
CSE 5306 
Distributed Systems

Architectures

1

Jia Rao

http://ranger.uta.edu/~jrao/



Architecture

• Software architecture
How software components are organized,

And how they interact with each other

• System architecture
The instantiation of software architecture
• Centralized architecture, client-server system
• Decentralized architecture, peer-to-peer system
• Hybrid architecture, edge computing

2



Architectural Style

• Component
A modular unit with well-defined interfaces

It is replaceable

• Connector
Mediates communication, coordination, and cooperation among
components

Remote procedure calls, message passing, streaming data

3



Software architecture

• Layered architectures
Widely adopted by the networking community

• Object-oriented architectures
Each object corresponds to a component; interactions are through 
(remote) procedure calls

• Data-centered architectures
Components communicate through a shared repository

• Event-based architectures
Processes communicate through the propagation of events, which can also 
carry data

4



Layered architecture

5



6--From http://www.infocellar.com/networks/osi-model.htm



Object-oriented architecture

• Each object is an autonomous system that interacts with 
each other via RPC or RMI 

• Example: client-server style
7



Event-based architecture

• Decoupled in space 
Processes are loosely coupled, need not explicitly refer to each other

• Communication via propagation of events
Mostly publish/subscribe system

8



Shared data-space architecture

• Not only decoupled in space but also decouple in time
Processes need not both be active when communication takes place [More
details in Chap 13]

• Examples of shared data-space architecture
Shared distributed file systems

9



System architecture

• Centralized architectures
Client-server model
Application layering
Multi-tiered architecture

• Decentralized architectures
Peer-to-peer architecture
Overlay networks

• Hybrid architectures
Edge-server systems
Collaborative distributed systems

10



The client-server model

General interaction between a client and a server.

11



An example client and server
void *worker(void *arg) // worker thread

{

unsigned int socket;

socket = *(unsigned in *)arg;

process (socket);

pthread_exit(0);

}

int main (void) // main thread, or dispatcher thread

{

unsigned int server_s, client_s, i=0;

pthread_t threads[200];

server_s = socket(AF_INET, SOCK_STREAM, 0);

……

listen(server_s, PEND_CONNECTIONS);

while(1){

client_s = accept(server_s, …);

pthread_create(&threads[i++], &attr, worker, &client_s);

}

}
12



Client-server communication

• Connectionless protocol
Hard for a sender to detect if the message is successfully received
• Retransmission may cause problems

OK for idempotent operations
• Operations that can be repeated many times without harm [More details in

Chap 8]

• Connection-oriented protocol
Often used for non-idempotent operations
Problem: low performance and high cost (e.g., TCP/IP)

13



Application layering

• Many client-server system can be divided into three levels
The user-interface level: display management
The processing level: core functionality of applications
The data level: actual data being acted on (database or file systems)

14



User-interface level

• Clients implement the user-interface level allowing end users to
interact with applications.

A character-based screen: mainframe environment

A graphical display: X-Windows, Windows, Apple Mac

A graphical window: exchange data through user actions

15



Processing level

• Example: Internet search engine

16



Data level

• Data level contains the programs that maintain the actual data on which
the application operate.

Data are often persistent.
• Even if no application is running, data will be stored somewhere for next use.

Keeping data consistent across different applications.

17



Two-tiered architecture

• The simplest organization is to have only two types of machines:
A client that only containing (part of) the user-interface level
A server containing the rest (processing level and data level)

18

Thin client Fat client



Three-tiered architecture
• The server tier in two-tiered architecture becomes more and more 

distributed
A single server is no longer adequate for modern information systems

• The three-tiered architecture

19



Decentralized architecture

• Multi-tiered architecture is vertical distribution
Placing logically different components on different machines

• An alternative is horizontal distribution (P2P systems)
A collection of logically equivalent parts

Each part operates on its own share of the complete data set, thus balancing
the load

• The main question for peer-to-peer system is 
How to organize the processes in an overlay network
• A network in which the nodes are formed by the processes and the links represent the possible

communication channels.

Two types: structured and unstructured

20



Structured P2P architectures

• Structured: the overlay network is constructed in a deterministic 
procedure

Most popular: distributed hash table (DHT)

• Key questions
How to map data item to nodes

How to find the network address of the node responsible for the needed data 
item

• Two examples
Chord and content addressable network (CAN) [More details in Chap. 5]

21



Chord System

22



Content addressable network

• 2-dim space [0,1] * [0,1] is divided 
among 6 nodes

• Each node has an associated region

• Every data item in CAN is assigned a 
unique point in space

• The node owning the region is 
responsible for the data item

23



Unstructured P2P architectures

• Largely relying on randomized algorithm to construct the overlay network
Each node has a list of neighbors, which is more or less constructed in a 
random way

• One challenge is how to efficiently locate a needed data item
Flood the network

• Many systems try to construct an overlay network that resembles a 
random graph [More details in Chap. 5]

• Each node maintains a partial view, i.e., a set of live nodes randomly 
chosen from the current set of nodes

24



Super-peers

• In unstructured peer-to-peer systems, locating relevant data items can
become problematic as the network grows.

Super-peers: Make use of special nodes that maintain indexes of data items.

• How to select the nodes that are eligible to as the super-peer ?
Leader-election problem [More details in Chap 6]

25



Hybrid Forms: Edge-Server System

• Servers are placed “at the edge” of the network.
The edge is formed by the boundary between enterprise networks and the
actual Internet.

• Edge server’s main purpose is to serve content
Web-based solutions [More details in Chap 12]

26



27



Collaborative Distributed Systems

• BitTorrent file-sharing system.
The basic idea is when an end user is looking for a file, he downloads chunks of
the file from other active users.

• The design goal is to ensure collaboration.

28



Collaborative Content Distributed
Systems

• End users provide enhanced web servers that are capable of collaborating
in the replication of Web pages.

• Each server has the following components:
A component that can redirect client requests to other servers

A component for analyzing access patterns

A component for managing the replication of web pages

29



Architectures Versus Middleware

• Middleware forms a layer between applications and distributed platforms, the purpose
is to provide a degree of distribution of transparency.

• Middleware systems usually follow a specific architecture style.
Object-based architecture style: CORBA、OMG, and 2004a

Event-base architecture style: TIB/Rendezvous
• Benefits: designing applications become simpler
• Drawbacks: Adding other interaction patterns is difficult

• Solutions should be adaptable to applications requirements
Make several versions of a middleware system
Configure, adapt, and customize the middleware as needed by applications

30



Interceptors: adapt the middleware

• Environment in which distributed applications are executed changes
continuously.

Mobility, variance in the quality-of-service of networks

Failing hardware, battery drainage

• An interceptor is nothing but a software construct that will break the usual
flow of control and allow other application specific code to be executed.

31



Interceptors: adapt the middleware

32



Adaptive Software

• Three techniques about software adaption:
Separation of concerns
• Separate the parts that implement functionality from those that

take care of reliability, performance, and security

Computation reflection
• The ability of a program to inspect itself and if necessary, adapt its

behavior

Computation-based design
• Automatically selection of the best implementation of a

component during runtime

33



Discussion about Middleware

• Middleware are usually bulky and complex:
Provide distribution transparency

Distributed applications have extra-functional requirements
which conflicts with the aim at achieving this transparency

Necessary to adapt the applications ?
• Environment changes: faulty hardware, security attacks
• Distributed system can not be shut down

34



Self-management in Distributed Systems

• Distributed systems should:
Support as many applications as possible
• shielding undesirable features inherent to network

Support application-specific solutions
• full distributed transparency is not what most applications want

Adapting their execution behavior not to modify the
software components they comprise

• Autonomic computing
High-level feedback control systems allowing automatic
adaptions to changes

35



The Feedback Control Model

• Adaptions take place with feedback control loops
Uncontrollable parameters come from:
• The environment distributed systems is executing
• Unanticipated component interaction

Metric estimation component
• Monitor the running distributed systems

Feedback analysis component (core component)
• Analyzes the measurements and compares them to reference

values

Adjustment component
• Change the behavior of the system: scheduling priorities,

switching services, moving data, redirecting requests etc. 36



37



System Monitoring with Astrolabe

• General monitoring of large distributed systems
Organizing a large collections of hosts into a hierarchy of zones

The lowest-level zones consists of a single host

The top-level zone covers all hosts

• Each host runs an Astrolabe process called agent
Agent collects information of the hosts in each zone
• Local information of each host is stored in a set of attributes:
• Only the attributes of the lowest-level are writable

Agent communicates with each other

38



39



Automatic Component Repair Management in Jade

• Detecting component failures and replacing them
automatically during runtime

• Repair Management Domain:

A number of nodes
• Each node represents a server
• Equipped with failure detectors

A node manager
• Adding and removing nodes from domain

• Crucial data has been lost ?

40



Summary
• Software architecture and System architecture

• Software architecture: logical organization

• System architecture: implementation

• Architecture Styles:
• Layered architecture

• Object orientation architecture

• Event orientation and Data-space architecture

• Centralized and Decentralized architectures
• Centralized: client-server architectures

• Decentralized: peer-to-peer architectures: structured and unstructured

• Self-managing distributed systems
• Feedback-control loops

41


