data storage. Existing research
has proposed a series of related solutions to apply dedupli-
cation to different levels of storage hierarchy, including
backup and archival storage [26], [27], primary storage [25],
[32], and main memory [33]. The results of these studies
indicate that deduplication is a viable solution to increase
storage system capacity and performance.

In the SSD cache, due to the increasing demand for cache
space in modern workloads and the write durability of SSD

media, deduplication is also a popular way to reduce the
footprint to increase cache capacity and reduce cache writes
to improve durability [14], [15], [16]. CAFTL [14] is the first
method to integrate the deduplication component in the
SSD to alleviate the flash wear problem. It implements a
deduplication module at the File Translation Layer (FTL).
Nitro [13] and DEC [34] propose using a combination of
deduplication and compression to reduce the amount of
data in the flash cache. To reduce write amplification, Nitro
organizes cached data according to the size of the SSD write
unit. Other work [35], [36] have also studied deduplication
of flash cache in virtualized environments. They found that
due to the high degree of integration of virtual machines,
flash cache deduplication could reduce a large number of
duplicate blocks in the cache device.

However, unlike our work, none of these methods consider
data replacement algorithms when integrating deduplication
to the SSD cache. The only work focused on the deduplication-
aware replacement algorithm is CacheDedup [12]. It proposes
a novel architecture that separates the Metadata Cache
and Data Cache and manages them separately. Based on this
architecture, it proposes two deduplication-aware cache

Fig. 13. Read hit ratios of mixed dataset with block size from 4KB to 32KB.

Fig. 14. Overall hit ratios of mixed dataset with block size from 4KB to 32KB.

Fig. 12. IOPS of mixed dataset with block size from 4KB to 32KB.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 225

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

replacement algorithms, D-LRU and D-ARC, to further
improve the cache hit ratios and reduce cache writes. Our pro-
posed CDAC is a content-driven caching method, focusing on
providing content-driven data replacement algorithms. Unlike
CacheDedup, CDAC fully considers data sharing and content
popularization caused by deduplication when identifying
hot/cold blocks, which will greatly improve cache utilization
and cache hit rate.

In addition to deduplication, some studies have pro-
posed other methods to optimize flash cache. Flashied [37]
and HEC [6] have studied to not cache data with weak tem-
poral locality in the flash cache. Pannier [29] have proposed
to reduce write amplification by caching frequently read
and infrequently updated objects. In addition, some work
directly changed the flash memory device. For example,
Duracache [38] attempts to extend the life of SSD cache by
dynamically increasing the error correction capability of
flash memory devices; Shen et al. [39] allows the cache to
map keys directly to the device itself, thereby eliminating
the overhead of the flash garbage collector.

6 CONCLUSION

Motivated by the fact that the existing deduplication-aware
cache algorithms, D-ARC andD-LRU, are not able to improve
the cache hit ratios and IOPS adequately, we propose CDAC,
a Content-driven Deduplication-Aware Caching manage-
ment approach to significantly improve the performance of
deduplication-based SSD caches. CDAC focuses on mining
data blocks content redundancy and exploiting the intensity
of content sharing among source addresses in cache manage-
ment strategies. It consists of two complementary optimiza-
tion techniques, Reference-Count based Eviction (RCE) and
Bitmap based Hotness Identification (BHI), which are com-
bined to leverage the intensity of content sharing and hotness
in the cache replacement algorithm. Our extensive experi-
mental results showed that CDAC significantly improves
cache hit ratios and IOPS of the state-of-the-art deduplication-
aware cache algorithms, D-ARC and D-LRU, driven by real-
world datasets.

ACKNOWLEDGMENTS

The authors were very grateful to Prof. Ming Zhao for pro-
viding them with CacheDedup Prototype and many
instructive comments. This work was supported by grants
from Open Project Program of Wuhan National Laboratory
for Optoelectronics under Grant 2019WNLOKF009, Funda-
mental Research Funds for the Central Universities under
Grant 2019CDJGFJSJ001, National Natural Science Founda-
tion of China under Grant 61402061, 61672116, and
61802038, Chongqing High-Tech Research Program under
Grant cstc2016jcyjA0274 and cstc2016jcyjA0332, China Post-
doctoral Science Foundation under Grant 2017M620412,
and Chongqing Postdoctoral Special Science Foundation
under Grant XmT2018003.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
USENIX Annu. Tech. Conf., 2008, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404019

[2] Q. Yang and J. Ren, “I-cash: Intelligently coupled array of SSD and
HDD,” in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archi-
tecture, 2011, pp. 278–289. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2014698.2014865

[3] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen, “Improving
flash-based disk cache with lazy adaptive replacement,” Trans.
Storage, vol. 12, no. 2, pp. 8:1–8:24, Feb. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2737832

[4] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-cave:
Effective SSD caching to improve virtual machine storage per-
formance,” in Proc. 22nd Int. Conf. Parallel Architectures Compilation
Techn., 2013, pp. 103–112. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2523721.2523739

[5] P. L. Suei, M. Y. Yeh, and T. W. Kuo, “Endurance-aware flash-cache
management for storage servers,” IEEE Trans. Comput., vol. 63,
no. 10, pp. 2416–2430, Oct. 2014.

[6] J. Yang, N. Plasson, G. Gillis, N. Talagala, S. Sundararaman, and
R. Wood, “HEC: Improving endurance of high performance flash-
based cache devices,” in Proc. 6th Int. Syst. Storage Conf., 2013,
pp. 10:1–10:11. [Online]. Available: http://doi.acm.org/10.1145/
2485732.2485743

[7] S. Byan, J. Lentini, A. Madan, and L. Pabn, “Mercury: Host-side
flash caching for the data center,” in Proc. IEEE 28th Symp. Mass
Storage Syst. Technol., 2012, pp. 1–12.

[8] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash
caching on the storage client,” in Proc. USENIX Conf. Annu. Tech.
Conf., 2013, pp. 127–138. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2535461.2535477

[9] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu,
“vCacheShare: Automated server flash cache space management in
a virtualization environment,” in Proc. USENIX Conf. USENIX
Annu. Tech. Conf., 2014, pp. 133–144. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2643634.2643649

[10] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier: A lightweight,
consistent and durable storage cache,” in Proc. 7th ACM Eur. Conf.
Comput. Syst., 2012, pp. 267–280. [Online]. Available: http://doi.
acm.org/10.1145/2168836.2168863

[11] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li, “RIPQ:
Advanced photo caching on flash for facebook,” in Proc. 13th USE-
NIX Conf. File Storage Technol., 2015, pp. 373–386. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2750482.2750510

[12] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan, T. Zhang, and
M. Zhao, “CacheDedup: In-line deduplication for flash caching,”
in Proc. 14th Usenix Conf. File Storage Technol., 2016, pp. 301–314.

[13] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A capacity-optimized SSD cache for primary storage,” in
Proc. USENIXConf. USENIXAnnu. Tech. Conf., 2014, pp. 501–512.

[14] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proc. 9th USENIX Conf. Stroage Techno., 2011,
pp. 6–6. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1960475.1960481

[15] J. Kim et al., “Deduplication in SSDs: Model and quantitative ana-
lysis,” in Proc. IEEE 28th Symp. Mass Storage Syst. Technol., 2012,
pp. 1–12.

[16] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based SSDs,”
in Proc. 9thUSENIXConf. File Stroage Technol., 2011, pp. 7–7. [Online].
Available: http://dl.acm.org/citation.cfm?id=1960475.1960482

[17] W.-T. Huang, C.-T. Chen, Y.-S. Chen, and C.-H. Chen, “A com-
pression layer for NAND type flash memory systems,” in Proc.
3rd Int. Conf. Inf. Technol. Appl., 2005, pp. 599–604.

[18] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Using transparent compression to improve SSD-based I/O caches,”
in Proc. 5th Eur. Conf. Comput. Syst., 2010, pp. 1–14. [Online]. Avail-
able: http://doi.acm.org/10.1145/1755913.1755915

[19] K. S. Yim, H. Bahn, and K. Koh, “A flash compression layer for
smartmedia card systems,” IEEE Trans. Consum. Electron., vol. 50,
no. 1, pp. 192–197, Feb. 2004. [Online]. Available: http://dx.doi.
org/10.1109/TCE.2004.1277861

[20] P. Gallagher and A. Director, “Secure hash secure hash standard
(shs),” in FIPS PUB, vol. 180, p. 183, 1995.

[21] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” in Proc. 6th USENIX
Conf. File Storage Technol., 2008, Art. no. 18.

226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/citation.cfm?id=1404014.1404019
http://dl.acm.org/citation.cfm?id=2014698.2014865
http://dl.acm.org/citation.cfm?id=2014698.2014865
http://doi.acm.org/10.1145/2737832
http://dl.acm.org/citation.cfm?id=2523721.2523739
http://dl.acm.org/citation.cfm?id=2523721.2523739
http://doi.acm.org/10.1145/2485732.2485743
http://doi.acm.org/10.1145/2485732.2485743
http://dl.acm.org/citation.cfm?id=2535461.2535477
http://dl.acm.org/citation.cfm?id=2535461.2535477
http://dl.acm.org/citation.cfm?id=2643634.2643649
http://dl.acm.org/citation.cfm?id=2643634.2643649
http://doi.acm.org/10.1145/2168836.2168863
http://doi.acm.org/10.1145/2168836.2168863
http://dl.acm.org/citation.cfm?id=2750482.2750510
http://dl.acm.org/citation.cfm?id=1960475.1960481
http://dl.acm.org/citation.cfm?id=1960475.1960481
http://dl.acm.org/citation.cfm?id=1960475.1960482
http://doi.acm.org/10.1145/1755913.1755915
http://dx.doi.org/10.1109/TCE.2004.1277861
http://dx.doi.org/10.1109/TCE.2004.1277861

[22] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Campbell, “Sparse indexing: Large scale, inline deduplication
using sampling and locality,” in Proc. 7th Conf. File Storage Technol.,
2009, pp. 111–123.

[23] K. Srinivasan, T. Bisson, G. Goodson, and Y. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in
Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 1–14.

[24] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li, “Decentralized
deduplication in SAN cluster file systems,” in Proc. Conf. USENIX
Annu. Tech. Conf., 2009, pp. 101–113.

[25] K. Jin and E. L. Miller, “The effectiveness of deduplication on vir-
tual machine disk images,” in Proc. Israeli Exp. Syst. Conf., 2009,
pp. 7:1–7:12. [Online]. Available: http://doi.acm.org/10.1145/
1534530.1534540

[26] D. Meister and A. Brinkmann, “Multi-level comparison of data
deduplication in a backup scenario,” in Proc. SYSTOR Israeli Exp.
Syst. Conf., 2009, Art. no. 8.

[27] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. 1st USENIX Conf. File Storage Technol., 2002,
pp. 89–101.

[28] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. 2nd USENIX Conf. File Storage Tech-
nol., 2003, pp. 115–130. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1090694.1090708

[29] C. Li, P. Shilane, F. Douglis, and G. Wallace, “Pannier: A container-
based flash cache for compound objects,” in Proc. 16th Annu.Middle-
ware Conf., 2015, pp. 50–62. [Online]. Available: http://doi.acm.org/
10.1145/2814576.2814734

[30] “Gluster filesystem,” [Online]. Available: https://www.gluster.org/
[31] R. Koller and R. Rangaswami, “I/O deduplication: Utilizing con-

tent similarity to improve I/O performance,” in Proc. Usenix Conf.
File Storage Technol., 2010, Art. no. 13.

[32] B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet,
“Duplicate data elimination in a SAN file system,” in Proc. IEEE
Conf. Mass Storage Syst. Technol., 2004, pp. 301–304.

[33] C. A. Waldspurger, “Memory resource management in VMware
ESX serve,”ACM SIGOPS Operating Syst. Rev., vol. 36, pp. 181–194,
2002.

[34] Z. Han, X. Wen, Y. Hu, F. Dan, and G. Liang, “DEC: An efficient
deduplication-enhanced compression approach,” in Proc. IEEE
22nd Int. Conf. Parallel Distrib. Syst., 2016, pp. 519–526.

[35] X. Chen,W. Chen, Z. Lu, P. Long, S. Yang, and Z.Wang, “A duplica-
tion-aware SSD-based cache architecture for primary storage in vir-
tualization environment,” IEEE Syst. J., vol. 11, no. 4, pp. 2578–2589,
Dec. 2017.

[36] J. Feng and J. Schindler, “A deduplication study for host-side
caches in virtualized data center environments,” in Proc. IEEE
Symp. Mass Storage Syst. Technol., 2013, pp. 1–6.

[37] A. Eisenman et al., “Flashield: A key-value cache that minimizes
writes to flash,” 2017, arXiv:1702.02588.

[38] R. S. Liu, C. L. Yang, C. H. Li, and G. Y. Chen, “Duracache: A
durable SSD cache using MLC NAND flash,” in Proc. Des. Autom.
Conf., 2013, pp. 1–6.

[39] Z. Shen, F. Chen, Y. Jia, and Z. Shao, “Optimizing flash-based key-
value cache systems,” in Proc. Usenix Conf. Hot Topics Storage File
Syst., 2016, pp. 46–50.

Yujuan Tan received the BSc degree in computer
science and engineering from Hunan Normal Uni-
versity, Changsha, China, in 2006, and the PhD
degree in computer science and engineering from
the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2012. She is currently a
full professor with the College of Computer Science
in Chongqing University, Chongqing, China. Her
research interests include hybrid memory system,
flash cache, and data deduplication.

Congcong Xu is working toward the master’s
degree majoring in computer architecture at
Chongqing University, Chongqing, China. His cur-
rent research interests include data deduplication
and flash cache.

Jing Xie is working toward the master’s degree
majoring in computer architecture at Chongqing
University, Chongqing, China. His current resea-
rch interests include data deduplication, and flash
cache.

Zhichao Yan received the first PhD degree in com-
puter science from the Huazhong University of Sci-
ence and Technology,Wuhan, China, in 2012, and
the second PhD degree in computer engineering
from the University of Texas at Arlington, in 2018.
His research interests include flash SSD, data
deduplication, and cloud storage.

Hong Jiang (Fellow, IEEE) received the BSc
degree in computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 1982, the MASc degree in computer engi-
neering from the University of Toronto, Toronto,
Canada, in 1987, and the PhD degree in computer
science from the Texas A&M University, College
Station, Texas, in 1991. He is currently chair and
Wendell H. Nedderman endowed professor of
Computer Science and Engineering Department,
University of Texas at Arlington. Prior to joining

UTA, he has served as a program director at National Science Foundation
(2013–2015) and he was at University of Nebraska-Lincoln since 1991,
where hewasWillaCather professor of Computer Science andEngineering.
He has graduated 16 PhD students who upon their graduations either
landed academic tenure-track positions in PhD-granting US institutions or
were employed by major US IT corporations. He has also supervised 15
post-doctoral fellows and visiting scholars. His present research interests
include computer architecture, computer storage systems and parallel I/O,
high-performance computing, big data computing, cloud computing, and
performance evaluation. He recently served as an associate editor of the
IEEE Transactions on Parallel and Distributed Systems. He has more than
250 publications in major journals and international Conferences in these
areas, including the IEEE Transactions on Parallel Distributed Systems,
IEEETransactions onComputers,Proceedings of IEEE,ACMTransactions
on Architecture and Code Optimization, ACM Transactions on Storage,
Journal of Parallel and Distributed Computing, ISCA, MICRO, USENIX
ATC, FAST, EUROSYS, LISA, SIGMETRICS, ICDCS, IPDPS, MIDDLE-
WARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, ICPP, etc., and
his research has been supported by NSF, DOD, and industry. He is a mem-
ber of theACM.

TAN ET AL.: IMPROVING THE PERFORMANCE OF DEDUPLICATION-BASED STORAGE CACHE VIA CONTENT-DRIVEN CACHE... 227

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/1534530.1534540
http://doi.acm.org/10.1145/1534530.1534540
http://dl.acm.org/citation.cfm?id=1090694.1090708
http://dl.acm.org/citation.cfm?id=1090694.1090708
http://doi.acm.org/10.1145/2814576.2814734
http://doi.acm.org/10.1145/2814576.2814734
https://www.gluster.org/

Witawas Srisa-an received the PhD degree in
computer science from the Illinois Institute of Tech-
nology, in 2002. He is currently an associate pro-
fessor of Computer Science and Engineering,
University of Nebraska-Lincoln. His research inter-
ests include the area of programming languages,
software engineering, operating systems, runtime
systems, and security.

XianzhangChen received the BS andMS degrees
from the School of Computer Science and Engi-
neering, Southeast University, Nanjing, China, and
the PhD degree from the College of Computer Sci-
ence,ChongqingUniversity, in 2017. He is currently
a research assistant with Chongqing University. His
research interests include non-volatile memory-
based file systems, memory management, and in-
memory databases.

Duo Liu received the BE degree in computer sci-
ence from the Southwest University of Science
and Technology, Sichuan, China, in 2003, the ME
degree from the Department of Computer Sci-
ence, University of Science and Technology of
China, Hefei, China, in 2006, and the PhD degree
in computer science from the Hong Kong Poly-
technic University, in 2012. He is a tenured associ-
ate professor with the College of Computer
Science, Chongqing University, China. His current
research interests include emerging nonvolatile

memory (NVM) techniques for embedded systems, memory/storage
management in mobile systems, and hardware/software co-design. He
has served as program committee for multiple international conferences,
and as reviewer for several ACM/IEEE journals and transactions.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 24,2020 at 17:28:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

