
CSE 5306
Distributed Systems

Consistency and Replication

1

Jia Rao

http://ranger.uta.edu/~jrao/

Reasons for Replication
• Data is replicated for

• the reliability of the system

• Servers are replicated for performance
• Scaling in numbers
• Scaling in geographical area

• Dilemma
• Gain in performance
• Cost of maintaining replication

• Keep the replicas up to date and ensure consistency

2

Data-centric Consistency Model
(1/2)

• Consistency is often discussed in the context of
read and write on

ü Shared memory, shared databases, shared files

• A more general term is: data store
ü A data store is distributed across multiple machines
ü Each process can access a local copy of the entire data store

Data-centric Consistency Model
(2/2)

• A consistency model is essentially a contract
between processes and the data store
üA process that performs a read operation on a data

item expects the value written by the last write
operation

• However, due to the lack of a global clock, it is
hard to define which write operation is the last
one

Continuous Consistency
• Defines three independent axes of inconsistency

ü Deviation in numerical values between replicas
• E.g., the number and values of updates

ü Deviation in staleness between replicas
• Related to the last update

ü Deviation with respect to the ordering of updates
• E.g., the number of uncommitted updates

• Measure inconsistency with “conit”
ü A conit specifies the unit over which consistency is to be

measured
ü E.g., a record representing a stock, a weather report

Measuring Inconsistency: An
Example

An example of keeping track of consistency
deviations [Yu and Vahdat, 2002]

Conit Granularity

• Requirement: two replicas may differ in no more
than ONE update
ü (a) Two updates lead to update propagation
ü (b) No update propagation is needed

Sequential Consistency

• The symbols for read and write operations

• A data store is sequentially consistent if
üThe result of any execution is the same, as if
üThe (read and write) operations on the data store

were executed in some sequential order, and
üThe operations of each individual process appear in

this sequence in the order specified by its program

Example 1

(a) A sequentially consistent data store.
(b) A data store that is not sequentially consistent.

Example 2

Casual Consistency
• For a data store to be considered causally

consistent, it is necessary that the store obeys the
following condition
ü Writes that are potentially causally related

• Must be seen by all processes in the same order
ü Concurrent writes

• May be seen in a different order on different machines

This sequence is allowed with a causally-consistent store, but not with a sequentially consistent
store.

Another Example

(a) A violation of a causally-consistent store.

(b) A correct sequence of events in a causally-consistent store.

Grouping Operations
• Sequential and causal consistency is defined at

the level of read and write operations
ü However, in practice, such granularity does not match

the granularity provided by the application
• Concurrency is often controlled by synchronization methods

such as mutual exclusion and transactions

• A series of read/write operations, as one single
unit, are protected by synchronization operations
such as ENTER_CS and LEACE_CS
ü This atomically executed unit then defines the level of

granularity in real-world applications

Entry Consistency
• It requires

ü The programmer to use acquire and release at the start
and end of each critical section, respectively

ü Each ordinary shared variable to be associated with
some synchronization variable

A valid event sequence for entry consistency.

Mutual Exclusion on Shared
Memory

° Disabling interrupts:

° OS technique, not users’

° multi-CPU?

° Lock variables:

° test-set is a two-step process, not atomic

° Busy waiting:

° continuously testing a variable until some value
appears (spin lock)

Busy Waiting: TSL

Entering and leaving a critical region using the TSL instruction

° TSL (Test and Set Lock)
° Indivisible (atomic) operation, how? Hardware (multi-

processor)

° How to use TSL to prevent two processes from
simultaneously entering their critical regions?

Mutexes

° Mutex:
° a variable that can be in one of two states: unlocked or

locked
• A simplified version of the semaphores [0, 1]

Give other chance to run so as to save self;
What is mutex_trylock()?

Monitors
° Monitor: a higher-level synchronization primitive

° Only one process can be active in a monitor at any instant, with
compiler’s help; thus, how about to put all the critical regions
into monitor procedures for mutual exclusion?

But, how processes block when
they cannot proceed?

Condition variables, and two
operations: wait() and signal()

Consistency v.s. Coherence
• Consistency deals with a set of processes

operating on
ü A set of data items (they may be replicated)
ü This set is consistent if it adheres to the rules defined by

the model

• Coherence deals with a set of processes operating
on
ü A single data item that is replicated at many places
ü It is coherent if all copies abide to the rules defined by

the model

Cache Coherence

I/O devices!

Memory!

P!1!

$! $! $!

P!2! P!3!

u!:5!

5!
u! = ?!

1!

u!:5!

2!

u!:5!
3!

u! = 7!
4!

u! = ?!

Processors see different values for u after event 3

Delayed
write back

The MESI Protocol (1/2)
• All coherence related activities are broadcasted to

all processors
• Every cache line has one of the four states

ü Modified — cache line is present only in the current
cache, is dirty and has been modified from the value in
memory

ü Exclusive — cache line is present only in the current
cache, and is clean

ü Shared — cache line may be stored in other caches,
and is clean

ü Invalid — cache line is invalid

The MESI Protocol (2/2)
• Processor events

ü PrRd — read
ü PrWr — write

• Bus transactions
ü BusRd — read request from the bus

without intent to modify
ü BusRdX — read request from the bus

with the intent to modify
ü BusWB — write line out to memory

• Access a cache line in I state will
cause a cache miss

• A write can only be performed if the
cache line is in E or M states. If it is
in S state, the processor broadcasts
a request for ownership (RFO) to
invalidate other copies

Implementing SC on Multi-cores

Formulating SC
• All cores insert their loads and stores into the memory order (<m)

respecting their program order (<p), regardless of whether they are to the
same or different addresses.

ü If L(a) <p L(b) à L(a) <m L(b) /* load à load*/

ü If L(a) <p S(b) à L(a) <m S(b) /* load à store*/

ü If S(a) <p S(b) à S(a) <m S(b) /* store à store*/

ü If S(a) <p L(b) à S(a) <m L(b) /* store à load*/

• Every load gets its value from the latest store before it in global memory
order to the same address

Too expensive

Total Store Order (TSO)
• Processors use write buffers to hold committed stores

until the memory system can process them.

• A store enters the write buffer when the store commits,
and a store exits the write buffer when the block to be
written is in the cache in a read–write coherence state.

Formulating TSO
• All cores insert their loads and stores into the memory order (<m)

respecting their program order (<p), regardless of whether they are to the
same or different addresses.

ü If L(a) <p L(b) à L(a) <m L(b) /* load à load*/

ü If L(a) <p S(b) à L(a) <m S(b) /* load à store*/

ü If S(a) <p S(b) à S(a) <m S(b) /* store à store*/

ü If S(a) <p L(b) à S(a) <m L(b) /* store à load*/ no longer enforced

Comparing SC and TSO

TSO Bypass Example

Eventual Consistency
• In many distributed systems such as DNS and World Wide Web,

ü Updates on shared data can only be done by one or a small group of processes
ü Most processes only read shared data
ü A high-degree of inconsistency can be tolerated

• Eventual consistency
ü If no updates take place for a long time, all replicas will gradually become

consistent
ü Clients are usually fine if they only access the same replica

• However, in some cases, clients may access different replicas
ü E.g., a mobile user moves to a different location

• Client-centric consistency:
ü Guarantee the consistency of access for a single client

Monotonic-Read
Consistency

• A data store is said to provide monotonic-read
consistency if the following condition holds:
ü If a process reads the value of a data item x, then
ü Any successive read operation on x by that process will

always return
• That same value or
• A more recent value

• In other words
ü If a process has seen a value of x at time t, it will never

see an older version of x at any later time

An Example

• Notations
ü xi[t]: the version of x at local copy Li at time t
ü WS(xi[t]): the set of all writes at Li on x since initialization

The read operations performed by a single process P at two different local copies of
the same data store.

(a) A monotonic-read consistent data store.

(b) A data store that does not provide monotonic reads

Monotonic-Write
Consistency

• In a monotonic-write consistent store, the
following condition holds
üA write operation by a process on a data item x is

completed before
• Any successive write operation on x by the same process

• In other words
üA write on a copy of x is performed only if this copy

is brought up to date by means of
• Any preceding write on x, which may take place at other

replicas, by the same process

An Example

(a) A monotonic-write consistent data store.

(b) A data store that is not.

Read-Your-Write
Consistency

• A data store is said to provide read-your-write
consistency, if the following condition holds:
üThe effect of a write operation by a process on data

item x
• Will always be seen by a successive read operation on x

by the same process

• In other words,
üA write operation is always completed before a

successive read operation by the same process
• No matter where the read takes place

An Example

(b) A data store that does not.

(a) A data store that provides read-your-writes consistency.

Write-Follow-Read
Consistency

• A data store is said to provide write-follow-reads
consistency, if the following holds:
ü A write operation by a process on a data item x following

a previous read operation on x by the same process
• Is guaranteed to take place on the same or a more recent

value of x that was read

• In other words,
ü Any successive write operation by a process on a data

item x will be performed on a copy of x that
• Is up to date with the value most recently read by that

process

An Example

(a) A writes-follow-reads consistent data store.

(b) A data store that does not

Replica Management
• Two key issues for distributed systems that

support replication
• Where, when, and by whom replicas should be

placed? Divided into two sub-problems:
ü Replica server placement: finding the best location to

place a server that can host a data store
ü Content placement: find the best server for placing

content

• Which mechanisms to use for keeping replicas
consistent

Replica-Server Placement

• Some typical approaches
ü Select K out of N: select the one that leads to the

minimal average latency to all clients, and repeat
ü Ignore the client, only consider the topology, i.e., the

largest AS, the second largest AS …
ü However, these approaches are very expensive

• Region-based approach
ü A region is identified to be a collection of nodes

accessing the same content, but for which the internode
latency is low

Region-based Approach

Choosing a proper cell size for server placement.

Content Replication and
Placement

The logical organization of different kinds
of copies of a data store into three concentric rings.

Server-Initiated Replicas
• Observe the client access pattern and dynamically add or

remove replicas to improve performance
• One example algorithm

ü Count the access request of F from clients
ü If the request drops significantly, delete replica F
ü If a lot of requests from one certain location, replicate F at this

location

Client-Initiated Replicas
• Mainly deals with client cache

ü i.e., a local storage facility that is used by a client to
temporarily store a copy of the data it has just requested

• The cached data may be outdated
ü Let the client checks the version of the data

• Multiple clients may use the same cache
ü Data requested by one client may be useful to other

clients as well, e.g., DNS look-up
ü This can also improve the chance of cache hit

Content Distribution

• Deals with the propagation of updates to all
relevant replicas

• Two key questions
üWhat to propagate (state v.s. operations)

• Propagate only a notification of an update
• Transfer data from one copy to another
• Propagate the update operation to other copies

üHow to propagate the updates
• Pull v.s. push protocols
• Unicast v.s. multicast

Pull v.s. Push Protocols
• Push-based approach

ü It is server-based, updates are propagated to other replicas
without those replicas even asking for

ü It is usually used for high degree of consistency

• Pull-based approach
ü It is client-based, updates are propagated when a client or a

replication server asks for it

Consistency Protocols

• A consistency protocol describes
üAn implementation of a specific consistency model

• Will discuss
üContinuous consistency protocols

• Bounding numerical, staleness, ordering deviation

üPrimary-based protocols
• Remote-write and local-write protocols

üReplication-write protocols
• Active replication and quorum-based protocols

Continuous Consistency Protocols
(1/2)

• Bounding numerical deviation
ü The number of unseen updates, the absolute numerical value, or the

relative numerical value
ü E.g., the value of a local copy of x will never deviate from the real value

of x by a threshold

• Let us concern about the number of updates unseen
ü i.e., the total number of unseen updates to a server shall never exceed a

threshold

• A simple approach for N replicas
• Every server i tracks every other server j’s state about i’s local

writes, i.e., the number of i’s local writes not been seen by j
• If this number exceeds δ/(N-1), i will propagate its writes to j

Continuous Consistency Protocols
(2/2)

• Bounding staleness deviation
ü Each server maintains a clock T(i), meaning that this server has

seen all writes of i up to T(i)
ü Let T be the local time. If server i notices that T-T(j) exceeds a

threshold, it will pull the writes from server j

• Bounding ordering deviation
ü Each server keeps a queue of tentative, uncommitted writes
ü If the length of this queue exceeds a threshold,

• The server will stop accepting new writes and
• Negotiate with other servers in which order its writes should be

executed, i.e., enforce a globally consistent order of tentative writes
ü Primary-based protocols can be used to enforce a globally

consistent order of tentative writes

Remote-Write Protocols

• Problem: it is a blocking operation at the client

• Replace it with a non-blocking update, i.e., update the local copy immediately and then
the local server asks the backup server to perform the update

• However, the non-blocking version does not have fault tolerance

Local-Write Protocols

• The difference is that the primary copy migrates between processes

• Benefit: multiple successive writes can be performed locally, while others
can still read

ü If a non-blocking protocol is followed by which updates are propagated to the
replicas after the primary has finished the update

Replicated-Write Protocols
(1/2)

• Active replication
ü Update are propagated by means of the write operation that

causes the update

• The challenge is that the operations have to be carried
out in the same order everywhere

ü Need a totally-ordered multicast mechanism such as the one
based on Lamport’s logical clocks

• However, this algorithm is expensive and does not scale

• An alternative is to use a central sequencer
ü However, this central sequencer does not solve the scalability

problem

Replicated-Write Protocols
(2/2)

• Quorum-based protocols
ü Require a client to get permission from multiple servers

before a read or write

• A simple version
ü A read or write has to get permission from half plus 1

servers

• A better version: a client must get permission from
ü A read quorum: an arbitrary set of Nr servers
ü A write quorum: an arbitrary set of Nw servers
ü Such that Nr+Nw>N and Nw>N/2

Quorum-based Protocols

Three examples of the voting algorithm. (a) A correct
choice of read and write set. (b) A choice that may lead to
write-write conflicts. (c) A correct choice, known as ROWA

(read one, write all).

