
CSE 5306
Distributed Systems

Introduction
Jia Rao

http://ranger.uta.edu/~jrao/

Outline

• Why study distributed systems?

• What to learn?

• Course structure

• Course policy

• An overview of distributed systems

Why study distributed systems?

• Most computer systems today are a certain form of
distributed systems

ü Internet, datacenters, super computers, mobile devices

• To learn useful techniques to build large systems
ü A system with 10,000 nodes is different from one with 100 nodes

• How to deal with imperfections
ü Machines can fail; network is slow; topology is not flat

What to learn

• Architectures
• Processes

• Communication
• Naming

• Synchronization
• Consistency and replication
• Fault tolerance and reliability

• Security
• Distributed file systems

Expected Outcomes

• Familiar with the fundamentals of distributed
systems

• The ability to
üEvaluate the performance of distributed systems
üWrite simple distributed programs

üUnderstand the tradeoffs in distributed system design

Course Structure

• Lectures
ü T/Th, 3:30-4:50pm, in-person lecture at COBA 245

• Homework
ü 2 written assignments

• Projects
ü 3 programming assignments
ü 2 students team up

• Exams (close-book, close-note, one-page cheat sheet)
ü No midterm exam
ü Final exam, 2:00-4:30pm, Dec. 12, 2023

Course policy

• Grading scale
ü A [90, 100], B [80, 90), C [70, 80), D [60, 70), F below 60

• Grade distribution
ü Discussion 5%
ü Homework assignments 20%
ü Projects 40%
ü Final exam 35%

• Late submissions
ü 15% penalty on grade for each day after due day

• Makeup exams
ü No, except for medical reasons

Where to seek help

• Ask questions in class

• Ask questions on Teams

• Go to office hours
ü Instructor: Jia Rao

• SEIR 223, email: jia.rao@uta.edu, phone: (817)-272-0770
• Office hours: T/Th, 2:00-3:00pm or by appointment

üTA: Mr. Lingfeng Xiang and Mr. Weishu Deng
• Email: lingfeng.xiang@mavs.uta.edu
• Email: weishu.deng@mavs.uta.edu

mailto:jia.rao@uta.edu
mailto:xiaofeng.wu@mavs.uta.edu
mailto:weishu.deng@mavs.uta.edu

Textbook and Prerequisites

• Textbook
ü Andrew S. Tanenbaum and Maarten Van Steen, Distributed

Systems: Principles and Paradigms (2nd or 3rd Edition)

• Prerequisites
ü CSE 3320: Operating Systems

ü CSE 4344: Computer Networks

CSE 5306
Distributed Systems

Overview

Distributed Systems

• What is a distributed system?
ü A collection of independent computers that appear to its users as a

single coherent system

• Why distributed systems?
ü The ever-growing need for highly available and pervasive computing

services
ü The availability of powerful yet cheap “computers”

ü The continuing advances in computer networks

Distributed v.s. Parallel Systems

• Design objectives
ü Fault-tolerance v.s. Concurrent performance

• Data distribution
ü Entire file on a single node v.s. striping over multi nodes

• Symmetry
ü Machines act as server and client v.s. service separated from clients

• Fault-tolerance
ü Designed for fault-tolerance v.s. relying on enterprise storage

• Workload
ü Loosely coupled, distributed apps v.s. coordinated HPC apps

The boundary is blurring

The Convergence of Distributed
and Parallel Architectures

Mem

ϒ ϒ ϒ

Network

P

$

Communication
assist (CA)

A generic parallel architecture

Characteristics

• Autonomous components (i.e., computers)

• A single coherent system
ü The difference between components as well as the communication

between them are hidden from users

ü Users can interact in a uniform and consistent way regardless of where
and when interaction takes place

• Easy to expand and replace

Advantages and disadvantages

• Advantages
ü Economics
ü More computing power, more storage space
ü Reliability
ü Incremental growth

• Disadvantage
ü Software design
ü Network
ü Failure
ü Security

Distributed System as a Middleware

The middleware layer extends over multiple machines, and
offers each application the same interface

Goals of Distributed Systems

• Resource accessibility
ü Easy to access and share resources

• Distribution transparency
ü Hide the fact that resources are across the network

• Openness
ü Standard interface for interoperability and easy extension

• Performance and reliability
ü More powerful and reliable than a single system

• Scalability
ü Size scalable, geographically scalable, administratively scalable

Resource accessibility

• Benefits
üMake sharing remote and expensive resources easily and

efficiently, e.g., sharing printers, computers, storage, data,
files

• Challenges
üSecurity, e.g., eavesdropping, spam, DDoS attacks

üPrivacy, e.g., tracking to build preference profile

Distribution Transparency
• Access

ü Hide the difference in data representation and how a resource is accessed

• Location
ü Hide where a resource is physically located

• Migration
ü Hide that a resource may be moved to another location

• Relocation
ü Hide that a resource may be moved during access

• Replication
ü Hide that a resource may be replicated at many locations

• Concurrency
ü Hide that a resource may be shared by several competitive users

• Failure
ü Hide the failure and recovery of a resource

Openness

• Interoperability
ü Implementations from different vendors can work together by

following standard rules

• Portability
ü Applications from one distributed system can be executed,

without modification, on another distributed system

• Extensibility
ü Easy to add or remove components in the system

• Flexibility
ü Separating policy from mechanism

Performance and Reliability

• Performance
üCombine multiple machines to solve the same problem

üTransparently access more powerful machines

• Reliability
üUse redundant hardware
üUse software design for reliability

Scalability

• Size scalable
üCan easily add more users or resources to the system

• Geographically scalable
üCan easily handle users and resources that lie apart

• Administratively scalable
üCan easily manage a system that spans many independent

administrative organizations

Size Scalability

• Centralized services
üA single server for all users

• Centralized data
üA single database

• Centralized algorithms
üDoing routing based on complete topology information

Size scalability problem is also faced by
parallel systems but with different issues

Decentralized Algorithms

• No machine has complete information about the
system state

• Machines make decisions based only on local
information

• Resilient to machine failures

• No implicit assumption about a global clock

Geographical Scalability

• Challenges in scaling from LAN to WAN
üSynchronous communication

• Large network latency in WAN
• Building interactive application is non-trivial

üAssumption of reliable communication
• WAN is not reliable
• E.g., locating a server through broadcasting is difficult

Administrative Scalability

• Conflicting policies with respect to
üResource usage and accounting

üManagement
üSecurity

Scaling techniques – hide and reduce latency

1. Use asynchronous communication
2. Move part of the computation to the client if applications

can’t use asynchronous communications efficiently

Scaling techniques - distribution

An example of dividing the DNS
name space into zones, e.g., locating nl.vu.cs.flits

Scaling techniques - replication

I/O devices!

Memory!

P!1!

$! $! $!

P!2! P!3!

u!:5!

5!
u! = ?!

1!

u!:5!

2!

u!:5!
3!

u! = 7!
4!

u! = ?!

Replication not only increases availability, but also helps to
balance the load, leading to better performance

Key issue: how to keep replicas coherent?

Pitfalls

• Network is reliable
• Network is secure
• Network is homogeneous
• Topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator

Types of Distributed Systems

• Distributed computing systems
ü Cluster computing systems
ü Grid computing systems
ü Cloud computing systems

• Distributed information systems
ü Transaction processing systems
ü Enterprise application integration

• Distributed pervasive systems
ü Smart-home systems
ü Electronic healthcare systems, body area network (BAN)
ü Wireless sensor networks

Cluster Computing Systems
• A collection of simple (mostly homogeneous) computers via

high-speed network

• Example: Linux-based beowulf architecture

Grid Computing Systems

• Grid computing
ü Has a high degree of heterogeneity
ü Has no assumption of hardware, OS, security, etc.

• Users and resources from different organizations are
brought together to allow collaboration
ü Virtual organization (VO)

• Software design focus
ü Provide access to resources to users that belong to a specific

VO

Grid Computing System Architecture

A layered architecture for grid computing systems.

Cloud Computing Systems

• Computing resources (hardware and software) are
delivered as a service over the network

• Cloud computing models
ü Infrastructure as a service (IaaS)

• Amazon EC2, Microsoft Azure

üPlatform as a service (PaaS)
• Salesforce, Google App engine

üSoftware as a service (Saas)
• Microsoft Office 365, Gmail

Flexibility

Simplicity

Why Clouds?

• Pay as you go
üNo upfront cost

• On-demand self service
üConvenience, no need to worry about maintenance

• Rapid elasticity
üVirtually infinite resources

• Economy of scale
üCheap!

Distributed Information Systems

• Deal with interoperability between networked
applications
üTransaction processing system (TPS)

• Distributed transaction: all or nothing happened

üEnterprise application integration (EAI)

Transaction Processing Systems

• Primitives for transactions.

Properties of Transactions
• Atomic: to the outside world, the transaction happens

indivisibly.

• Consistent: the transaction does not violate system
invariants.

• Isolated: concurrent transactions do not interfere with
each other.

• Durable: once a transaction commits, the changes are
permanent.

Nested Transactions

Transaction Processing Monitor

• Figure 1-10. The role of a TP monitor in distributed
systems.

TP monitor offers a transactional programming model to allow
an application to access multiple servers/databases

Enterprise Application Integration

• Goal: link applications in a single organization together to simplify or automate
the business process

• Middleware as a communication facilitator (RPC, RMI)
ü Example: Apache ActiveMQ

Distributed Pervasive Systems
• Devices in a distributed pervasive system are often

üSmall, battery-powered, and with limited wireless
communication

• Requirements for pervasive systems
üEmbrace contextual changes

• Environment changes all the time, e.g., switching wireless base station

üEncourage ad hoc composition
• Devices will be used differently by different users

üRecognize sharing as the default
• Easy to read, store, manage, and share information

Electronic Health Care Systems
• Questions to be addressed for health care systems:

ü Where and how should monitored data be stored?

ü How can we prevent loss of crucial data?

ü What infrastructure is needed to generate and propagate alerts?

ü How can physicians provide online feedback?

ü How can extreme robustness of the monitoring system be realized?

ü What are the security issues and how can the proper policies be enforced?

Electronic Healthcare Systems

Monitoring a person in a pervasive electronic health
care system, using (a) a local hub or (b) a continuous

wireless connection.

Wireless Sensor Network (WSN)

• A network that consists of a large number of low-end
sensor nodes, each can sense the environment and
talk to other sensors

• Applications
üMilitary surveillance

üEnvironment monitoring
üSmart home/cities

üVehicular network

Key Design Questions of WSN

• How do we (dynamically) set up an efficient tree in a
sensor network?

• How does aggregation of results take place? Can it
be controlled?

• What happens when network links fail?

Wireless Sensor Network – cont’d

Organizing a sensor network database, while storing and
processing data (a) only at the operator’s site

Wireless Sensor Network – cont’d

Organizing a sensor network database, while storing and
processing data (b) only at the sensors.

