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Reasons for Replication
• Data is replicated for

• the reliability of the system

• Servers are replicated for performance
• Scaling in numbers
• Scaling in geographical area

• Dilemma
• Gain in performance
• Cost of maintaining replication

• Keep the replicas up to date and ensure consistency
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Data-centric Consistency Model 
(1/2)

• Consistency is often discussed in the context of 
read and write on 

ü Shared memory, shared databases, shared files

• A more general term is: data store
ü A data store is distributed across multiple machines
ü Each process can access a local copy of the entire data store



Data-centric Consistency Model 
(2/2)

• A consistency model is essentially a contract 
between processes and the data store
üA process that performs a read operation on a data 

item expects the value written by the last write 
operation

• However, due to the lack of a global clock, it is 
hard to define which write operation is the last 
one



Continuous Consistency
• Defines three independent axes of inconsistency

ü Deviation in numerical values between replicas
• E.g., the number and values of updates

ü Deviation in staleness between replicas
• Related to the last update

ü Deviation with respect to the ordering of updates
• E.g., the number of uncommitted updates

• Measure inconsistency with “conit”
ü A conit specifies the unit over which consistency is to be 

measured
ü E.g., a record representing a stock, a weather report



Measuring Inconsistency: An 
Example

An example of keeping track of consistency 
deviations [Yu and Vahdat, 2002]



Conit Granularity

• Requirement: two replicas may differ in no more 
than ONE update
ü (a) Two updates lead to update propagation
ü (b) No update propagation is needed



Sequential Consistency

• The symbols for read and write operations

• A data store is sequentially consistent if
üThe result of any execution is the same, as if
üThe (read and write) operations on the data store 

were executed in some sequential order, and 
üThe operations of each individual process appear in 

this sequence in the order specified by its program



Example 1

(a) A sequentially consistent data store. 
(b) A data store that is not sequentially consistent.



Example 2



Casual Consistency
• For a data store to be considered causally 

consistent, it is necessary that the store obeys the 
following condition
ü Writes that are potentially causally related

• Must be seen by all processes in the same order
ü Concurrent writes

• May be seen in a different order on different machines

This sequence is allowed with a causally-consistent store, but not with a sequentially consistent 
store.



Another Example

(a) A violation of a causally-consistent store. 

(b) A correct sequence of events in a causally-consistent store.



Grouping Operations
• Sequential and causal consistency is defined at 

the level of read and write operations
ü However, in practice, such granularity does not match 

the granularity provided by the application
• Concurrency is often controlled by synchronization methods 

such as mutual exclusion and transactions

• A series of read/write operations, as one single 
unit, are protected by synchronization operations 
such as ENTER_CS and LEACE_CS
ü This atomically executed unit then defines the level of 

granularity in real-world applications



Entry Consistency
• It requires

ü The programmer to use acquire and release at the start 
and end of each critical section, respectively

ü Each ordinary shared variable to be associated with 
some synchronization variable

A valid event sequence for entry consistency.



Mutual Exclusion on Shared 
Memory

° Disabling interrupts: 

° OS technique, not users’

° multi-CPU?

° Lock variables: 

° test-set is a two-step process, not atomic

° Busy waiting: 

° continuously testing a variable until some value 
appears (spin lock)



Busy Waiting: TSL

Entering and leaving a critical region using the TSL instruction

° TSL (Test and Set Lock)
° Indivisible (atomic) operation, how? Hardware (multi-

processor)

° How to use TSL to prevent two processes from 
simultaneously entering their critical regions?



Mutexes

° Mutex: 
° a variable that can be in one of two states: unlocked or 

locked 
• A simplified version of the semaphores [0, 1]

Give other chance to run so as to save self;
What is mutex_trylock()?



Monitors
° Monitor: a higher-level synchronization primitive

° Only one process can be active in a monitor at any instant, with 
compiler’s help; thus, how about to put all the critical regions 
into monitor procedures for mutual exclusion?

But, how processes block when 
they cannot proceed?

Condition variables, and two 
operations: wait() and signal()



Consistency v.s. Coherence
• Consistency deals with a set of processes 

operating on 
ü A set of data items (they may be replicated)
ü This set is consistent if it adheres to the rules defined by 

the model

• Coherence deals with a set of processes operating 
on
ü A single data item that is replicated at many places
ü It is coherent if all copies abide to the rules defined by 

the model



Cache Coherence
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The MESI Protocol (1/2)
• All coherence related activities are broadcasted to 

all processors
• Every cache line has one of the four states

ü Modified — cache line is present only in the current 
cache, is dirty and has been  modified from the value in 
memory

ü Exclusive — cache line is present only in the current 
cache, and is clean

ü Shared — cache line may be stored in other caches, 
and is clean

ü Invalid — cache line is invalid



The MESI Protocol (2/2)
• Processor events

ü PrRd — read
ü PrWr — write

• Bus transactions
ü BusRd — read request from the bus 

without intent to modify
ü BusRdX — read request from the bus 

with the intent to modify 
ü BusWB — write line out to memory 

• Access a cache line in I state will 
cause a cache miss

• A write can only be performed if the 
cache line is in E or M states. If it is 
in S state, the processor broadcasts 
a request for ownership (RFO) to 
invalidate other copies



Implementing SC on Multi-cores



Formulating SC
• All cores insert their loads and stores into the memory order (<m)

respecting their program order (<p), regardless of whether they are to the
same or different addresses.

ü If L(a) <p L(b) à L(a) <m L(b) /* load à load*/

ü If L(a) <p S(b) à L(a) <m S(b) /* load à store*/

ü If S(a) <p S(b) à S(a) <m S(b) /* store à store*/

ü If S(a) <p L(b) à S(a) <m L(b) /* store à load*/

• Every load gets its value from the latest store before it in global memory
order to the same address

Too expensive



Total Store Order (TSO)
• Processors use write buffers to hold committed stores 

until the memory system can process them. 

• A store enters the write buffer when the store commits, 
and a store exits the write buffer when the block to be 
written is in the cache in a read–write coherence state. 



Formulating TSO
• All cores insert their loads and stores into the memory order (<m)

respecting their program order (<p), regardless of whether they are to the
same or different addresses.

ü If L(a) <p L(b) à L(a) <m L(b) /* load à load*/

ü If L(a) <p S(b) à L(a) <m S(b) /* load à store*/

ü If S(a) <p S(b) à S(a) <m S(b) /* store à store*/

ü If S(a) <p L(b) à S(a) <m L(b) /* store à load*/ no longer enforced



Comparing SC and TSO



TSO Bypass Example



Eventual Consistency
• In many distributed systems such as DNS and World Wide Web,

ü Updates on shared data can only be done by one or a small group of processes
ü Most processes only read shared data
ü A high-degree of inconsistency can be tolerated

• Eventual consistency
ü If no updates take place for a long time, all replicas will gradually become 

consistent
ü Clients are usually fine if they only access the same replica

• However, in some cases, clients may access different replicas
ü E.g., a mobile user moves to a different location

• Client-centric consistency:
ü Guarantee the consistency of access for a single client



Monotonic-Read 
Consistency

• A data store is said to provide monotonic-read 
consistency if the following condition holds:
ü If a process reads the value of a data item x, then
ü Any successive read operation on x by that process will 

always return
• That same value or
• A more recent value

• In other words
ü If a process has seen a value of x at time t, it will never 

see an older version of x at any later time



An Example

• Notations
ü xi[t]: the version of x at local copy Li at time t
ü WS(xi[t]): the set of all writes at Li on x since initialization

The read operations performed by a single process P at two different local copies of 
the same data store. 

(a) A monotonic-read consistent data store. 

(b) A data store that does not provide monotonic reads



Monotonic-Write 
Consistency

• In a monotonic-write consistent store, the 
following condition holds
üA write operation by a process on a data item x is 

completed before
• Any successive write operation on x by the same process

• In other words
üA write on a copy of x is performed only if this copy 

is brought up to date by means of 
• Any preceding write on x, which may take place at other 

replicas, by the same process



An Example

(a) A monotonic-write consistent data store. 

(b) A data store that is not. 



Read-Your-Write 
Consistency

• A data store is said to provide read-your-write 
consistency, if the following condition holds:
üThe effect of a write operation by a process on data 

item x
• Will always be seen by a successive read operation on x 

by the same process

• In other words,
üA write operation is always completed before a 

successive read operation by the same process
• No matter where the read takes place



An Example

(b) A data store that does not.

(a) A data store that provides read-your-writes consistency. 



Write-Follow-Read 
Consistency

• A data store is said to provide write-follow-reads 
consistency, if the following holds:
ü A write operation by a process on a data item x following 

a previous read operation on x by the same process
• Is guaranteed to take place on the same or a more recent 

value of x that was read

• In other words,
ü Any successive write operation by a process on a data 

item x will be performed on a copy of x that
• Is up to date with the value most recently read by that 

process



An Example

(a) A writes-follow-reads consistent data store. 

(b) A data store that does not



Replica Management
• Two key issues for distributed systems that 

support replication
• Where, when, and by whom replicas should be 

placed? Divided into two sub-problems:
ü Replica server placement: finding the best location to 

place a server that can host a data store
ü Content placement: find the best server for placing 

content

• Which mechanisms to use for keeping replicas 
consistent



Replica-Server Placement

• Some typical approaches
ü Select K out of N: select the one that leads to the 

minimal average latency to all clients, and repeat
ü Ignore the client, only consider the topology, i.e., the 

largest AS, the second largest AS …
ü However, these approaches are very expensive

• Region-based approach
ü A region is identified to be a collection of nodes 

accessing the same content, but for which the internode 
latency is low



Region-based Approach

Choosing a proper cell size for server placement.



Content Replication and 
Placement

The logical organization of different kinds 
of copies of a data store into three concentric rings.



Server-Initiated Replicas
• Observe the client access pattern and dynamically add or 

remove replicas to improve performance
• One example algorithm

ü Count the access request of F from clients 
ü If the request drops significantly, delete replica F
ü If a lot of requests from one certain location, replicate F at this 

location



Client-Initiated Replicas
• Mainly deals with client cache

ü i.e., a local storage facility that is used by a client to 
temporarily store a copy of the data it has just requested

• The cached data may be outdated
ü Let the client checks the version of the data

• Multiple clients may use the same cache
ü Data requested by one client may be useful to other 

clients as well, e.g., DNS look-up
ü This can also improve the chance of cache hit



Content Distribution

• Deals with the propagation of updates to all 
relevant replicas

• Two key questions
üWhat to propagate (state v.s. operations)

• Propagate only a notification of an update
• Transfer data from one copy to another
• Propagate the update operation to other copies

üHow to propagate the updates
• Pull v.s. push protocols 
• Unicast v.s. multicast



Pull v.s. Push Protocols
• Push-based approach

ü It is server-based, updates are propagated to other replicas 
without those replicas even asking for

ü It is usually used for high degree of consistency

• Pull-based approach
ü It is client-based, updates are propagated when a client or a 

replication server asks for it



Consistency Protocols

• A consistency protocol describes
üAn implementation of a specific consistency model

• Will discuss
üContinuous consistency protocols

• Bounding numerical, staleness, ordering deviation

üPrimary-based protocols
• Remote-write and local-write protocols

üReplication-write protocols
• Active replication and quorum-based protocols



Continuous Consistency Protocols 
(1/2)

• Bounding numerical deviation
ü The number of unseen updates, the absolute numerical value, or the 

relative numerical value
ü E.g., the value of a local copy of x will never deviate from the real value 

of x by a threshold

• Let us concern about the number of updates unseen
ü i.e., the total number of unseen updates to a server shall never exceed a 

threshold

• A simple approach for N replicas
• Every server i tracks every other server j’s state about i’s local 

writes, i.e., the number of i’s local writes not been seen by j
• If this number exceeds δ/(N-1), i will propagate its writes to j



Continuous Consistency Protocols 
(2/2)

• Bounding staleness deviation
ü Each server maintains a clock T(i), meaning that this server has 

seen all writes of i up to T(i)
ü Let T be the local time. If server i notices that T-T(j) exceeds a 

threshold, it will pull the writes from server j

• Bounding ordering deviation
ü Each server keeps a queue of tentative, uncommitted writes
ü If the length of this queue exceeds a threshold,

• The server will stop accepting new writes and 
• Negotiate with other servers in which order its writes should be 

executed, i.e., enforce a globally consistent order of tentative writes
ü Primary-based protocols can be used to enforce a globally 

consistent order of tentative writes



Remote-Write Protocols

• Problem: it is a blocking operation at the client

• Replace it with a non-blocking update, i.e., update the local copy immediately and then 
the local server asks the backup server to perform the update

• However, the non-blocking version does not have fault tolerance



Local-Write Protocols

• The difference is that the primary copy migrates between processes

• Benefit: multiple successive writes can be performed locally, while others 
can still read

ü If a non-blocking protocol is followed by which updates are propagated to the 
replicas after the primary has finished the update



Replicated-Write Protocols 
(1/2)

• Active replication
ü Update are propagated by means of the write operation that 

causes the update

• The challenge is that the operations have to be carried 
out in the same order everywhere

ü Need a totally-ordered multicast mechanism such as the one 
based on Lamport’s logical clocks

• However, this algorithm is expensive and does not scale

• An alternative is to use a central sequencer
ü However, this central sequencer does not solve the scalability 

problem



Replicated-Write Protocols 
(2/2)

• Quorum-based protocols
ü Require a client to get permission from multiple servers 

before a read or write

• A simple version
ü A read or write has to get permission from half plus 1 

servers

• A better version: a client must get permission from
ü A read quorum: an arbitrary set of Nr servers
ü A write quorum: an arbitrary set of Nw servers
ü Such that Nr+Nw>N and Nw>N/2



Quorum-based Protocols

Three examples of the voting algorithm. (a) A correct 
choice of read and write set. (b) A choice that may lead to 
write-write conflicts. (c) A correct choice, known as ROWA 

(read one, write all).


