
Journal of Parallel and Distributed Computing 147 (2021) 152–165

w
W
g
2
p
a
t
c
a
a
a
n

K
d

(
d
y

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

CIC-PIM: Trading spare computing power formemory space in graph
processing
Yongxuan Zhang a,b,c, Hong Jiang d, Fang Wang a,b,∗, Yu Hua a,b, Dan Feng a,b,
Yongli Cheng a,b,e, Yuchong Hu a,b, Renzhi Xiao a,b

a Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Engineering Research Center of data storage
systems and Technology, Ministry of Education of China, China
b School of Computer Science and Technology, Huazhong University of Science and Technology, China
c School of Mathematics and Computer, Yuzhang Normal University, China
d University of Texas at Arlington, United States of America
e College of Mathematics and Computer Science, Fuzhou University, China

a r t i c l e i n f o

Article history:
Received 8 October 2018
Received in revised form 2 November 2019
Accepted 11 September 2020
Available online 22 September 2020

MSC:
00-01
99-00

Keywords:
Graph processing
Parallel processing
Index compression
Shared-memory

a b s t r a c t

Shared-memory graph processing is usually more efficient than in a cluster in terms of cost effective-
ness, ease of programming and runtime. However, the limited memory capacity of a single machine
and the huge sizes of graphs restrains its applicability. Hence, it is imperative to reduce memory
footprint. We observe that index compression holds promise and propose CIC-PIM, a lightweight
encoding with chunked index compression, to reduce the memory footprint and the runtime of graph
algorithms. CIC-PIM aims for significant space saving, real random-access support and high cache
efficiency by exploiting the ubiquitous power-law and sparseness features of large scale graphs. The
basic idea is to divide index structures into chunks of appropriate size and compress the chunks
with our lightweight fixed-length byte-aligned encoding. After CIC-PIM compression, two-fold larger
graphs are processed with all data fit in memory, resulting in speedups or fast in-memory processing
unattainable previously.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Graphs are important data structures to conveniently model a
ide range of real-world scenarios such as social networks, the
eb, road networks, etc. With the increasing scales of graphs,

raph processing has attracted considerable research interest [8,
0,37,44,46–48,52]. A triangle, i.e., a subgraph of three vertices
airwise connected, is an important concept in graph structure
nalysis. Triangle Counting (TC), which obtains the number of
riangles in a graph, is a fundamental tool in graph processing to
ompute important graph metrics such as clustering coefficient
nd transitivity ratio [51], and has been widely used in real-world
pplications [4,6,20,36,45,50,55,58,63,64,70]. In common graph
lgorithms [18] such as BFS and PageRank [59,60], a vertex only
eeds to access its own neighbors. However, TC algorithms are

∗ Corresponding author at: Wuhan National Laboratory for Optoelectronics,
ey Laboratory of Information Storage System, Engineering Research Center of
ata storage systems and Technology, Ministry of Education of China, China.

E-mail addresses: zyx126com@126.com (Y. Zhang), hong.jiang@uta.edu
H. Jiang), wangfang@hust.edu.cn (F. Wang), csyhua@hust.edu.cn (Y. Hua),
feng@hust.edu.cn (D. Feng), chengyongli@fzu.edu.cn (Y. Cheng),
uchonghu@hust.edu.cn (Y. Hu), xrz@hust.edu.cn (R. Xiao).
ttps://doi.org/10.1016/j.jpdc.2020.09.008
743-7315/© 2020 Elsevier Inc. All rights reserved.
unique because a vertex usually needs to access the neighbors of
its own neighbors [18]. Thus, the graphs used by state of the art
TC algorithms usually need different processing (Section 2.2).

Given the tight coupling of different parts in a graph, graph
processing in a shared-memory machine with all data fit in mem-
ory, i.e., shared-memory graph processing, is usually more effi-
cient than in a cluster from the perspectives of efficiency, ease
of programming and speed [20,30,59,60]. Current commodity
servers can be equipped with hundreds of GBs or even TBs mem-
ory and tens of cores, enabling them to efficiently process graphs
with billions of edges in memory [20,48,52,59]. This allows com-
panies such as Twitter to process graphs in a single server [30].

The combination of the huge sizes of graphs and the limited
memory capacity of a single server restrains the applicability
of shared-memory graph processing [12]. The rapid growth of
graph size and the relatively slow growth of memory capacity
exacerbate the problem. On the other hand, the long-standing
and ever-widening gap between the computing power of CPU
and the bandwidth of memory, i.e., the memory wall problem,
grows with more cores integrated in a single CPU. Therefore,
trading the spare computing power of CPU for memory space,
e.g., reducing data sizes by compression, is a reasonable solution

https://doi.org/10.1016/j.jpdc.2020.09.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.09.008&domain=pdf
mailto:zyx126com@126.com
mailto:hong.jiang@uta.edu
mailto:wangfang@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:chengyongli@fzu.edu.cn
mailto:yuchonghu@hust.edu.cn
mailto:xrz@hust.edu.cn
https://doi.org/10.1016/j.jpdc.2020.09.008


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

q
i
s
g
o
r
w
a
N
c
u
t
a

g
c
p
C
f
t
w

t
s
A
o
t
m
u
u
a
i

t
C
t
S
F
w

2

i
t
v
s
l

to the aforementioned problem and can be increasingly reason-
able with the gap becoming wider. To the best of our knowledge,
no prior work tries to address the index compression problem of
the popular graph representation CSR (Compressed Sparse Row,
detailed in Section 2.1) in the large scale graph processing sce-
nario, potentially missing an important opportunity to improve
shared-memory graph processing.

Existing graph compression schemes only consider the se-
uential settings and are not suitable for share-memory process-
ng [10–13,42,67], try to compress specific graph representations
uch as trees [21,28] and can only support limited graph al-
orithms, aim at accelerators such as FPGAs but CPUs [37,46]
r can only gain reasonable results on graphs of specific scale
ange [8]. Ligra+ is a shared-memory graph processing system
orking on compressed CSR-represented graphs of any scale
nd efficiently supports a wide range of graph algorithms [60].
evertheless, Ligra+ does not include any TC algorithms and only
ompresses the adjacency list (adjlist), i.e., leaves index data
ncompressed (detailed in Section 2.1). Our evaluations show
hat index data also need to be compressed due to its up to
round 80% percentage, as detailed in Section 2.4.
To mainly compress the index structures of CSR-represented

raphs, we propose a chunk-based index compression scheme,
alled Chunked Index Compression for Parallel In-Memory graph
rocessing (CIC-PIM, detailed in Section 3.1). The key idea of
IC-PIM is to exploit the ubiquitous power-law and sparseness
eatures (Section 2.4) of large scale graphs, and divide index struc-
ures into chunks of appropriate size, then compress the chunks
ith our novel lightweight fixed-length byte-aligned encoding.
Evaluations show that, CIC-PIM achieves space savings of more

han 60% on index data and more than 50% on entire graphs while
till improving speed compared with state of the art approaches.
fter CIC-PIM compression, graphs of up to 2-fold (the size ratio
f uncompressed graphs to CIC-PIM-compressed graphs) larger
han those uncompressed can be processed with all data fit in
emory, resulting in speedups or fast in-memory processing
nattainable previously. The CIC-PIM advantages stem from its
nique compression-friendliness after chunking, real random-
ccess-supported and cache efficient design of the compressed
ndex structures, and lightweight decoding routine.

The contributions of the paper include:

• Mainly to compress the index structures of graphs, we de-
sign a scheme CIC-PIM, which achieves significant space
savings while still improving speed.

• We conduct in-depth analysis to demonstrate the efficacy of
the techniques in CIC-PIM.

• We perform extensive evaluations driven by nine real-world
graphs to evaluate the efficacy of CIC-PIM. Results indicate
notable improvements over state of the art approaches.

The rest of the paper is organized as follows. Section 2 presents
he background information which motivates our studies. The
IC-PIM scheme and the related issues are described in Sec-
ion 3. Section 4 shows and analyzes experimental results. In
ection 5, existing solutions and related works are reviewed.
inally, Section 6 concludes the paper with remarks on future
ork.

. Background and motivation

In this section, we first briefly introduce the widely used CSR,
.e., the representation of large scale graphs and sparse matrices,
he efficient heuristics widely used by TC algorithms, and the
Byte encoding to lay a foundation for our work, then present ob-
ervations that motivate our work. For ease of reference, Table 1
ists frequently used notations and concepts.
153
Fig. 1. Directed, undirected, oriented graphs, and CSR representation. In practice,
each edge in undirected graphs is represented with two reciprocal directed
edges. To utilize the symmetric feature of undirected graphs, only out-edges
of each vertex are stored. As shown in the CSR of (b), adjlists of all vertices are
merged into a single adjlist array, where each adjlist is sorted in the ascending
order. The beginning offset (into adjlist array) of the adjlist of each vertex is
stored in the offset array, where the additional, i.e., the last slot contains the
number of edges (28) for convenience of programming. For a directed graph,
because of its asymmetric feature, the in-edges of each vertex also need to be
stored in another CSR structure. Note that, the oriented graph has significantly
less directed edges than unoriented graphs (the directed and undirected graphs).

2.1. CSR representation and compressed graphs

Compressed Sparse Row (CSR [25,68]) is one of the most
widely used representations of large scale graphs and sparse
matrices due to its low memory requirements, simplicity, and
high efficiency [1,5,43,52,59–61,70]. A toy graph and its CSR are
shown in Fig. 1. Note that, in CSR degrees need not be stored
because degreei = offseti+1 − offseti.

For a compressed graph, in addition to the offset array and
the compressed adjlist array, a degree array is introduced to
store degrees (shown in Fig. 4), because degrees cannot be ob-
tained from the offset array due to the compression of the adjlist
array with variable length encoding (detailed in Section 2.3).
More specifically, because of the uncertainty of the codeword
length of variable length encoding, degreei can no longer be
calculated from offseti+1 and offseti. The offset array and degree
array are collectively called index data, which is left uncom-
pressed in Ligra+. A graph with a compressed adjlist array but
uncompressed index data is defined to be partially-compressed,
i.e., Ligra+-compressed and a graph with the adjlist array and
index data both compressed is defined to be fully-compressed,
i.e., CIC-PIM-compressed.

2.2. State of the art TC algorithms and orientation heuristics

Almost all the state of the art TC algorithms (e.g., [1,16,20,
26,34,38,53,61,70]) leverage an efficient degree-based orientation
heuristics, which is based on a total order ≺ of vertices, which is
defined as follows [1]:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v)
Where du is the degree of the vertex with ID u. As shown in

Fig. 1(c), every pair of reciprocal directed edges in the undirected
graph is replaced with a single directed edge, whose direction is
from the lower degree vertex to the other. This process results
in the so-called oriented graph [16], which has only half of the
directed edges of the undirected graph and only need to store
out-edges in CSR. Accordingly, directed and undirected graphs are
collectively called unoriented graphs, which are used by Ligra+
because only common graph algorithms included there.

As shown in Fig. 1, the number of directed edges hence the
size of adjlist array in an oriented graph is usually significantly



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

a
i

s
r
u
T
o

t
T
i
a
i
u
p
w

2

a
(
i
t
n
a
b
n
b
s
t
s

Table 1
Notation and Concept.
Notation/Concept Description

TC Triangle Counting or Triangle Counting algorithm(s)

common graph algorithms Algorithms in which a vertex only needs to access its own neighbors, in contrast to TC
(Section 1 Par. 1)

adjlist Adjacency list, i.e., the neighbor list of a vertex

partially-compressed graph A graph with adjacency lists compressed but index data uncompressed, i.e.,
Ligra+-compressed graph (Section 2.1 Par. 2)

fully-compressed graph A graph with adjacency lists and index data both compressed, i.e., CIC-PIM-compressed graph
(Section 2.1 Par. 2)

adjlist array The array containing the adjlists of all vertices (Section 2.1 Par. 2)

offset array The array containing the beginning offsets (into the adjlist array) of adjlists of all vertices
(Section 2.1)

degree array The array containing the degrees of all vertices (Section 2.1)

index data/structures The degree array and the offset array (Section 2.1 Par. 2)

orientation The efficient heuristics used in almost all state of the art TC algorithms (Section 2.2)

oriented graph The TC-algorithm-used graphs on which orientation has been executed. (Section 2.2)

unoriented graph In contrast to oriented graphs, including directed and undirected graphs used by common
graph algorithms (Section 2.2)

MTC The fastest shared-memory TC algorithm working on uncompressed graphs (Section 2.2 Par. 4)

CMTC The proposed MTC-based algorithm working on Compressed graphs (Section 3.3 and Fig. 8)
Fig. 2. MTC – the simplified version of the fastest known shared-memory TC
algorithm [20,61]. For each edge (u, v) (line 2 to 3), the intersection of the
djlists, i.e., neighbor lists of u and v is computed and the cardinality of the
ntersection is added to the counter (line 4).

maller than that in the unoriented graph (directed and undi-
ected graphs). On the other hand, the size of index data stays
nchanged because it is determined by the number of vertices.
herefore, an oriented graph usually contains a higher proportion
f index data than the unoriented graph.
TC algorithms working on oriented graphs are much faster

han those working on unoriented graphs [1,16,20,26,53,61,70].
he speedup mainly stems from the reduced time complex-
ty [1]. The fastest known shared-memory TC algorithm, which
lso leverages the orientation heuristics, comes from [20,61] and
s called MTC (Multicore Triangle Counting) in this paper. For
nderstandability, a simplified MTC is shown in Fig. 2. In our
roposed work, elaborated in Section 3.3, MTC is modified to
ork on compressed graphs.

.3. Variable-length byte-aligned encoding

The scheme used to compress the adjlist array in CIC-PIM is
variant of the standard variable-length byte-aligned encoding

standard vByte, shown in Fig. 3) [57]. To compress non-negative
ntegers, the standard vByte tries to remove leading zeros (if any)
o save space. A codeword of standard vByte consists of a variable
umber of bytes aligned to the physical byte boundary for fast
ccess. In graph compression, the integers to be compressed can
e negative. Standard vByte is modified to encode the possible
egative integers. The second most significant bit of the lowest
yte in the codeword is used to encode the sign, and the modified
cheme is called signed vByte, as shown in Fig. 3. Ligra+ shows
hat vByte achieves a better compromise of runtime and space
aving than other schemes.
154
Fig. 3. How ‘‘88685’’ is encoded with vByte. vByte tries to remove the leading
zeros in the true code to save space. In standard vByte, which is used to encode
non-negative integers, the 7-bit chunks containing at least one 1 in the true
code are encoded in the corresponding bytes of the codeword with the most
significant bit (shaded) of each byte is set to 1 or 0 to indicate whether the
following byte is also a part of the codeword or not. In signed vByte, the second
most significant bit (dotted) of the first byte in the codeword is used to indicate
the sign (0 for positive), and thus the first byte of the codeword only contains
a 6-bit chunk of the true code.

In CIC-PIM, vByte is borrowed to compress the adjlist array.
First, the deltas (i.e., differences) between consecutive elements
in an adjlist are calculated. For the first element in the adjlist,
the delta between the element and the vertex itself is calculated
and thus maybe negative. Then the first delta is encoded with
signed vByte and other deltas with standard vByte. Due to the
byte-aligned feature, both the encoding and decoding routines of
vByte are fast [57]. The decoding routine is called on the fly in
graph algorithms and incurs limited runtime overhead.

2.4. Observations and motivations

Ligra+ [60], a shared-memory graph processing system work-
ing on compressed graphs of any scale, uses the popular CSR
representation and supports many common graph algorithms ef-
ficiently. However, Ligra+ does not include any TC algorithm and
only compresses the adjlist array. Furthermore, for the (partially)
compressed graphs used by Ligra+, the percentage of index data
is up to 43% with an average of 22%. It is a considerable proportion,
and we should compress the index data too.

As stated in Section 2.2, oriented graphs used by TC algorithms
contains larger portions of index data than the unoriented graphs
used by Ligra+. Our evaluations confirm this prediction and show



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

t

d
a
t
t
a
m
h
g
a
o

s
e
e
i
c
t
m
c
a
b
i
v
2
e

that the percentages of index data in partially-compressed ori-
ented graphs can be up to around 80% for sparse graphs with an
average of 36% (raw data are omitted). This more clearly suggests
hat we must compress the index data too.

Large scale graphs are usually sparse, i.e., have low average
egrees [45]. To find out to what extent the low average degrees
re, we collect statistics of all the 85 graphs from SNAP1, one of
he most popular large scale graph repositories. Results show that
he average degree of all graphs is 14.8 with two graphs having
verage degrees of more than 100 (127 and 337). Moreover,
ost large scale graphs are power-law graphs [27], i.e., they
ave highly skewed degree distributions. Specifically, power-law
raphs usually have a small number of huge degree vertices and
vast majority of low degree vertices, i.e., vertices with degrees
f no more than hundreds.
Given the sparseness and power-law features, if the index

tructures, i.e., offset array and degree array, are divided into
qual-sized chunks containing hundreds of consecutive vertices
ach, the maximum degrees will be no larger than hundreds
n most chunks that only contain low degree vertices. For each
hunk, we choose the first offset as the reference and calculate
he deltas between other offsets and the reference, the maxi-
um offset-deltas are no larger than tens of thousands in most
hunks. Therefore, the degrees and offset-deltas in most chunks
re potentially small enough to be encoded with fixed-length
yte-aligned codewords of no more than two bytes each (detailed
n Section 3.1.3). For example, assuming each chunk contains 256
ertices and the maximum degrees in most chunk are less than
00, then in most chunks, degrees can be stored with one byte
ach (200 < 28) and offset-deltas can be stored with two bytes

each (255 × 200 < 216).
A small fraction of real-world graphs are not power-law

graphs. However, given the ubiquitous sparseness feature of large
scale graphs [45], the aforementioned arguments on the small-
ness of degrees and offset-deltas in most chunks of power-law
graphs are also tenable for non-power-law graphs.

The considerable proportion of index data motivates us to de-
sign an index encoding scheme suitable for shared-memory graph
processing. When dividing the index structures into chunks, the
smallness of the maximum degrees and offset-deltas in most
chunks inspires us to propose a scheme called CIC-PIM (Sec-
tion 3.1).

3. Design and implementation

3.1. CIC-PIM

When compressing a graph, CIC-PIM first compresses the ad-
jlist array (using vByte), then compresses the index structures
and obtains the fully-compressed graph. During the processing
of fully-compressed graphs, all decoding work is done on the fly.
Whenever the original offset and degree of a vertex are needed,
the decoding routine of CIC-PIM is called. After the original offset
and degree are decoded, they are used by the decoding routine
of vByte to obtain the original adjlist of the vertex.

3.1.1. Design
Because we need to compress the index structures of time-

critical shared-memory graph processing, the design of CIC-PIM
must achieve the following three goals simultaneously: reason-
able space saving, real random-access-supported and cache-
efficient compressed structures, and lightweight decoding
routine. Real random-access support is necessary because most
accesses to index are random. To achieve the goals, we adopt
three techniques:

1 http://snap.stanford.edu/
155
• Considerable space saving via chunking of index struc-
tures: As discussed in Section 2.4, after dividing the index
structures into equal-sized chunks containing hundreds of
vertices each, the degrees and offset-deltas in most chunks
are no larger than tens of thousands, and can mostly be en-
coded with one or two bytes each. This ensures considerable
space saving.

• Real random-access support via fixed-length byte-aligned
encoding: All degrees and offset-deltas of the same chunk
are encoded with byte-aligned codewords of the same
length, i.e., fixed-length byte-aligned encoding. The fixed-
length feature makes real random access possible, as de-
tailed in Section 3.1.4. Fixed-length encoding is rarely
adopted because of its usually low space saving [57]. How-
ever, due to the compression amenability after chunking,
CIC-PIM achieves reasonable space saving (Section 4.5). Fur-
thermore, the byte-aligned feature also contributes to the
speed of the decoding routine (Section 3.1.4).

• High cache-efficiency via Array-Of-Structures memory
layout (AOS): The AOS memory layout [62] detailed in Sec-
tion 3.2.1 is used for high cache-efficiency: The codewords
of degrees and offset-deltas are interlaced in the compressed
index structure, which ensures the codewords of the degree
and offset-delta of the same vertex are placed in consecutive
memory cells and reside in the same cache line with high
probability (Section 3.1.2). The degree and offset of a vertex
are usually obtained successively, and thus the AOS layout
helps to effectively improve cache-efficiency. The reasons
behind the improvement are detailed in Section 3.2.1.

Due to the careful design of CIC-PIM, we can implement a
lightweight decoding routine without branch mispredictions to
obtain original degrees and offsets, as detailed in Section 3.1.4.
Therefore, CIC-PIM achieves its design goals by the combined use
of the three techniques.

3.1.2. Implementation
A key part of the implementation of CIC-PIM is shown in Fig. 4.

Note that, we only show the compression of index data, i.e., we
assume that the adjlist array has been compressed (with vByte)
in advance. For ease of depiction and description, we assume that
original degrees and offsets are separately stored in two integer
arrays. However, actually the original degrees and offsets are also
interlaced in our implementation, i.e., they are also stored in
AOS layout for high cache efficiency. Offset-deltas of a chunk are
calculated before the compression of the chunk and stored in an
integer array. The compressed index structures and adjlist array
are separately stored in two byte arrays (the compressed index
data array and compressed adjlist array).

The metadata of chunks are stored in a high level index struc-
ture (the chunk index array), which is implemented as an array of
structures with four fields, i.e., AOS layout, instead of four differ-
ent arrays for high cache efficiency, because the fields are usually
accessed successively. The fields are used to store the following
metadata of a chunk: the reference offset, i.e., the first offset; the
start index; the length of one offset-delta codeword; the length of
one degree codeword. Note that, reference offsets are subscripts
in the compressed adjlist array and start indexes are subscripts in
the compressed index data array. We use different terms to avoid
having them mixed up. The metadata are left uncompressed for
fast access. The size of metadata is small relative to the size of
the index data itself, because each chunk contains hundreds of
vertices.

http://snap.stanford.edu/


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

a
t
a
f

3

c
s
c
d
c
t

i
o
t
m
i

o
o
o
r
a

i
a
(
d
d
b

t
a
d
i

3

O
r
o
d
n
s
d
s

Fig. 4. CIC-PIM when encoding a chunk of index data. Note that, we only depict the compression of index data (original degrees and offsets), i.e., the adjlist array
has been previously compressed and stored in the compressed adjlist array. Original offsets are the subscripts in the compressed adjlist array. For ease of depiction
nd description, we assume that original degrees and offsets are stored in two integer arrays. However, actually the original degrees and offsets are also interlaced as
heir codewords in our implementation, i.e., they are also stored in AOS layout for high cache efficiency. Original degrees and offset-deltas are compressed, interlaced
nd stored in the compressed index data array. The metadata of chunks are left uncompressed for fast access and stored in an array of structures (AOS) with four
ields, i.e., the chunk index array.
a
(
i
a
o

.1.3. Workflow
We take a chunk for example to show the workflow of index

ompression, as detailed in Fig. 4. For ease of depiction, the chunk
ize is assumed to be eight. Because the start vertex ID of a
hunk can be calculated from the chunk ID and the chunk size, a
edicated chunking step is unnecessary. To compress the current
hunk of index data, the encoding routine of CIC-PIM operates in
he following order:

a. First the current index of the cidx array is put into the
dx field of the current element in the cnk_idx array. Then the
riginal degrees are scanned to obtain the maxima, which is used
o determine the codeword length of every degree. In Fig. 4, the
axima is 34 and can be stored in one byte. Hence, every degree

n the chunk is encoded with one byte.
b. The length of degree codeword (1) is put into the dlen field

f the current element in the cnk_idx array. Next, the codeword
f the first degree (13) is put into the cidx array and takes up
ne byte. The first degree needs special process because the cor-
esponding offset, i.e., the reference offset are left uncompressed
nd stored in the cnk_idx array as stated in the next step.
c. The first original offset, i.e., the reference offset (210710)

s put in the ref_oft field of the current element in the cnk_idx
rray. Then other original offsets are scanned and their deltas
i.e., differences) from the reference offset are calculated. The last
elta, i.e., the maxima, determines the codeword length of every
elta. In Fig. 4, the maxima is 201, and can be encoded with one
yte.
d. Then the length of offset-delta codeword (1) is put into

he olen field of the current element in the cnk_idx array. Next,
ll codewords of offset-deltas and the remaining codewords of
egrees are interlaced and put into the cidx array sequentially,
.e., are stored in AOS layout.

.1.4. Decoding routine
DEOD, the DEcoding routine of CIC-PIM to obtain the original

ffsets and Degrees, is shown in Fig. 5. It is lightweight for three
easons: First, most of its work is done with bitwise operations
n byte-aligned data; Second, no extra data need to be decoded
ue to the real random-access-supported design, i.e., DEOD need
ot decode any preceding data (Many existing schemes cannot
upport real random access and need to decode some preceding
ata [10–12]); Third, the if-else and other (not shown) branch
tatements in DEOD are predictable because the branch condition
156
Fig. 5. DEOD – DEcoding routine of CIC-PIM to obtain the original Offset and
Degree of a vertex. First, the ID of the chunk in which v lies and the in-chunk
number of v are calculated based on the chunk size (line 1 to 2); The metadata of
the chunk are read from the high level index structure, i.e., the cnk_idx array in
Fig. 4 (line 3 to 6); If v is the first vertex in the chunk (line 7), v’s offset, i.e., the
reference offset, which was stored in the cnk_idx array without compression, is
read directly (line 8). v’s degree, which was compressed and stored in the cidx
rray, needs to be decoded (line 9). If v is not the first vertex in the chunk
line 10), because there is no offset-delta of the first vertex, variables idx and
n_cnk_no are updated to skip the first vertex (line 11 to 12). Then, the starting
ddress of the index data of v is calculated based on the codeword lengths of
ffset-delta and degree, i.e., olen and dlen (line 13). Finally, the offset-delta and

degree are decoded successively (line 14 to 17).

statements can be evaluated in advance, i.e., they do not result in
branch mispredictions [35]. In the graph algorithms working on
fully-compressed graphs, whenever the adjlist of a vertex needs
to be decoded, DEOD is called in advance to decode the offset
and degree, then the offset and degree are used by the decoding
routine of vByte to decode the adjlist.

3.2. Analysis

3.2.1. Effectiveness of AOS
The main conclusion of this section is as follows: Compared

with the contrasting layout SOA (Structure Of Arrays [62]), the
AOS layout helps to decrease the cache miss rates of index data



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

a
1

l
u
H
p
i
t
o
l
S

a
c
f
a
t
c
b

c
s
r
b
c
i
i
c
p
s
a
a
o

a
o
o
d
p
a
a

/
r
t
o
i
s
a
o

3

s
s
a
I
i
v
i
g
l
b

x
e
t
w
t
p
0
≥

i

Fig. 6. The AOS and SOA memory layouts when used to stored the index data,
i.e., the offsets and degrees in CIC-PIM where the AOS layout is adopted in
several data structures for high cache efficiency.

Fig. 7. When the AOS layout used, how the probability that the offset and degree
of a vertex reside in the same cache line is calculated. A frame represents a byte
or a memory cell. Assume that the offset and degree of a vertex take up 4 bytes
totally and 2 byte each. We regard the offset in a certain cache line if the first
of its 2 bytes resides in the cache line. Among the possible 64 cases, in the
cases 1 to 61 the degree also completely reside in the same cache line, and
thus the probability that the offset and degree reside in the same cache line is
61/64 = 0.95.

ccess from nearly 100% to around 50% and gains a speedup of
2%.
When used to store the index data in CIC-PIM, the memory

ayouts are shown in Fig. 6. Existing works show that SOA is
sually more efficient than AOS for parallel processing [32,56].
owever, we will show than AOS is more efficient for graph
rocessing. To simplify discussion, first, we assume that there
s only one level of cache in the memory system (corresponds
o L1 cache and the size is usually in dozens of KBs), and the
ther levels of caches (including caches from L2 cache to the last
evel cache) and the memory itself are uniformly viewed as RAM;
econd, we further omit many details of hardware in discussion.
In the memory system of modern computer, when the data in

memory cell (can house a byte) is needed, CPU first search the
opy of the data in the cache. If found, the need is met; If not
ound, CPU reads the data from memory cell, and simultaneously
ll the data in the chunk of consecutive memory cells containing
he accessed cell are loaded into cache for near future use. The
hunk is called a cache line and usually contains 64 or 128
ytes [22].
The index data of each vertex (offset and degree) is usually ac-

essed randomly while the offset and degree are usually accessed
uccessively. In AOS layout, the offset and degree of a vertex
eside in the same cache line with high probability. Assume that
oth the offset and degree of a vertex take up 2 bytes each (after
ompression) and a cache line contains 64 bytes, the probability
s 61/64 = 0.95, as detailed in Fig. 7. After the offset of a vertex
s accessed, the cache line containing the offset is loaded into
ache simultaneously. The degree can now be found in cache with
robability of 0.95 and the slow RAM access is avoided with the
ame probability. In SOA layout, the offset and degree of a vertex
re so distant that they cannot reside in the same cache line,
nd thus cannot takes advantage of the chunked access feature
f memory system.
Because the index data sizes of large scale graphs usually

re much larger than the size of cache (usually MBs vs dozens
f KBs), even after data warm-up there is only a small fraction
f index data reside in cache. Given that the accesses to index
ata usually are random and the needed data cannot be correctly
refetched [22], the Cache Miss Rate (CMR) of the first access to
cache line should be nearly 100%. For SOA layout, the offset

nd degree of a vertex reside in two distant cache lines and thus

157
the CMR when accessing them is nearly 100% ((≈100% + ≈100%)
2 ≈ 100%). For AOS layout, the offset and degree of a vertex
eside in the same cache line with a probability of 0.95, and hence
he CMR is slightly more than 50% (the CMR of the access to the
ffset is nearly 100% and to the degree is 5%, and thus the average
s 53%). The AOS layout of index data achieves an average 12%
peedup than that of SOA (raw data are omitted). Because the
ccesses to index data only consist of a relatively small portion
f data accesses, the speedup is relatively low.

.2.2. Worst case index data space saving
The main conclusion of this section is that, the worst case

pace saving of CIC-PIM on index data is more than 53%. To
implify analysis, we assume (1) each chunk contains the degrees
nd offsets of 256 vertices as in our implementation; (2) vertex
Ds, original offsets and degrees are represented with a 4-byte
nteger each; (3) the smallest degree is 1, i.e., there are no isolated
ertices in graphs (Actually CIC-PIM can process graphs with
solated vertices). Because most large scale graphs are power-law
raphs, we only analyze the index data space saving of power-
aw graphs here. The discussion on non-power-law graphs will
e presented in Section 4.5.2.
Under the power-law degree distribution, a vertex has degree

with a probability of P(x) ∝ x−α , where α is called skewness
xponent, and the typical value of α = 2.2 [24]. In other words,
he probability density function of degree x is f (x) = Cx−2.2,
here C is a constant. Because

∫
+∞

1 f (x)dx = 1, C = 1.2, and
he exact probability density function is f (x) = 1.2 ∗ x−2.2. The
robability that a degree lies in [256, +∞) is P1 =

∫
+∞

256 f (x)dx =

.00129. The probability that a chunk contains at least one degree
256 is P2 = P1 ∗ 256 = 0.330. The probability that a degree lies

n [216, +∞) is 0.00000166. The probability that a chunk contains
at least one degree ≥ 216 is 256 ∗ 0.00000166 = 0.000425,
which is negligible and need not be considered. Let L̄d be the
expected size (#bytes) of the compressed degree of a vertex, and
L̄d = 2 ∗ P2 + 1 ∗ (1 − P2) = 1.33, where 2 ∗ P2 corresponds
to chunks containing at least one degree ≥256 and 1 ∗ (1 − P2)
corresponds to chunks with every degree <256.

In aforementioned analysis, we have assumed that if a chunk
contains at least one degree ≥256, codewords of 3 bytes each
will be used to encode all the offset-deltas. This assumption is
overstrict because 3-bytes codeword is needed only when the
average degree in a chunk d̄ ≥ 256, i.e., when d̄ ≥ 256, d̄ ∗ 256 ≥

216 and offset-deltas need 3 bytes each to be encoded (Recall
that we do not consider vertices with degree ≥ 216 due to the
negligible probability). Let L̄o be the expected size (#bytes) of the
compressed offset-delta of a vertex, and L̄o < 3∗P2+2∗(1−P2) =

2.33, where 3 ∗ P2 corresponds to chunks containing at least
one degree ≥256 and 2 ∗ (1 − P2) corresponds to chunks with
every degree <256. Note that, because degrees are at least 1, the
maximum offset-delta in each chunk ≥255 (the probability that
equal to 255 is 2.9 × 10−64) and thus at least 2 bytes needed to
encode each of them. Taken together, the expected size of the
compressed index data of a vertex L̄ = L̄d + L̄o < 1.33 + 2.33 =

3.66, and the space saving > (8 − L̄)/8 = 54%. Due to the
introduction of the metadata of chunks, an around 1% loss is
caused and hence the space saving >53%.

It is hard to craft a model to predict the space saving of CIC-
PIM on entire graph given that it is related to four variables: the
average degree, the number of vertices, the skewness exponent
and the chunk size. However, we can qualitatively analyze the
space saving of CIC-PIM as follows. For graphs with relatively
high average degrees, vByte will achieve reasonable space sav-
ings [60]. For graphs with low average degrees, the space savings
of vByte are low due to the considerable proportion of index data.
Nonetheless, given the reasonable space saving of CIC-PIM on
index data, the space saving of CIC-PIM on entire graphs should
also be reasonable.



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

i
t
t
a
o

a

3

t
c
O
t
t
s
o
p
m
m
a
i

Fig. 8. CMTC – modified MTC algorithm working on partially- and fully-
Compressed graphs. When working on fully-compressed graphs, DEOD is called
n advance to decode the offset and degree whenever the adjlist of a vertex is
o be decoded. During an intersection is computed, if needed, the adjlists of the
wo vertices u and v are decoded on the fly by calling deFirst and deNext, which
re the decoding routines of signed vByte and standard vByte respectively. An
ptimization is introduced: An array A is created to avoid the repetitive decoding

of the adjlist of u (line 3). Specifically, when the adjlist of u is intersected with
the adjlist of u’s first neighbor (line 13), the adjlist of u is decoded actually and
stored in A (line 16 and 19). When the adjlist of u is intersected with the adjlists
of u’s remaining neighbors, the adjlist of u is directly obtained from A (line 26
nd 28).

.3. Implementation of TC algorithms

The fastest shared-memory TC algorithm MTC [20,61] men-
ioned in Section 2.2 is modified to work on partially- and fully-
ompressed graphs, and the new algorithm is called CMTC (Fig. 8).
rientation can be executed in preprocessing [1,16,38,53] or on
he fly [26,34,61]. In [61], MTC is implemented with orienta-
ion executed on the fly because [61] needs to support edge
ampling and approximate triangle counting. However, we focus
n exact triangle counting, and given that orientation can be
erformed once and the resulting oriented graphs can be used
any times, orientation is done in preprocessing in our imple-
entation. Ligra+ does not take TC algorithms into consideration,
nd cannot utilize the orientation heuristics. Hence, we do not
mplement our work in Ligra+. Hereafter, we use the term TC or
TC algorithms in place of MTC and CMTC for brevity.

3.4. Implementation of common graph algorithms

Although inspired by TC related issues, CIC-PIM is also simi-
larly applicable to common graph algorithms. We take the state
158
of the art BFS, PageRank, sparse matrix vector multiplication
(SpMV), radii estimation (Radii) and connected components (CC)
as examples to demonstrate the capability [43,59]. We first im-
plement these algorithms working on uncompressed graphs, then
naively modify them to obtain their implementations working on
partially- and fully-compressed graphs. Hereafter, we use com-
mon graph algorithms in place of these algorithms and their im-
plementations working on compressed graphs for brevity.

4. Evaluation and discussion

4.1. Evaluation settings

The server used is equipped with four Xeon E7-4820 v3 CPUs
and 256 GB of memory. The OS is Ubuntu 14.04 with swap
areas disabled to obtain real in-memory results. All programs,
coded from scratch in C++ by the same person, are parallelized
with OpenMP and compiled using G++ 4.9.2 with -O3 option.
Programs are run with the default number of threads in OpenMP
(96), i.e., twice the number of physical cores (48), except in the
scalability evaluation (Section 4.7). Each time presented is the
average time of three runs. Though the processing times of some
relatively small graphs are short and hence notably vary from run
to run, the average speedup percentages presented in Section 4.4
remain constant when we conduct the evaluations twice.

4.2. Datasets and preprocessing

The graphs used in evaluations are shown in Table 2. clj,2
slj2 and twr2 represent social networks. c09,3 gsh4 and c123 are
web graphs. These graphs are power-law graphs. To increase the
diversity of datasets, three non-power-law graphs with different
degree distributions are included: osm5 is the street map of
Europe; nlp is related to the optimization problem of linearized
Karush–Kuhn–Tucker systems6; 3dg is a 3D grid and generated
with a tool from Ligra.7

To run TC algorithms, raw graphs are first processed into (un-
compressed) oriented graphs. To run common graph algorithms,
raw graphs are first processed into (uncompressed) unoriented
graphs (directed or undirected). To obtain compressed graphs,
uncompressed graphs are partially- and fully-compressed. The
parallelized compression is fast due to the lightweight design of
CIC-PIM. The compression times, obtained in the same server and
shown in Table 3, are not included in runtimes because they can
be amortized across many runs.

For common graph algorithms, whether raw graphs should be
processed into directed or undirected graphs is determined by
specific application scenarios. In our evaluations, the largest four
graphs (from twr to c12) are processed into directed and the rest
are processed into undirected, similar to what Ligra+ does.

4.3. Metrics of interest

Four metrics are used to evaluate the efficacy of our work:
speedup compared with the state of the art approaches, the space
saving of index data, the space saving of entire graph, and the
multithreaded scalability.

2 http://snap.stanford.edu/
3 http://lemurproject.org/
4 http://law.di.unimi.it/
5 http://www.dis.uniroma1.it/challenge9/
6 https://sparse.tamu.edu/
7 https://github.com/jshun/ligra/

http://snap.stanford.edu/
http://lemurproject.org/
http://law.di.unimi.it/
http://www.dis.uniroma1.it/challenge9/
https://sparse.tamu.edu/
https://github.com/jshun/ligra/


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

T
C

s
T
c
g
a

4

4

o
p
r

Table 2
Dataset Information.
Dataset #Vertices #Edgesa #Triangles Storage Size (B)b

clj 3,997,962 34,681,189 177,820,130 148M
slj 4,847,571 42,851,237 285,730,264 182M
osm 173,789,186 182,620,014 102,623 1.33G
nlp 27,993,600 373,239,376 0 1.49G
3dg 299,418,309 898,254,927 0 4.46G
twr 41,652,230 1,202,513,046 34,824,916,864 4.63G
c09 4,780,950,910 7,811,398,073 31,013,037,486c 93.8G
gsh 988,490,691 25,690,705,118 910,140,734,636 103G
c12 6,257,706,595 66,539,548,496 3,058,034,046,618c 542G

aThe number of oriented edges.
bUncompressed storage size of the oriented graph.
cThe results are different from those of [53]. We are confident in our results as we obtained the
same results using another processing flow.
S
e
r
o
S
1
s
s
a
f
d
r
i
p
o
s
r
a

4

d
g
c
p
o
t
T
r
o
t
d
p

4

4

s

able 3
ompression Time.
Dataset Ligra+ (s)a CIC-PIM (s)

clj 0.015 0.034
slj 0.017 0.040
osm 0.14 0.31
nlp 0.15 0.37
3dg 0.43 0.99
twr 0.46 1.07
c09 8.0 13.2
gsh 10.4 12.8
c12 5476 4963

For the huge c12, the compression must be done with the help of external
torage (a SAS HDD) and is bottlenecked by I/O, which explains the long times.
he fully-compressed c12 is obtained in less time than the partially-, i.e., Ligra+-
ompressed graph because of its smaller size (Table 6) and hence less I/O. Other
raphs are compressed with all data fit in memory and hence fast.
Ligra+-, i.e., partially-compressed.

.4. Speedup

.4.1. Speedup for TC
As shown in Table 4, for c12, the huge size of uncompressed

graph is more than 2-fold larger than the RAM capacity (542
GB vs 256 GB), resulting in out-of-memory error during the
run of MTC. When CMTC processing the Ligra+-, i.e., partially-
compressed graph (240 GB), because the graph size is very close
to the RAM capacity and the swap area has been disabled, out-of-
memory error also arises. After being fully compressed (165 GB),
CMTC can process the graph with all data fit in memory, leading
to fast in-memory processing (636 S).

For graphs other than c12, all data can be fit in memory
even uncompressed. Compared with the speeds of MTC (on
uncompressed graphs), the speedup percentages, defined as
(timeold− timenew)/timeold×100%, of CMTC on CIC-PIM-, i.e., fully-
compressed graphs range from −2% to 37% with an average
f 11%. Also compared with the speeds of MTC, the speedup
ercentages of CMTC on Ligra+-, i.e., partially-compressed graphs
ange from −29% to 26% with an average of 3%. Thus, index
compression with CIC-PIM not only leads to space saving but
also achieves a speedup of 8%. The reasons for the moderate
speedup are twofold. First, due to the careful design of CIC-
PIM, the lightweight decoding routine incurs limited computing
overhead, and the overhead is mostly offset by spare comput-
ing power. Second, the significantly reduced size of index data
mitigates the memory wall problem and contributes to speedup.
Therefore, generally speaking, speedup positively correlates with
space saving. Moreover, the ratio of the compressed-graph size to
the L3 cache capacity and the structure characteristics of graphs
may also be important factors in some cases.
159
4.4.2. Speedup for common graph algorithms
For c12, the discussion is similar to that of TC, as stated in

ection 4.4.1. For graphs except c12, all data can be fit in memory
ven uncompressed. Compared with the speeds of these algo-
ithms on uncompressed graphs (in columns with the heading
f Ligra), the average speedup percentages of BFS, PageRank,
pMV, Radii and CC on CIC-PIM-, i.e., fully-compressed graphs are
4%, 17%, 10%, 9% and 10% respectively. Also compared with the
peeds of these algorithms on uncompressed graphs, the average
peedup percentages on Ligra+-, i.e., partially-compressed graphs
re correspondingly 6%, 2%, -1%, 5% and 2%. Because of the care-
ul design of CIC-PIM and the alleviated memory wall problem
ue to index compression, speedups are achieved on all algo-
ithms. Various graph algorithms have the same key operation
n which the adjlist of a vertex is traversed with different com-
uting, and thus there are no significant differences in speedups
f different algorithms. More specifically, for Radii, the average
peedups are relatively low (4%); for PageRank, the speedup is
elatively remarkable (15%); for BFS, SpMV and CC, the speedups
re moderate (8%, 11% and 8% respectively).

.4.3. Runtime decomposition
To figure out the cost of decoding, we collect times spent on

ecoding and computing when processing CIC-PIM-compressed
raphs and show the results in Table 5 (The time spent on other
odes except decoding and computing are negligible). The time
ercentages of decoding range from 19% to 24% with an average
f 22%. Specifically, for TC, BFS, PageRank, SpMV, Radii and CC,
he percentages are 21%, 24%, 24%, 22%, 21% and 19% respectively.
hough compared with PageRank and SpMV, in the other algo-
ithms the computing needed after decoding the adjacency list
f a vertex are relatively less, there are more branch mispredic-
ions in the computing of the latter, and hence the percentage
ifferences between algorithms are insignificant. Moreover, the
ercentage differences between graphs are also insignificant.

.5. Index-data space saving

.5.1. Index-data space saving for TC
For the oriented graphs used by TC, the index-data space

avings are shown in the first Index column of Table 6. The space
savings range from 59% to 82%, with an average of 69%. As dis-
cussed in Section 2.4, the noticeable space saving mainly comes
from the smallness of the maximum degrees and offset-deltas in
most chunks.

Higher index space savings are usually achieved on huge
graphs including c09, gsh and c12, because in those graphs the
offsets and/or degrees have to be represented with 8-byte inte-
gers, and leave larger portions of leading zeros to be removed.
However, nlp is an exception. Its high index space saving comes



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

t
a
T
d
t
p

Table 4
Runtime.

Dataset TC (s) BFS (s) PageRank (s) SpMV (s) Radii (s) CC (s)

MTCa Ligra+ CIC-PIM Ligra Ligra+ CIC-PIM Ligra Ligra+ CIC-PIM Ligra Ligra+ CIC-PIM Ligra Ligra+ CIC-PIM Ligra Ligra+ CIC-PIM

clj .281 .273 .265 .047 .023 .022 .048 .043 .031 .145 .129 .121 1.42 1.06 .99 .190 .179 .165
slj .413 .409 .370 .053 .027 .025 .052 .050 .033 .197 .221 .164 1.54 1.18 1.21 .255 .268 .232
osm .94 1.21 .96 .232 .273 .247 .647 .773 .571 .810 .984 .805 84.1 91.3 82.4 .170 .188 .173
nlp 2.85 2.11 1.80 1.34 1.49 1.38 .332 .281 .277 1.67 1.44 1.35 36.5 33.8 33.6 .462 .417 .411
3dg 26.3 23.6 19.4 7.51 8.20 7.45 1.93 2.06 1.73 6.12 6.53 5.76 324 347 341 5.74 5.63 5.09
twr 47.2 44.3 45.9 .793 .889 .832 3.05 2.61 2.63 10.8 10.1 10.5 11.0 11.3 11.7 4.42 4.26 4.48
c09 75 80 73 9.13 9.97 8.32 21.4 24.3 19.7 37.1 41.2 33.7 153 167 135 29.5 32.1 24.7
gsh 183 166 168 11.27 10.23 10.36 38.1 34.2 35.7 84.1 73.7 75.4 189 162 168 33.4 27.5 27.2
c12 OOM OOM 636 OOM OOM 55 OOM OOM 128 OOM OOM 224 OOM OOM 341 OOM OOM 64

For each algorithm, the leftmost column (with the heading MTC or Ligra) contains the runtimes of the algorithm on uncompressed graphs; the middle column
(with the heading Ligra+) contains the runtimes of the algorithm on partially-, i.e., Ligra+-compressed graphs; the rightmost column (with the heading CIC-PIM)
contains the runtimes of the algorithm on fully-, i.e., CIC-PIM-compressed graphs. Generally speaking, CIC-PIM not only reduces data sizes but also helps to speed
up processing due to its careful design, or results in fast in-memory processing unattainable previously.
aThe heading is different from those of other algorithms because Ligra neither supports orientation nor includes any TC algorithms. OOM - Out of Memory.
Table 5
Decoding-Time Percentage.
Dataset TC BFS PageRank SpMV Radii CC

clj 23 25 23 25 20 18
slj 20 23 25 25 23 17
osm 21 26 23 19 22 17
nlp 18 21 27 19 24 20
3dg 18 24 25 25 22 16
twr 24 24 24 23 19 22
c09 21 21 23 20 21 21
gsh 22 23 22 21 18 23
c12 24 27 23 19 20 20

Table 6
Storage Space Saving.

Dataset TC (%) Common Graph Algorithms (%)

Ligra+ CIC-PIM Indexa Ligra+ CIC-PIM Indexa

clj 26 39 61 40 47 60
slj 26 38 62 39 46 60
osm −22 38 62 0 36 62
nlp 51 63 80 57 61 62
3dg 12 43 62 21 39 62
twr 44 48 59 45 51 57
c09 0 61 82 0 62 86
gsh 59 67 75 62 71 73
c12 56 69 81 57 70 82

All results are relative to the storage sizes of uncompressed graphs (Table 2).
CIC-PIM averagely achieves space savings of more than 50% on entire graphs
and more than 65% on index data. Note that, compared with the up to around
90% space saving of the techniques for sequential graph processing [12], the
space saving of CIC-PIM is relatively low. It is because the application setting
of CIC-PIM is the time-critical shared-memory graph processing, and it is hard
to compress graphs aggressively without processing speed losses. The negative
number (−22) means the increase of storage size.
aSpace savings of CIC-PIM on index data.

from the fact that a large number of consecutive vertices become
sink vertices (no out-edge) after orientation, and causes the
compressed index sizes of many chunks that only contain sink
vertices to be zero (Recall that only out-edges are stored in the
CSR of oriented graphs, and thus all degrees and offset-deltas of
the chunks that only contain sink vertices are zero).

4.5.2. Index-data space saving for common graph algorithms
For the unoriented graphs used by common graph algorithms,

he index-data space savings range from 57% to 86% with an
verage of 67%, as shown in the last Index column of Table 6.
he space savings result from the smallness of the maximum
egrees and offset-deltas in most chunks, as discussed in Sec-
ion 2.4. For TC, the average index-data space saving is 69%, as
resented in Section 4.5.1. Compared with the 67% here, the
160
slight 2% increase mainly stems from orientation, which firstly
replaces every two reciprocal directed edges with one directed
edge and thus reduces average degrees (i.e., increases sparseness),
and secondly redirects each edge from the lower degree vertex
to the other vertex and thus alleviates the skewness of degree
distribution. The two operations of orientation both contribute
to the smallness of the maximum degrees and offset-deltas in
chunks and hence index-data space saving.

Higher index-data space savings are achieved on huge graphs
due to the representation of their offsets and/or degrees with
8-byte integers, as discussed in Section 4.5.1. nlp is no longer
an exception, because common graph algorithms work on unori-
ented graphs.

Next, we explain why the index data space savings on rela-
tively small graphs where offsets and degrees are represented
with 4-byte integers (from clj to twr) are all around 60%, espe-
cially why there are so many 62%s. We take a non-power-law
graph osm as an example. osm is a road map and the degree of any
vertex in the graph is between one and dozens. Thus, the degrees
in every chunk can be encoded with one byte each, and the offset-
deltas in every chunk can be encode with two bytes each. Hence,
the space saving is (8 − 1 − 2)/8 = 63%. Due to the introduction
of the metadata of chunks, an around 1% loss of space saving is
caused and hence the 62%. For another non-power-law graph 3dg,
each vertex has a degree of three and thus the discussions are
clearly also tenable. For the relatively small power-law graphs (clj,
slj and twr), because the degrees of the vast majority of vertices
≤255 (

∫ 255
1 1.2 ∗ x−2.2dx = 0.999), the space saving should be

near to 62%. However, the existence of a tiny fraction of vertices
with high degrees causes a space saving loss of no more than
several percent (The analysis to determine the worst-case space
saving, i.e., 53%, in Section 3.2.2 is overstrict). Thus, index-data
space savings for the relatively small graphs lie around 60%.

4.6. Entire-graph space saving

The space savings of entire-graph storage and peak memory
usage due to CIC-PIM compression are similar, and only the
results of the former are presented.

4.6.1. Entire-graph space saving for TC
The space savings of compressed oriented graphs used by

TC are shown in the second and third columns of Table 6. The
additional space savings due to index compression range from
4% to 61% with an average of 24% (the differences of the two
columns). The marked space savings come from the reasonable
compression efficacy of CIC-PIM and the considerable proportion
of index data. Thus, for graphs with high proportions of index



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

(

f
m
s
o
q
m

data, i.e., graphs with low average degrees such as osm (60%), 3dg
31%) and c09 (61%), high additional space savings are achieved.

Compared with uncompressed graphs, the space savings of
CIC-PIM-, i.e., fully-compressed graphs range from 38% to 69%
with an average of 52%, as shown in the third column of Table 6.
The significant space savings are achieved from the compression
efficacy of CIC-PIM on index data and the adjlist array. Higher
space savings are usually achieved on graphs with huge num-
ber of vertices and dense graphs, i.e., graphs with high average
degrees. The former include c09 and c12 and the latter include
twr and gsh. For graphs with huge number of vertices, vertex
IDs, offsets and degrees are represented with 8-byte integers and
leave larger portions of leading zeros to be removed as stated in
Section 4.5.1. For dense graphs, the adjlist of each vertex tends
to contain more neighbors, i.e., there are averagely more integers
(i.e., neighbors) scattered between 0 and n-1 (n is the number
of vertices). Thus, the deltas between consecutive integers in an
adjlist tend to be smaller and less bytes needed to encode these
deltas.

For nlp, high space saving is gained because many vertex IDs
in the adjlist of each vertex are sequential integers, i.e., the deltas
between these consecutive integers are one, and only one byte
needed to encode each of them.

The −22% space saving on Ligra+-, i.e., partially-compressed
osm stems from its low average degree (1.1), which causes the
space to increase because the introduction of the degree array
more than offset the space saving gained from the compression
of the adjlist array.

4.6.2. Entire-graph space saving for common graph algorithms
The space savings of the compressed unoriented graphs used

by common graph algorithms are shown in the fifth and sixth
columns of Table 6. The additional space savings due to index
compression range from 4% to 62% with an average of 18% (the
differences of the two columns). The marked space savings stem
from the reasonable compression efficacy of CIC-PIM and the
considerable proportion of index data. The reason for the lower
percentage (18%) than that of TC (24%) is because the proportions
of index data in unoriented graphs are lower than those in the
oriented graphs used by TC, as stated in Section 2.2.

Compared with uncompressed graphs, the space savings of
CIC-PIM-, i.e., fully-compressed graphs range from 36% to 71%
with an average of 53%, as shown in the sixth column of Table 6.
Because of the same reasons for TC (Section 4.6.1), higher space
savings are usually achieved on graphs with huge number of
vertices and dense graphs while nlp is an exception.

4.7. Scalability

To evaluate the multithreaded scalability of CIC-PIM, we show
the speedups of CMTC (on fully-compressed graphs) and MTC
(which works on uncompressed graphs). As the number of
threads varies from 1 to 48 in multiples of 6, CMTC shows better
scalability than MTC on all graphs and the scalability improve-
ment is more significant on low average degree graphs (3dg and
osm), as shown in Fig. 9. However, nlp is an exception because its
average degree is high while its scalability improvement is most
significant. Generally speaking, the better scalability of CIC-PIM
mainly comes from the alleviated memory wall problem due to
reduced data sizes.

When traversing the adjlist of a vertex, the access to the first
neighbor is usually random, and the subsequent accesses to the
rest neighbors are sequential. When processing graphs with short
adjlists, i.e., graphs with low average degrees, there are higher
portions of random access than those of graphs with high aver-
age degrees, and hence lower effective memory bandwidth. This
161
Fig. 9. Multithreaded scalability of CMTC on CIC-PIM-, i.e., fully-compressed
graphs vs. that of MTC [20,61], which works on uncompressed graphs. Speedups
are normalized to that of one thread. CMTC shows better scalability than MTC
on all graphs and the scalability improvement is more significant on low average
degree graphs (3dg and osm) while nlp is an exception because its average
degree is high but the scalability improvement is significant.

means that when processing graphs with low average degrees,
the memory wall problem is severer. Thus, the processing of
graphs with low average degrees (osm and 3dg) is more sensitive
to data sizes and gains more significant scalability improvements
due to CIC-PIM compression.

For nlp, the exceptional result comes from its special structure
eature. The matrix representation of nlp is a nearly diagonal
atrix, and [31] shows that processing of this kind of graph
cales well only with less than four threads. After the number
f threads increasing beyond four, the memory bandwidth is
uickly saturated and the processing times do not decrease any
ore, which explains the bad scalability of MTC on nlp. nlp

contains a large number of consecutive vertices with degree of
zero and the rest vertices with relatively high degree. Hence,
during its processing the portion of random memory access is
low, i.e., the effective memory bandwidth is high. When process-
ing the graph (whether compressed or not) with one thread, the
limited computing power of one core and the higher effective
memory bandwidth make the CPU become bottleneck. When
MTC processing the uncompressed graph with one thread, the
higher effective memory bandwidth causes the processing is fast
(5.2 S); When CMTC processing the fully-compressed graphs with
one thread, the computation of decoding causes the runtime
to increase significantly due to the limited computing power
of one core (68 S). In contrast, when running with 48 threads,
the memory is the bottleneck for both MTC and CMTC, and the
processing times are comparable (2.85 vs 1.80). Thus, when the
number of threads increases from 1 to 48, the speedup of CMTC
is much higher than that of MTC (68/1.80 vs. 5.2/2.85).

We omit the results of the remaining four graphs for clearer
visualization because they are similar to the results of some
graphs shown in Fig. 9. Specifically, the result of c09 is similar
to that of osm; the results of clj, gsh, and c12 are similar to that
of slj or twr. Because various graph algorithms have the same
key operation, there are no significant differences in speedups of
different algorithms as stated in Section 4.4.2. Thus, the scalability
of CIC-PIM on common graph algorithms is similar to that of TC
and is omitted.

4.8. Impact of chunk size

The key design parameter in CIC-PIM is the chunk size, which
should be an integer power of two. We evaluate the integer



Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

p
p
u
a

g
o
s
t
t
S
c
w
p
m
g
l
F
o
t
m
s

N
v
c
C
p
m
s
s

5

g
n
T
t
o
a
e
s
n
s
n

e
s
I

powers from 64 to 4,096, and observe that space saving decreases
slightly while speed increases slightly. With the increase of chunk
size, the size of chunk metadata is reduced significantly and the
cache hit rate of index data access increases, which explains
the slight increase of speed. However, the growth of chunk size
increases the possibility that each chunk contains high degree
vertices and results in the increase of the compressed index data,
which more than offsets the reduction of chunk metadata and
explains the slight decrease of space saving. To achieve a good
compromise, a chunk size of 256 is chosen.

5. Related work

5.1. Graph processing and compression

There are a large body of work on shared-memory graph
rocessing [40,48,52,54,59] report solutions that can efficiently
rocess large scale graphs. Nonetheless, these solutions do not
se compression to reduce memory usage. In contrast, CIC-PIM
ims to reduce memory usage while still improving speed.
Studies such as [10–13,42,67] focus on compressing

raphs/matrices in sequential settings and achieve space savings
f up to around 90%. Nevertheless, they are not suitable for
hared-memory processing due to two reasons. First, they aim
o specific applications such as neighborhood query in sequen-
ial settings and do not take multithreading into consideration.
econd, they support random access by decoding extra data and
ompress data with variable length bit-aligned schemes, both of
hich are too heavy in time overhead for shared-memory graph
rocessing. Though several more recent works aim at shared-
emory settings [7,8,21,28,37,46]. They try to compress specific
raph representations such as trees and hence can only support
imited graph algorithms [21,28], aim at accelerators such as
PGAs but CPUs [37,46] or can only gain reasonable space saving
n graphs of specific scale range [8]. CIC-PIM aims to compress
he popular CSR representation of graphs of any scale in shared-
emory settings and can support a wide range of graph and
parse matrix algorithms.
Index compression has been studied in the literature [9,14,57].

evertheless, these techniques are mainly used to compress in-
erted index or the index of database systems, and their decoding
osts are too high to be practical for shared-memory processing.
ompression techniques for the index data of graphs are pro-
osed in [7,8,10–12,21] and usually achieve good results in some
etrics. However, they are designed for applications in sequential
ettings, only support graphs of specific representations or only
uitable for graphs of specific scale range.

.2. Triangle counting

Triangle counting (TC) are generally classified into two cate-
ories: exact TC and approximate TC. Exact TC obtains the exact
umber of triangles and is further classified into shared-memory
C, single node out of core TC, distributed-memory TC and dis-
ributed out of core TC. As stated before, share-memory TC, i.e., TC
n a single multicore node with all data fit in memory, is gener-
lly more efficient than on a cluster regarding cost effectiveness,
ase of implementation and speed. However, the applicability of
hared-memory TC is limited by the RAM capacity of a single
ode [19,20,29,33,61,69]. To effectively reduce the working set of
hared-memory TC and fit larger graphs into the RAM of a single
ode, CIC-PIM try to compress the index structures of graphs.
Single node out of core TC leverages the large capacity of

xternal storage of a single node to process larger graphs and
hows high cost performance [15,17,44]. However, due to the low
/O bandwidth of a single node, these algorithms suffer from low
162
speed and are much slower than shared-memory TC. Distributed-
memory TC may process larger graphs than shared-memory
TC [1,2,70]. However, due to the much longer network latency
than local RAM and the communication intensive nature of TC,
distributed-memory TC is usually significantly slower than
shared-memory TC. Distributed out of core TC mostly refers to
MapReduce algorithms which can usually process larger graphs
[39,41,53,71]. However, due to the long network latency and
low I/O bandwidths, works of this type are usually slower than
shared-memory TC.

Approximate TC estimates the number of triangles mainly by
sampling and usually works on stream graphs [23,36,58,65,66],
although it can also work on static graphs [1,64]. Though most
approximate TC algorithms aim at single node settings, some of
them can also run on distributed systems [1,64]. By sampling, ap-
proximate TC works can usually reduce the working set by orders
of magnitude times and improve processing speed dramatically.
However, the drawback is that they cannot obtain exact results.
There are some works leverage matrix computation to get the
estimated number of triangles [3,49,50,63]. Though these works
can fully use the massive legacy resources of matrix computation
to simplify TC, they usually are compute-intensive and hence
slow.

6. Conclusion

In this paper, we conduct research on graph compression
related issues inspired by TC-related issues in shared-memory
settings. Mainly to compress the considerable proportion of index
data in graphs represented with the popular CSR format, we pro-
pose a scheme CIC-PIM, which achieves significant space savings
while still improving speed on TC and a wide range of common
graph algorithms. In further work, CIC-PIM can be extended to
distributed settings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported in part by National Key R&D Pro-
gram of China NO. 2018YFB1003305, NSFC No. 61772216, No.
61832020, No. 61821003, National Science and Technology Major
Project No. 2017ZX01032-101, Fundamental Research Funds for
the Central Universities. This work is also supported by NSFC
61502190 and CERNET Innovation Project NGII20170120.

References

[1] S. Arifuzzaman, M. Khan, M. Marathe, PATRIC: A parallel algorithm for
counting triangles in massive networks, in: Proceedings of the 22nd
ACM International Conference on Information & Knowledge Management,
ICKM’13, ACM, 2013, pp. 529–538.

[2] S. Arifuzzaman, M. Khan, M. Marathe, A space-efficient parallel algorithm
for counting exact triangles in massive networks, in: Proceedings of the
17th IEEE International Conference on High Performance Computing and
Communications, HPCC’15, IEEE, 2015, pp. 527–534.

[3] A. Azad, A. Buluç, J. Gilbert, Parallel triangle counting and enumeration
using matrix algebra, in: Proceedings of 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, IPDPSW’15, IEEE, 2015,
pp. 804–811.

[4] Z. Bar-Yossef, R. Kumar, D. Sivakumar, Reductions in streaming algorithms,
with an application to counting triangles in graphs, in: Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’02,

Society for Industrial and Applied Mathematics, 2002, pp. 623–632.

http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb4


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165
[5] S. Beamer, K. Asanović, D. Patterson, Direction-optimizing breadth-first
search, Sci. Program. 21 (3–4) (2013) 137–148.

[6] L. Becchetti, P. Boldi, C. Castillo, A. Gionis, Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs, in: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, SIGKDD’08, ACM, 2008, pp. 16–24.

[7] M. Besta, T. Hoefler, Survey and taxonomy of lossless graph compression
and space-efficient graph representations, arXiv preprint arXiv:1806.01799.

[8] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, T. Hoefler,
Log(Graph): a near-optimal high-performance graph representation, in:
Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques, PACT’18, 2018, pp. 7:1–7:13.

[9] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross, S. Lau, C.
McArthur, Z. Toth, R. Sherkat, Efficient index compression in db2 luw, Proc.
VLDB Endow. 2 (2) (2009) 1462–1473.

[10] D.K. Blandford, G.E. Blelloch, I.A. Kash, Compact representations of sepa-
rable graphs, in: Proceedings of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’03, Society for Industrial and Applied
Mathematics, 2003, pp. 679–688.

[11] D.K. Blandford, G.E. Blelloch, I.A. Kash, An experimental analysis of a com-
pact graph representation, in: Proceedings of the Workshop on Analytic
Algorithmics and Combinatorics, ANALCO’04, 2004, pp. 49–61.

[12] P. Boldi, S. Vigna, The webgraph framework i: Compression techniques,
in: Proceedings of the 13th International Conference on World Wide Web,
WWW’04, ACM, 2004, pp. 595–602.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, P.
Raghavan, On compressing social networks, in: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Ciscovery and Data
Mining, SIGKDD’09, ACM, 2009, pp. 219–228.

[14] F. Claude, A. Fariña, M.A. Martínez-Prieto, G. Navarro, Indexes for highly
repetitive document collections, in: Proceedings of the 20th ACM Interna-
tional Conference on Information and Knowledge Management, ICKM’11,
ACM, 2011, pp. 463–468.

[15] Y. Cui, D. Xiao, D.B. Cline, D. Loguinov, Improving i/o complexity of triangle
enumeration, in: Proceedings of the 2017 IEEE International Conference on
Data Mining, ICDM’17, IEEE, 2017, pp. 61–70.

[16] Y. Cui, D. Xiao, D. Loguinov, On efficient external-memory triangle listing,
in: Proceedings of the 16th IEEE International Conference on Data Mining,
ICDM’16, IEEE, 2016, pp. 101–110.

[17] Y. Cui, D. Xiao, D. Loguinov, On efficient external-memory triangle listing,
IEEE Trans. Knowl. Data Eng. (TKDE) 31 (2019) 1555–1568.

[18] D.M. Da Zheng, R. Burns, J. Vogelstein, C.E. Priebe, A.S. Szalay, FlashGraph:
Processing billion-node graphs on an array of commodity ssds, in: Pro-
ceedings of the 13th USENIX Conference on File and Storage Technologies,
FAST’15, 2015, pp. 45–58.

[19] T.A. Davis, Graph algorithms via suitesparse: Graphblas: triangle counting
and k-truss, in: Proceedings of the 2018 IEEE High Performance Extreme
Computing Conference, HPEC’18, IEEE, 2018, pp. 1–6.

[20] L. Dhulipala, G.E. Blelloch, J. Shun, Theoretically efficient parallel graph
algorithms can be fast and scalable, in: Proceedings of the 2018 ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA’18, 2018.

[21] L. Dhulipala, G.E. Blelloch, J. Shun, Low-latency graph streaming using
compressed purely-functional trees, in: Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI’19, ACM, 2019, pp. 918–934.

[22] U. Drepper, What every programmer should know about memory, Red Hat,
Inc.

[23] D. Ediger, K. Jiang, J. Riedy, D.A. Bader, Massive streaming data analytics:
A case study with clustering coefficients, in: Proceedings of the 2010 IEEE
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum, IPDPSW’10, 2010, pp. 1–8.

[24] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the
internet topology, in: ACM SIGCOMM Computer Communication Review,
Vol. 29, ACM, 1999, pp. 251–262.

[25] T. Gao, Y. Lu, B. Zhang, G. Suo, Using the intel many integrated core to
accelerate graph traversal, Int. J. High Perform. Comput. Appl. 28 (2014)
255–266.

[26] I. Giechaskiel, G. Panagopoulos, E. Yoneki, PDTL: Parallel and distributed
triangle listing for massive graphs, in: Proceedings of the 44th IEEE
International Conference on Parallel Processing, ICPP’15, IEEE, 2015, pp.
370–379.

[27] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, PowerGraph:
Distributed graph-parallel computation on natural graphs, in: Proceed-
ings of 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’12, 2012, pp. 17–30.
163
[28] T. Granskog, A. Strigér, A comparison of search times on compressed and
uncompressed graphs, 2015.

[29] O. Green, L.-M. Munguía, D.A. Bader, Load balanced clustering coefficients,
in: Proceedings of the 1st Workshop on Parallel Programming for Analytics
Applications, PPAA’14, ACM, 2014, pp. 3–10.

[30] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R. Zadeh, WTF: The who
to follow service at twitter, in: Proceedings of the 22nd International
Conference on World Wide Web, WWW’13, ACM, 2013, pp. 505–514.

[31] V. Gupta, H. Kim, K. Schwan, Evaluating Scalability of Multi-Threaded
Applications on a Many-Core Platform, Tech. Rep., Georgia Institute of
Technology, 2012.

[32] H. Homann, F. Laenen, SoAx: A generic c++ structure of arrays for handling
particles in hpc codes, Comput. Phys. Comm. 224 (2018) 325–332.

[33] Y. Hu, H. Liu, H.H. Huang, Tricore: Parallel triangle counting on gpus, in:
Proceedings of the 20th IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC’18, IEEE, 2018,
pp. 171–182.

[34] X. Hu, Y. Tao, C.-W. Chung, Massive.graph. triangulation, Massive graph
triangulation, in: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD’13, ACM, 2013, pp. 325–336.

[35] H. Inoue, M. Ohara, K. Taura, Faster set intersection with simd instructions
by reducing branch mispredictions, Proc. VLDB Endow. 8 (2014) 293–304.

[36] M. Jha, C. Seshadhri, A. Pinar, A space-efficient streaming algorithm for
estimating transitivity and triangle counts using the birthday paradox,
ACM Trans. Knowl. Discov. Data (TKDD) 9 (3) (2015) 15.

[37] S. Khoram, J. Zhang, M. Strange, J. Li, Accelerating graph analytics by co-
optimizing storage and access on an fpga-hmc platform, in: Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA’18, ACM, 2018, pp. 239–248.

[38] J. Kim, W.-S. Han, S. Lee, K. Park, H. Yu, Opt: a new framework for
overlapped and parallel triangulation in large-scale graphs, in: Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD’14, ACM, 2014, pp. 637–648.

[39] H. Kim, S. Kim, J.-K. Min, An efficient triangle enumeration on parallel
and distributed frameworks, in: Proceedings of the 2018 IEEE International
Conference on Big Data and Smart Computing, BigComp’18, IEEE, 2018, pp.
545–548.

[40] S. Ko, W.-S. Han, Turbograph++: A scalable and fast graph analytics system,
in: Proceedings of the 2018 International Conference on Management of
Data, SIGMOD’18, ACM, 2018, pp. 395–410.

[41] T.G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, C. Task, Counting triangles
in massive graphs with mapreduce, SIAM J. Sci. Comput. 36 (5) (2014)
S48–S77.

[42] K. Kourtis, G.I. Goumas, N. Koziris, Optimizing sparse matrix–vector multi-
plication using index and value compression, in: Proceedings of the 2008
Conference on Computing Frontiers, CF’08, ACM, 2008.

[43] K. Kourtis, G. Goumas, N. Koziris, Exploiting compression opportunities
to improve spmxv performance on shared memory systems, ACM Trans.
Archit. Code Optim. (TACO) 7 (3) (2010) 16.

[44] A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: Large-scale graph computation
on just a pc, in: Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI’12, 2012, pp. 31–46.

[45] M. Latapy, Main-memory triangle computations for very large (sparse
(power-law)) graphs, Theoret. Comput. Sci. 407 (2008) 458–473.

[46] J. Lee, H. Kim, S. Yoo, K. Choi, H.P. Hofstee, G.-J. Nam, M.R. Nutter, D.
Jamsek, EXtrav: Boosting graph processing near storage with a coherent
accelerator, Proc. VLDB Endow. 10 (2017) 1706–1717.

[47] H. Liu, H.H. Huang, Enterprise: breadth-first graph traversal on gpus,
in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’15, 2015, pp. 68:1–68:12.

[48] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein,
GraphLab: A new framework for parallel machine learning, in: Proceedings
of the 26th Conference on Uncertainty in Artificial Intelligence, UAI’10,
2010, pp. 340–349.

[49] T.M. Low, V.N. Rao, M. Lee, D. Popovici, F. Franchetti, S. McMillan, First
look: Linear algebra-based triangle counting without matrix multiplication,
in: Proceedings of the 2017 IEEE High Performance Extreme Computing
Conference, HPEC’17, IEEE, 2017, pp. 1–6.

[50] J. Moody, Matrix methods for calculating the triad census, Social Networks
20 (4) (1998) 291–299.

[51] M.E. Newman, The structure and function of complex networks, SIAM Rev.
45 (2) (2003) 167–256.

[52] D. Nguyen, A. Lenharth, K. Pingali, A lightweight infrastructure for graph
analytics, in: Proceedings of 24th ACM SIGOPS Symposium on Operating
Systems Principles, SOSP’13, 2013, pp. 456–471.

http://refhub.elsevier.com/S0743-7315(20)30369-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb6
http://arxiv.org/abs/1806.01799
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb25
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb25
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb25
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb25
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb25
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb26
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb28
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb28
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb28
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb29
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb29
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb29
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb29
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb29
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb30
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb30
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb30
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb30
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb30
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb31
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb31
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb31
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb31
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb31
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb32
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb32
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb32
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb33
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb34
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb34
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb34
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb34
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb34
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb35
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb35
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb35
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb36
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb36
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb36
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb36
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb36
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb37
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb38
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb39
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb40
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb40
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb40
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb40
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb40
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb41
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb41
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb41
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb41
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb41
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb42
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb42
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb42
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb42
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb42
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb43
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb43
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb43
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb43
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb43
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb45
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb45
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb45
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb46
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb46
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb46
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb46
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb46
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb49
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb50
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb50
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb50
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb51
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb51
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb51


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165
[53] H.-M. Park, S.-H. Myaeng, U. Kang, PTE: Enumerating trillion triangles on
distributed systems, in: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, SIGKDD’16, ACM,
2016, pp. 1115–1124.

[54] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J.
Leskovec, Ringo: Interactive graph analytics on gig-memory machines,
in: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD’15, ACM, 2015, pp. 1105–1110.

[55] J. Riedy, H. Meyerhenke, D.A. Bader, D. Ediger, T.G. Mattson, Analysis
of streaming social networks and graphs on multicore architectures,
in: Proceedings of the 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’12, IEEE, 2012, pp. 5337–5340.

[56] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,
M. Girkar, P. Dubey, Can traditional programming bridge the ninja perfor-
mance gap for parallel computing applications?, in: Proceedings of the
39th IEEE Annual International Symposium on Computer Architecture,
ISCA’12, IEEE, 2012, pp. 440–451.

[57] F. Scholer, H.E. Williams, J. Yiannis, J. Zobel, Compression of inverted
indexes for fast query evaluation, in: Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR’02, ACM, 2002, pp. 222–229.

[58] K. Shin, E. Lee, J. Oh, M. Hammoud, C. Faloutsos, Dislr: Distributed sampling
with limited redundancy for triangle counting in graph streams, arXiv
preprint arXiv:1802.04249.

[59] J. Shun, G.E. Blelloch, Ligra: A lightweight graph processing framework for
shared memory, in: Proceedings of 18th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, PPoPP’13, 2013, pp.
135–146.

[60] J. Shun, L. Dhulipala, G.E. Blelloch, Smaller and faster: Parallel processing
of compressed graphs with ligra+, in: 2015 Data Compression Conference,
DCC’15, 2015, pp. 403–412.

[61] J. Shun, K. Tangwongsan, Multicore triangle computations without tun-
ing, in: Proceedings of the 31st IEEE International Conference on Data
Engineering, ICDE’15, IEEE, 2015, pp. 149–160.

[62] I.-J. Sung, G.D. Liu, W.-M.W. Hwu, DL: A data layout transformation system
for heterogeneous computing, in: Innovative Parallel Computing, InPar’12,
IEEE, 2012, pp. 1–11.

[63] C.E. Tsourakakis, Counting triangles in real-world networks using
projections, Knowl. Inf. Syst. 26 (3) (2011) 501–520.

[64] C.E. Tsourakakis, U. Kang, G.L. Miller, C. Faloutsos, DOULION: Counting
triangles in massive graphs with a coin, in: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, SIGKDD’09, ACM, 2009, pp. 837–846.

[65] A. Turk, D. Türkoglu, Revisiting wedge sampling for triangle counting, in:
Proceedings of the 2019 The World Wide Web Conference, WWW’19,
2019, pp. 1875–1885.

[66] P. Wang, P. Jia, Y. Qi, Y. Sun, J. Tao, X. Guan, REPT: A streaming algorithm of
approximating global and local triangle counts in parallel, in: Proceedings
of the 35th IEEE International Conference on Data Engineering, ICDE’19,
IEEE, 2019, pp. 758–769.

[67] J. Willcock, A. Lumsdaine, Accelerating sparse matrix computations via data
compression, in: Proceedings of the 20th Annual International Conference
on Supercomputing, ISC’06, ACM, 2006, pp. 307–316.

[68] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, Scientific
computing kernels on the cell processor, Int. J. Parallel Program. (2007)
263–298.

[69] A. Yaşar, S. Rajamanickam, M. Wolf, J. Berry, Ü.V. Çatalyürek, Fast triangle
counting using cilk, in: Proceedings of 2018 IEEE High Performance
Extreme Computing Conference, HPEC’18, IEEE, 2018, pp. 1–7.

[70] Y. Zhang, H. Jiang, F. Wang, Y. Hua, D. Feng, X. Xu, LiteTE: Lightweight
communication-efficient distributed-memory triangle enumerating, IEEE
Access 7 (2019) 26294–26306.

[71] Y. Zhu, H. Zhang, L. Qin, H. Cheng, Efficient mapreduce algorithms for
triangle listing in billion-scale graphs, Distrib. Parallel Databases 35 (2)
(2017) 149–176.

Yongxuan Zhang received the B.E. degree in Computer
Science and Technology from Nanchang Hangkong Uni-
versity, Nanchang, China, in 2005, and the Ph.D. degree
in Computer Science and Technology from Huazhong
University of Science and Technology, Wuhan, China,
in 2020. He is currently an instructor of Mathematics
and Computer School at Yuzhang Normal University.
His present research interests include graph processing,
high-performance computing, big data computing and
machine learning.
164
Hong Jiang received the B.Sc. degree in Computer
Engineering from Huazhong University of Science and
Technology, Wuhan, China; the M.A.Sc. degree in Com-
puter Engineering from the University of Toronto,
Toronto, Canada; and the Ph.D. degree in Computer
Science from the Texas A&M University, College Station,
Texas, USA. He is currently Chair and Wendell H.
Nedderman Endowed Professor of Computer Science
and Engineering Department at the University of Texas
at Arlington. His present research interests include
computer architecture, computer storage systems and

parallel I/O, highperformance computing, big data computing, cloud computing,
performance evaluation. He is a Topic and Associate Editor of the IEEE Trans-
actions on Computers and recently served as an Associate Editor of the IEEE
Transactions on Parallel and Distributed Systems. He has over 300 publications
in major journals and international Conferences in these areas, including IEEE-
TPDS, IEEE-TC, Proceedings of IEEE, ACM-TACO, ACM-ToS, USENIX ATC, FAST,
EUROSYS, ISCA, MICRO, SOCC, LISA, SIGMETRICS, ICDE, DAC, DATE, ICDCS, IPDPS,
MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, ICPP, etc. Dr. Jiang is
a Fellow of IEEE, and Member of ACM.

Fang Wang received the BE and master’s degrees
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan, China, in
1994 and 1997, respectively, and the Ph.D. degree in
computer architecture from the Huazhong University
of Science and Technology (HUST), Wuhan, China, in
2001, where she is currently a professor of computer
science and engineering. Her research interests include
distribute file systems, parallel I/O storage systems, and
graph processing systems. She has more than 80 pub-
lications in major journals and conferences, including

IEEE TC/TPDS/TNSM,ACM TACO, SC,MSST,DATE,HiPC, ICDCS, HPDC, ICCD, ICDE
and ICPP.

Yu Hua received the B.E. and Ph.D. degrees in computer
science from the Wuhan University, China, in 2001 and
2005, respectively. He is currently a professor at the
Huazhong University of Science and Technology, China.
His research interests include computer architecture,
cloud computing and network storage. He has more
than 80 papers to his credit in major journals and
international conferences including IEEE Transactions
on Computers (TC), IEEE Transactions on Parallel and
Distributed Systems (TPDS), USENIX ATC, USENIX FAST,
INFOCOM, SC, ICDCS, ICPP and MASCOTS. He has been

on the organizing and program committees of multiple international confer-
ences, including INFOCOM, ICDCS, ICPP, RTSS and IWQoS. He is a senior member
of the IEEE and CCF, a member of ACM, and USENIX.

Dan Feng received the B.E., M.E., and Ph.D. degrees
in Computer Science and Technology in 1991, 1994,
and 1997, respectively, from Huazhong University of
Science and Technology (HUST), China. She is a profes-
sor and vice dean of the School of Computer Science
and Technology, HUST. Her research interests include
computer architecture, massive storage systems, and
parallel file systems. She has more than 100 publica-
tions in major journals and international conferences,
including IEEE-TC, IEEE- TPDS, ACM-TOS, JCST, FAST,
USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and ICPP.

She serves on the program committees of multiple international conferences,
including SC 2011, 2013 and MSST 2012. She is a member of IEEE and a member
of ACM.

Yongli Cheng received the BE degree from the
Chang’an University, Xi’an, China, in 1998, the MS
degree from the FuZhou University, FuZhou, China,
in 2010, and the Ph.D. degree from the Huazhong
University of Science and Technology, Wuhan, China,
2017. He is currently a teacher of the College of
Mathematics and Computer Science, FuZhou University
currently. His current research interests include com-
puter architecture and graph computing. He has several
publications in major international conferences and
journals, including HPDC, IWQoS, INFOCOM, ICPP, the

Future Generation Computing Systems, IEEE/ACM Transactions on Networking,
and Frontiers of Computer Science.

http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb53
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb54
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb55
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb56
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb57
http://arxiv.org/abs/1802.04249
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb61
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb61
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb61
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb61
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb61
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb62
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb62
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb62
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb62
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb62
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb63
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb63
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb63
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb64
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb66
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb67
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb67
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb67
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb67
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb67
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb68
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb68
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb68
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb68
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb68
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb69
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb69
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb69
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb69
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb69
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb70
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb70
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb70
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb70
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb70
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb71
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb71
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb71
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb71
http://refhub.elsevier.com/S0743-7315(20)30369-5/sb71


Y. Zhang, H. Jiang, F. Wang et al. Journal of Parallel and Distributed Computing 147 (2021) 152–165

b
m
a
T
i

Yuchong Hu received the B.Eng. degree in Computer
Science and Technology from Special Class for the
Gifted Young (SCGY), the University of Science and
Technology of China (USTC) in 2005, and the Ph.D.
degree in Computer Software and Theory from the
University of Science and Technology of China (USTC)
in 2010. His research mainly focuses on designing and
implementing intelligent reliability mechanisms, based
on fault-tolerance (such as Network Coding or Erasure
Coding), to improve reliability, performance and secu-
rity for storage systems, which include cloud storage,

ig-data storage, deduplicated backup, heterogeneous/hierarchical storage, in-
emory NoSQL database etc. He published 10 papers as the first/corresponding
uthor in conferences FAST, INFOCOM, SoCC, and journals JSAC, TOS, TIT, TIFS,
PDS. He also published more than 40 papers in major journals and conferences,
ncluding TC, ATC, DSN, MSST, IWQoS, SRDS, ICPP, ICPADS, ISPA, ISIT, ICC, etc.
165
Renzhi Xiao received the B.E. degree in software
engineering from Jiangxi University of Science and
Technology, Nanchang, China, in 2013. He is currently
working toward the Ph.D. degree majoring in com-
puter architecture at Huazhong University of Science
and Technology(HUST), Wuhan, China. His research
interests include computer architecture, in-memory
key–value store, non-volatile memory, and NVM-based
data structures.


	CIC-PIM: Trading spare computing power for memory space in graph processing
	Introduction
	Background and motivation
	CSR representation and compressed graphs
	State of the art TC algorithms and orientation heuristics
	Variable-length byte-aligned encoding
	Observations and motivations

	Design and implementation
	CIC-PIM
	Design
	Implementation
	Workflow
	Decoding routine

	Analysis
	Effectiveness of AOS
	Worst case index data space saving

	Implementation of TC algorithms
	Implementation of common graph algorithms

	Evaluation and discussion
	Evaluation settings
	Datasets and preprocessing
	Metrics of interest
	Speedup
	Speedup for TC
	Speedup for common graph algorithms
	Runtime decomposition

	Index-data space saving
	Index-data space saving for TC
	Index-data space saving for common graph algorithms

	Entire-graph space saving
	Entire-graph space saving for TC
	Entire-graph space saving for common graph algorithms

	Scalability
	Impact of chunk size

	Related work
	Graph processing and compression
	Triangle counting

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


