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Synchronization
• An important issue in distributed system is how process 

cooperate and synchronize with one another
• Cooperation is partially supported by naming, which allows them to 

share resources

• Example of synchronization
• Access to shared resources
• Agreement on the ordering of events

• Will discuss
• Synchronization based on actual time
• Synchronization based on relative orders
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Clock Synchronization

• When each machine has its own clock, an event that occurred
after another event may nevertheless be assigned an earlier
time



Physical Clock

• All computers have a circuit to keep track of time using a quartz 
crystal

• However, quartz crystals at different computers often run at slightly 
different speeds

ü Clock skew between different machines

• Some systems (e.g., real-time systems) need external physical 
clock

ü Solar day: interval between two consecutive noons
• Solar day varies due to many reasons

ü International atomic time (TAI): transitions of cesium 133 atom
• Cannot be directly used as every day clock. TAI second < solar second

ü Solution: leap second whenever the difference is 800msec -> UTC



Leap Seconds

TAI seconds are of constant length, unlike solar seconds. Leap seconds are 
introduced when necessary to keep in phase with the sun.



Global Positioning System (GPS)

• Used to locate a physical point on earth

• Need at least 3 satellites to measure:
ü Longitude, latitude, and altitude (height)

• Example: computing a position in a 2D space



How GPS Works

• Use three satellites to estimate the position of the 
receiver, the distance is estimated based on the time 
difference between the receiver and the satellites
üΔi = (Tnow – Ti) +Δr

üdi = c(Tnow – Ti) +cΔr



GPS Challenges

• Clock skew complicates the GPS localization
ü The receiver’s clock is generally not well synchronized with that 

of a satellite
ü E.g., 1 sec of clock offset could lead to 300,000 kilometers error 

in distance estimation

• Other sources or errors
ü The position of satellite is not known precisely
ü The receivers clock has a finite accuracy
ü The signal propagation speed is not constant
ü Earth is not a perfect sphere – need further correction



Clock Synchronization Algorithms

• The goal of synchronization is to 
ü Keep all machines synchronized to an external reference clock
ü or just keep all machines together as well as possible

• The relation between two clock time and UTC when clocks 
tick at different rates



Network Time Protocol (NTP)

• Pairwise clock synchronization
üe.g., a client synchronize its clock with a server

θ=T3 + ((T2-T1)+(T4-T3))/2 –T4 



The Berkeley Algorithm
• Goal: just keep all machine together

• Steps
ü The time daemon tell all machine its time
ü Other machines answers how far ahead or behind 
ü The time daemon computes the average and tell other how to adjust



Clock Sync. In Wireless Networks

• In traditional distributed systems, we can deploy many 
time servers

ü That can easily contact each other for efficient information 
dissemination

• However, in wireless networks, communication becomes 
expensive and unreliable
• RBS (Reference Broadcast Synchronization) is a clock 

synchronization protocol
ü Where a sender broadcast a reference message that will allow 

its receivers to adjust their clocks



Reference Broadcast Synchronization

• To estimate the mutual, relative clock offset, two nodes
ü Exchange the time when they receive the same broadcast
ü The difference is the offset in one broadcast
ü The average of M offsets is then used as the result

• However, offset increases over time due to clock skew



Logical Clocks

• In many applications, what matters is not the real time
ü It is the order of events

• For the algorithms that synchronize the order of events, the 
clocks are often referenced as logical clocks
• Example: Lamports’s logical clock, which defines the “happen-

before” relation
ü If a and b are events in the same process, and a occurs before b, then 

a → b is true
ü If a is the event of a message being sent by one process, and b is the 

event of the message being received by another process,      then a →
b 



Lamport’s Logical Clocks

Three processes, each with its own clock.
The clocks run at different rates.

Lamport’s algorithm corrcets the clock



Lamport’s Algorithm
• Updating counter Ci for process Pi
1.Before executing an event Pi executes 

Ci ← Ci + 1.
2.When process Pi sends a message m to Pj, it sets m’s timestamp ts (m) 

equal to Ci after having executed the previous step.
3.Upon the receipt of a message m, process Pj adjusts its own local counter 

as 
Cj ← max{Cj , ts (m)}, after which it then executes the first step and 
delivers the message to the application.



Application of Lamport’s 
Algorithm

Updating a replicated database and 
leaving it in an inconsistent state.



Partial Order v.s. Total Order

• Basic Lamport clocks give a partial order
üMany events happen “concurrently”

• Often, a total order is desired
üA consistent total order
üe.g., commit operations in databases

• Rules to determine A total order a     b
üCi(a) < Cj(b); or
üCi(a) = Cj(b) and i < j 

⇒



Totally Ordered Multicasting
• Apply Lamport’s algorithm

• Every message is timestamped and the local counter is adjusted according to 
every message

• Each update triggers a multicast to all servers

• Each server multicasts an acknowledgement for every received update request

• Pass the message to the application only when
ü The message is at the head of the queue
ü All acknowledgements of this message has been received

• The above steps guarantees that the messages are in the same order at every 
server, assuming

ü Message transmission is reliable 



Example:Totally Ordered 
Multicast

• Message is delivered to applications only when
ü It is at head of queue
ü It has been acknowledged by all involved processes
üPi sends an acknowledgement to Pj if

• Pi has not made an update request
• Pi’s identifier is greater than Pj’s identifier
• Pi’s update has been processed;

• Lamport algorithm (extended for total order) ensures 
total ordering of events



Example: Totally Ordered 
Multicast

San Francisco (P1)
1.1
2.1

New York (P2)

1.2
2.2
3.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m3.1

Example adapted from Dr.
Ching-Cheng Lee’s slides



Example: Totally Ordered 
Multicast

• The sending of message m consists of sending the update 
operation and the time of issue which is 1.1

• The sending of message n consists of sending the update 
operation and the time of issue which is 1.2 

• Messages are multicast to all processes in the group 
including itself.

ü Assume that a message sent by a process to itself is received by the 
process almost immediately.

ü For other processes, there may be a delay.



Example: Totally Ordered 
Multicast

• At this point, the queues have the following:
ü P1: (m,1.1), (n,1.2)
ü P2: (m,1.1), (n,1.2)

• P1 will multicast an acknowledgement for (m,1.1) but not 
(n,1.2). 

ü Why? P1’s identifier is higher then P2’s identifier and P1 has issued a 
request

ü 1.1 < 1.2

• P2 will multicast an acknowledgement for (m,1.1) and (n,1.2)
ü Why? P2’s identifier is not higher then P1’s identifier 
ü 1.1 < 1.2



Example: Totally Ordered 
Multicast

• P1 does not issue an acknowledgement for (n,1.2) 
until operation m has been processed.
ü1< 2

• Note: The actual receiving by P1 of message (n,1.2) 
is assigned a timestamp of 3.1.

• Note: The actual receiving by P2 of message (m,1.1) 
is assigned a timestamp of 3.2



Example: Totally Ordered 
Multicast

• If P2 gets (n,1.2) before (m,1.1) does it still multicast an 
acknowledgement for (n,1.2)?  

ü Yes!

• At this point, how does P2 know that there are other updates 
that should be done ahead of the one it issued?

ü It doesn’t;
ü It does not proceed to do the update specified in (n,1.2) until it gets an 

acknowledgement from all other processes which in this case means 
P1.

• Does P2 multicast an acknowledgement for (m,1.1) when it 
receives it?  

ü Yes, it does since 1 < 2



Example: Totally Ordered 
Multicast

San Francisco (P1)
1.1
2.1

3.1

5.1

New York (P2)

1.2
2.2
3.2
4.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m
Send ack(m)

Recv ack(m)



Example: Totally Ordered 
Multicast

• To summarize, the following messages have been 
sent:
üP1 and P2 have issued update operations.
üP1 has multicasted an acknowledgement message for 

(m,1.1).
üP2 has multicasted acknowledgement messages for 

(m,1.1), (n,1.2).
• P1 and P2 have received an acknowledgement 

message from all processes for (m,1.1). 
• Hence, the update represented by m can proceed in 

both P1 and P2.



Example: Totally Ordered 
Multicast

San Francisco (P1)
1.1
2.1

3.1

5.1

New York (P2)

1.2
2.2
3.2
4.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m
Send ack(m)

Recv ack(m)
Process m Process m



Example: Totally Ordered 
Multicast

• When P1 has finished with m, it can then proceed to 
multicast an acknowledgement for (n,1.2). 
• When P1 and P2 both have received this 

acknowledgement, then it is the case that 
acknowledgements from all processes have been 
received for (n,1.2).  
• At this point, it is known that the update represented 

by n can proceed in both P1 and P2.



Example: Totally Ordered 
Multicast

San Francisco (P1)
1.1
2.1

3.1

5.1

New York (P2)

1.2
2.2
3.2
4.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m
Send ack(m)

6.1
Send ack(n)

Recv ack(m)

7.2 Recv ack(n)

Process m

Process n
Process n

Process m 



Example: Totally Ordered 
Multicast

• What if there was a third process e.g., P3 that issued an 
update (call it o) at about the same time as P1 and P2.

• The algorithm works as before.  
ü P1 will not multicast an acknowledgement for o until m has been done.

ü P2 will not multicast an acknowledgement for o until n has been done.  

• Since an operation can’t proceed until acknowledgements for 
all processes have been received, o will not proceed until n 
and m have finished.



Problem with Lamport’s Algorithm

• Lamport’s algorithm guarantees that
ü If event a happened before event b, then we have    C(a) < C(b)

• However, this does not mean that
ü C(a) < C(b) implies that event a happened before event b



Vector Clocks (1/2)

• Vector clocks are constructed by letting each process Pi

maintain a vector VCi with the following two properties:
1.VCi [ i ] is the number of events that have occurred so far at Pi. In other 

words, VCi [ i ] is the local logical clock at process Pi .

2.If VCi [ j ] = k then Pi knows that k events have occurred at Pj. It is thus Pi’s 
knowledge of the local time at Pj .



Vector Clocks (2/2)
• Steps carried out to accomplish property 2 of previous 

slide:
1.Before sending a message, Pi executes 

VCi [ i ] ← VCi [i ] + 1.
2.When process Pi sends a message m to Pj, it sets m’s (vector) timestamp 

ts (m) equal to VCi after having executed the previous step.
3.When node Pj receives a message from node Pi with ts(m), it delays 

delivery until:
1. ts(m)[i] = VCj [i ] +1
2. ts(m)[k] <= VCj [k ] for any k <>i

4.Upon the receipt of a message m, process Pj adjusts its own vector by 
setting 
VCj [k ] ← max{VCj [k ], ts (m)[k ]} for each k and delivers the message to 
the application.



Enforcing Causal Communication



Mutual Exclusion

• Concurrent access may corrupt the resource or make it 
inconsistent
• Token-based approach for mutual exclusion

ü Only 1 token is passed around in the system 
ü Process can only access when it has the token
ü Easy to avoid starvation and deadlock
ü However, situation becomes complicated if token is lost

• Permission-based approach for mutual exclusion
ü A process has to get permission before accessing a resource
ü Grant permission to only one process at any time



Centralized Algorithm

• Three steps:
ü Process 1 asks the coordinator for resource, permission is granted
ü Process 2 asks the coordinator for resource, the coordinator does not reply 
ü When process 1 releases the resources, it notifies the coordinator. The 

coordinator then grant permission to process 2

• Easy to implement, but has the single point of failure



A Decentralized Algorithm

• The single coordinator is a single point of failure

• The decentralized algorithm uses n coordinators, out 
of which m > n/2 needs to have a majority vote to 
grant an resource access

• The probability of this algorithm going wrong is very 
low
ü2m-n coordinators need to reset their votes



A Distributed Algorithm
• When a process wants to access a shared resource, it builds a message 

containing:
ü Name of the resource, its process number , and the current time

• Then, sends the message to all other processes, even to itself

• Three different cases
ü If the receiver is not accessing the resource and does not want to access it, it sends 

back an OK message to the sender.
ü If the receiver already has access to the resource, it simply does not reply. Instead, 

it queues the request.
ü If the receiver wants to access the resource as well but has not yet done so, it 

compares the timestamp of the incoming message with the one contained in the 
message that it has sent everyone. The lowest one wins. 

• When a process receives OK from all other processes, it starts access



An Example

• (a) Two processes want to access a shared resource at the same moment. 

• (b) Process 0 has the lowest timestamp, so it wins. 

• (c) When process 0 is done, it sends an OK also, so 2 can now go ahead.



Problems in the Distributed 
Algorithm

• Any process fails, the algorithm fail
ü Worse than the centralized algorithm

• Each process has to maintain a list of all other processes
ü Process addition, leaving, and crashing

• Every process needs to do the same amount of work as the 
coordinator in the centralized algorithm

• Improvements
ü A majority voting, e.g., as long as you get more than half of votes, you can 

access the resource

• The algorithm is still slow, expensive and not robust
ü Distributed algorithms are not always the best option



A Token Ring Algorithm

• When a ring is initialized, process 0 is given a token
ü Token is passed from k to k+1 (modulo the ring size) in a point-to-pint 

message
ü Ordering is logical, usually based on the process number or other means

• When a process acquires the token from its neighbor, it checks to 
see if needs to access the shared resource

ü If yes, go ahead with the resource, and then release the resource and pass 
the token when it finishes

ü If not, pass the token immediately to the next one

• Each process only needs to know who is next in line
• Problem: if the token is lost, it is hard to detect



A Comparison of the Four Algorithms


