CSE 5306
Distributed Systems

Architectures

Jia Rao

http://ranger.uta.edu/~jrao/

Architecture

e Software architecture
0 How software components are organized,

o And how they interact with each other

« System architecture

o The instantiation of software architecture

« Centralized architecture, client-server system
 Decentralized architecture, peer-to-peer system
 Hybrid architecture, edge computing

Architectural Style

« Component
o A modular unit with well-defined interfaces

o Itis replaceable

 Connector

o Mediates communication, coordination, and cooperation among
components

0 Remote procedure calls, message passing, streaming data

Software architecture

Layered architectures
o Widely adopted by the networking community

Object-oriented architectures

o Each object corresponds to a component; interactions are through
(remote) procedure calls

Data-centered architectures

o Components communicate through a shared repository

Event-based architectures

o Processes communicate through the propagation of events, which can also
carry data

Layered architecture

Layer N
Layer N-1
Request | T Response
flow g flow
| |
Layer 2

THE 7 LAYERS OF OSI

PDU (Protocol Data Unit)
(units of data passed between layers)

Header Data
TRANSMIT RECEIVE

Uulo o g=n I‘rz\ri'[tnoffoc;aia
:‘nfl:"osf S’i’tear m (ft;l:timle's?al'le:clj ELa;?B‘) DATA at this layer

Data — Application layer * Data

Data — Prasentation layer * Data

) r
Data L;____ Bession layai | Data
Segment L__ S liraitsoit layai - l] Segment
Rl
Packet, Datagram — Hetwork layer * Packet, Datagram

Frame, Cell

Data link layer
Physical layer

Frame, Cell

Frame, Bit Frame, Bit

Physical Link, or Medium - sometimes called “Layer 0" - data unit is a “bit” r

--From http;//www.infocellar.com/networks/osi-model. htm

Object-oriented architecture

Object Object

Method call

 Each object is an autonomous system that interacts with
each other via RPC or RMI

« Example: client-server style

Event-based architecture

 Decoupled in space

o Processes are loosely coupled, need not explicitly refer to each other

« Communication via propagation of events

o Mostly publish/subscribe system

Component Component

Event delivery T T i
< Event bus >

T Publish

Component

(a)

Shared data-space architecture

 Not only decoupled in space but also decouple in time

o Processes need not both be active when communication takes place [More
details in Chap 13]

« Examples of shared data-space architecture

o Shared distributed file systems

Component Component

Data delivery Publish

Shared (persistent) data space

(b)

9

System architecture

* Centralized architectures

o Client-server model
o Application layering
o Multi-tiered architecture

 Decentralized architectures
o Peer-to-peer architecture
o Qverlay networks

- Hybrid architectures

o Edge-server systems
o Collaborative distributed systems

The client-server model

_ Wait for result
Client ————————— o _

Request

Provide service Time —>

General interaction between a client and a server.

An example client and server

void *worker (void *arg) // worker thread
{
unsigned int socket;
socket = *(unsigned in *)arg;
process (socket);
pthread exit(0);
}
int main (void) // main thread, or dispatcher thread
{
unsigned int server s, client s, 1i=0;
pthread t threads([200];
server s = socket (AF INET, SOCK STREAM, O0);
listen(server s, PEND CONNECTIONS) ;
while (1) {
client s = accept(server s, ..);

pthread create(&threads[i++], &attr, worker, é&client s);

Client-server communication

 Connectionless protocol

0 Hard for a sender to detect if the message is successfully received
* Retransmission may cause problems

o OK for idempotent operations

« QOperations that can be repeated many times withoutharm [More details in
Chap 8]

 Connection-oriented protocol

o Often used for non-idempotent operations

o Problem: low performance and high cost (e.g., TCP/IP)

Application layering

 Many client-server system can be divided into three levels
0 The user-interface level: display management
o The processing level: core functionality of applications
o The data level: actual data being acted on (database or file systems)

User-interface level

* Clients implement the user-interface level allowing end users to
interact with applications.
o A character-based screen: mainframe environment
o A graphical display: X-Windows, Windows, Apple Mac

o A graphical window: exchange data through user actions

Processing

« Example: Internet search engine

User interface

level

User-interface
level

HTML page

Keyword expression \ containing list

HTML
generator

Query %
generator
Ranking
algorithm

Database queries

Database
with Web pages

Web page titles
with meta-information

Processing
Ranked list level
of page titles

Data level

16

Data level

« Data level contains the programs that maintain the actual data on which
the application operate.

0 Data are often persistent.
» Even if no applicationis running, data will be stored somewhere for next use.

0 Keeping data consistent across different applications.

Two-tiered architecture

o A client that only containing (part of) the user-interface level
o A server containing the rest (processing level and data level)

Thin client

Client machine

 The simplest organizationis to have only two types of machines:

Fat client

User interface

=
-

User interface

User interface

User interface

User interface

User interface

Application

Application

Application

Application

Database

Application Application . ///’
Database Database Database Database [Database l
Server machine
(a) (b) (c)

(d)

(e)

Three-tiered architecture

* The server tier in two-tiered architecture becomes more and more
distributed

o A single server is no longer adequate for modern information systems

e The three-tiered architecture

User interface Wait for result
(presentation)

Request Return
operation result
Application _____________ _/\f"’f'f f?[_o'fl_t? _________________
server
Request data Return data
Database N I
server

Decentralized architecture

e Multi-tiered architecture is vertical distribution

o Placing logically different components on different machines

« An alternative is horizontal distribution (P2P systems)

o A collection of logically equivalent parts

o Each part operates onits own share of the complete data set, thus balancing
the load

« The main question for peer-to-peer system is

0 How to organize the processes in an overlay network

« A network in which the nodes are formed by the processes and the links represent the possible
communication channels.

o Two types: structured and unstructured

20

Structured P2P architectures

« Structured: the overlay network is constructed in a deterministic
procedure

o Most popular: distributed hash table (DHT)

 Key questions
o How to map data item to nodes

o How to find the network address of the node responsible for the needed data
item

« Two examples

o Chord and content addressable network (CAN) [More details in Chap. 5]

21

Chord System

Actual node

Poutaol
145 {13,14,15) {01} 123

- ~ L)

. .

' \ ! \

') . [

' ' ’ 3

. . A ’
“ . . .
L SO ~an’

{8,9,10,11,12} {2,3,4}

B Associated -
11} data keys 5

’ A ®
b ¥ ook
\—.\ ‘.\/

. pJ)

103 (567} 6

.
Sean?
b=~
4 .
‘
' -
N 9 PTG
A4 ’ . .
K ' [y
% .
~_e
' g
. .
~ ’
N

22

Content addressable network

2-dim space [0,1] *[0,1] is divided
among 6 nodes

Each node has anassociated region

Every data itemin CAN is assigned a
unique pointin space

The node owning the region is
responsible for the data item

Keys associated with
node at (0.6,0.7)
(0,1) \ (1,1)

\ (0.9,0.9)
®
(0.2,0.8)
o
/ (0.6,0.7)
Actual node * (o_g‘o_e)
(0.2,0.3)
[
(0.7,0.2)
]

Unstructured P2P architectures

Largely relying on randomized algorithmto construct the overlay network

o Each node has a list of neighbors, which is more or less constructed in a
random way

One challengeis how to efficiently locate a needed data item
o Flood the network

Many systems try to construct an overlay network that resembles a
random graph [More details in Chap. 5]

Each node maintains a partial view, i.e., a set of live nodes randomly
chosen from the current set of nodes

24

Super-peers

* Inunstructured peer-to-peer systems, locating relevant data items can
become problematic as the network grows.

o Super-peers: Make use of special nodes that maintain indexes of data items.

* How to select the nodes that are eligible to as the super-peer ?

o Leader-election problem [More details in Chap 6]

Regular peer

Superpeer

Superpeer
network

Figure 2-12. A hicrarchical organization of nodes into a superpeer network.

25

Hybrid Forms: Edge-Server System

« Servers are placed “atthe edge” of the network.

o The edge is formed by the boundary between enterprise networks and the
actual Internet.

 Edge server's main purpose is to serve content
o Web-based solutions [More details in Chap 12]

26

T [[Client Content provider
Qm— & isp
B isp 0 ‘
\ “\\ e ‘
Core Internet
Edge server - .

~ ~ Enterprise network

Figufc 2-13. Viewing the Internet as consisting of a collection of edge servers.

27

« BitTorrent file-sharing system.

Collaborative Distributed Systems

o The basic idea is when an end user is looking for a file, he downloads chunks of
the file from other active users.

 The design goal is to ensure collaboration.

Client node
K out of N nodes
Node 1
Lookup(F)

A BitTorrent | .torrent file .| List of nodes Node 2

Web page | Ref.to for F Ref. to storing F

file tracker

Tracker

Web server server File server Node N

Figure 2-14. The pringipal

from Pouwelse et al. (2004)].

working of BitTorrent [adapted

with permission

28

Collaborative Content Distributed
Systems

 End users provide enhanced web servers that are capable of collaborating
in the replication of Web pages.

« Each server has the following components:
o A component that can redirect client requests to other servers
o A component for analyzing access patterns

o A component for managing the replication of web pages

Architectures Versus Middleware

» Middleware forms a layer between applications and distributed platforms, the purpose
is to provide a degree of distribution of transparency.

« Middleware systems usually follow a specific architecture style.
Object-based architecture style: CORBA, OMG, and 2004a

Event-base architecture style: TIB/Rendezvous
Benefits: designing applications become simpler
Drawbacks: Adding other interaction patternsis difficult

 Solutions should be adaptable to applications requirements

o Make several versions of a middleware system
o Configure, adapt, and customize the middleware as needed by applications

30

Interceptors: adapt the middleware

 Environment in which distributed applications are executed changes
continuously.
o Mobility, variance in the quality-of-service of networks

o Failing hardware, battery drainage

 Aninterceptor is nothing but a software construct that will break the usual
flow of control and allow other application specific code to be executed.

Intercepted call

\
{

Request-level interceptor

|

|

— B.do_something(value) -

Client application

Application stub

-k e a- - od

~— Nonintercepted call

{

Message-level interceptor

|

1

invoke(B, &do_something, value)

ject middleware

J
[

J

- o oo - - -

o

send([B, "do_something", value])

Local OS

y ToobjectB

Figure 2-15. Using interceptors . to handle remote-object invocations.

Adaptive Software

 Three techniques about software adaption:

0 Separation of concerns

» Separate the parts that implement functionality from those that
take care of reliability, performance, and security

o Computation reflection

 The ability of a program to inspect itself and if necessary, adapt its
behavior

0 Computation-based design

» Automatically selection of the best implementation of a
component during runtime

33

Discussion about Middleware

 Middleware are usually bulky and complex:
0 Provide distribution transparency

o Distributed applications have extra-functional requirements
which conflicts with the aim at achieving this transparency

o Necessary to adapt the applications ?

 Environment changes: faulty hardware, security attacks
* Distributed system can not be shut down

34

Self-management in Distributed Systems

* Distributed systems should:

o Support as many applications as possible
« shielding undesirable features inherent to network

o Support application-specific solutions
o full distributed transparency is not what most applications want

o Adapting their execution behavior not to modify the
software components they comprise
« Autonomic computing

o High-level teedback control systems allowing automatic
adaptions to changes

35

The Feedback Control Model

 Adaptions take place with feedback control loops

aoUncontrollable parameters come from:
 The environment distributed systems is executing
« Unanticipated component interaction

o Metric estimation component
« Monitor the running distributed systems

o Feedback analysis component (core component)

* Analyzes the measurements and compares them to reference
values

0 Adjustment component

 Change the behavior of the system: scheduling priorities,

switching services, moving data, redirecting requests etc. y

Uncontrollable parameters (disturbance / noise)

|

’

Initial configuration ’Q Corrections

Core of distributed system

m/‘ #\,.

Adjustment JJ

measures

Reference input

|

|

Observed output

Metric
estimation

Analysis [«

Adjustment triggers

Measured output

Figure 2-16. The logical organization of a feedback control system.

37

System Monitoring with Astrolabe

 General monitoring of large distributed systems

o Organizing a large collections of hosts into a hierarchy of zones
o The lowest-level zones consists of a single host

o The top-level zone covers all hosts

 Each host runs an Astrolabe process called agent

o Agent collects information of the hosts in each zone

e Local information of each hostis stored in a set of attributes:

 Only the attributes of the lowest-level are writable
o Agent communicates with each other

38

avg_load | avg_mem | avg_procs
0.06 0.55 47

Machine B Machine C

Machine A

I_ IP-addr load | mem
192.168.1.2| 003 | 0.80
192.168.1.3| 0.05| 050
192.168.1.4| 0.10| 035

Figure 2-17. Data collection and information aggregation in Astrolabe.

Automatic Component Repair Management in Jade

* Detecting component failures and replacing them
automatically during runtime

 Repair Management Domain:

oA number of nodes

 Each node representsa server
 Equipped with failure detectors

0 A node manager
 Adding and removing nodes from domain

 Crucial data has been lost ?

Summary

Software architecture and System architecture
Software architecture: logical organization

System architecture: implementation

Architecture Styles:
Layered architecture
Object orientation architecture

Event orientation and Data-space architecture

Centralized and Decentralized architectures
Centralized: client-server architectures

Decentralized: peer-to-peer architectures: structured and unstructured

Self-managing distributed systems

Feedback-control loops

41

