
CSE 5306
Distributed Systems

Fault Tolerance

1

Jia Rao

http://ranger.uta.edu/~jrao/

Failure in Distributed Systems
• Partial failure

• Happens when one component of a distributed system fails
• Often leaves other components unaffected

• A failure in non-distributed systems often leads to the
failure of entire system

• Fault tolerance
• The system can automatically recover from partial failures

without seriously affecting the overall performance
• i.e., the system continues to operate in an acceptable way and

tolerate faults while repairs are being made

2

Basic Concepts

• Being fault tolerant is strongly related to
ü Dependable systems

• Dependability implies the following:
ü Availability

• A system is ready to be used immediately

ü Reliability
• A system can run continuously without failure

ü Safety
• When a system temporarily fails, nothing catastrophic happens

ü Maintainability
• A failed system can be easily repaired

• Faults
ü Transient faults, intermittent faults, permanent faults

Failure Models

Different types of failures.

Failure Masking by
Redundancy

• Redundancy is the key technique for achieving
fault tolerance
ü Information redundancy

• Extra bits are added to be able to recover from errors

üTime redundancy
• The same action is performed multiple times to handle

transient or intermittent faults

üPhysical redundancy
• Extra equipment or processes are added to tolerate

malfunctioning components

Example: Triple Modular
Redundancy

Process Resilience

• Protection against process failure
ü Achieved by replicating processes into groups
ü A message to this group should be received by all members

• Thus, if one process fails, others can take over

• Internal structure of process groups
ü Flat group v.s. hierarchical groups

Failure Masking and
Replication

• A key question is: how much replication is needed
to achieve fault tolerance

• A system is said to be k fault tolerant if
ü It can survive faults in k components and still meet its

specification

• If the components fail silently, then having k+1
replicas is enough

• If the processes exhibit Byzantine (arbitrary)
failures, a minimum of 3k+1 replicas are needed

Agreement in Faulty Systems

• The processes in a process group needs to reach an agreement in
many cases

ü It is easy and straightforward when communication and processes are all
perfect

ü However, when they are not, we have problems

• The goal is to have all non-faulty process reach consensus in a
finite number of steps

• Different solutions may be needed, depending on:
ü Synchronous versus asynchronous systems
ü Communication delay is bounded or not
ü Message delivery is ordered or not
ü Message transmission is done through unicast or multicast

Byzantine Generals Problem
(1/3)

• The original paper
ü “The Byzantine Generals Problem”, by Lamport, Shostak,

Pease, In ACM Transactions on Programming Languages and
Systems, July 1982

• Settings
ü Several divisions of the Byzantine army are camped outside

an enemy city
• Each division commanded by its own general

ü After observing the enemy, they must decide upon a common
plan of action

ü However, some generals may be traitors
• Trying to prevent the loyal generals from reaching agreement

Byzantine Generals Problem
(2/3)

• Must guarantee that
ü All loyal generals decide upon the same plan of action
ü A small number of traitors cannot cause the loyal

generals to adopt a bad plan

• A straightforward approach: simple majority voting
ü However, traitors may give different values to others

• More specifically
ü If the ith general is loyal, then the value he/she sends

must be used by every loyal general as the value of v(i)

Byzantine Generals Problem
(3/3)

• More precisely, we have:

• A commanding general must send an order to
his n-1 lieutenant generals such that
üAll loyal lieutenants obey the same order
ü If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

Impossibility Results
Impossibility Results

13

The Byzantine Generals Problem 385

f , , t ,

"he said 'retreat'"

Fig. 1. Lieutenant 2 a traitor.

y/
"he said 'retreat'"

Fig. 2. The commander a traitor.

However, a similar argument shows that if Lieutenant 2 receives a "retreat"
order from the commander then he must obey it even if Lieutenant 1 tells him
that the commander said "attack". Therefore, in the scenario of Figure 2,
Lieutenant 2 must obey the "retreat" order while Lieutenant 1 obeys the "attack"
order, thereby violating condition IC1. Hence, no solution exists for three generals
that works in the presence of a single traitor.

This argument may appear convincing, but we strongly advise the reader to be
very suspicious of such nonrigorous reasoning. Although this result is indeed
correct, we have seen equally plausible "proofs" of invalid results. We know of no
area in computer science or mathematics in which informal reasoning is more
likely to lead to errors than in the study of this type of algorithm. For a rigorous
proof of the impossibility of a three-general solution that can handle a single
traitor, we refer the reader to [3].

Using this result, we can show that no solution with fewer than 3m + 1 generals
can cope with m traitorsJ The proof is by contradiction--we assume such a

' More precisely, no such solution exists for three or more generals, since the problem is trivial for two
generals.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

The Byzantine Generals Problem 385

f , , t ,

"he said 'retreat'"

Fig. 1. Lieutenant 2 a traitor.

y/
"he said 'retreat'"

Fig. 2. The commander a traitor.

However, a similar argument shows that if Lieutenant 2 receives a "retreat"
order from the commander then he must obey it even if Lieutenant 1 tells him
that the commander said "attack". Therefore, in the scenario of Figure 2,
Lieutenant 2 must obey the "retreat" order while Lieutenant 1 obeys the "attack"
order, thereby violating condition IC1. Hence, no solution exists for three generals
that works in the presence of a single traitor.

This argument may appear convincing, but we strongly advise the reader to be
very suspicious of such nonrigorous reasoning. Although this result is indeed
correct, we have seen equally plausible "proofs" of invalid results. We know of no
area in computer science or mathematics in which informal reasoning is more
likely to lead to errors than in the study of this type of algorithm. For a rigorous
proof of the impossibility of a three-general solution that can handle a single
traitor, we refer the reader to [3].

Using this result, we can show that no solution with fewer than 3m + 1 generals
can cope with m traitorsJ The proof is by contradiction--we assume such a

' More precisely, no such solution exists for three or more generals, since the problem is trivial for two
generals.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Lieutenant 1 sees the same information in two different scenarios

Byzantine Agreement Problem
(1/3)

• The problem: reaching an
agreement given
ü Three non-faulty processes
ü One faulty process

• Assume
ü Processes are synchronous
ü Messages are unicast while

preserving ordering
ü Communication delay is

bounded Each process sends

their value to the others.

Byzantine Agreement Problem
(2/3)

The Byzantine agreement problem for three
non-faulty and one faulty process. (b) The vectors that

each process assembles based on (a).
(c) The vectors that each process receives in step 3.

Byzantine Agreement Problem
(3/3)

• In a system with k faulty processes, an
agreement can be achieved only if

ü 2k+1 correctly functioning processes are
present, for a total of 3k+1 processes

Failure Detection

• It is critical to detect faulty components
ü So that we can do proper recovery

• A common approach is to actively ping processes
with a time-out mechanism
ü Faulty if no response within a given time limit
ü Can be a side-effect of regular message exchanging

• The problem with the “ping” approach
ü It is hard to determine if no response is due to node

failure or just communication failure

Reliable Client-Server
Communication

• In addition to process failures, another important class of failure is
communication failures

• Point-to-point communication
ü Reliability can be achieved by protocols such as TCP
ü However, TCP itself may fail, and the distributed system will need to

mask such TCP crash failure

• Remote procedure call (RPC): transparency is the challenge
ü The client is unable to locate the server
ü The request message from the client to the server is lost
ü The server crashes after receiving a request
ü The reply message from the server to the client is lost
ü The client crashes after send a request

Server Crash

A server in client-server
communication.
(a) The normal case.
(b) Crash after execution.
(c) Crash before execution.

Recovery from Server Crashes

• The challenge is that
ü A client does not know if server crashes before

execution or crashes after execution
ü Two situations should be handled differently

• Three schools of thought for client OS
ü At least once semantics
ü At most once semantics
ü To guarantee nothing

• Ideally, we like exactly once semantics
ü But in general, there is no way to arrange this

Example: Printing Text (1/3)

• Assume the client
ü Request the server to print some text
ü Got ACK when the request is delivered

• Two strategies at the server
ü Send a completion message right before it tells the printer
ü Send a completion message after text has been printed

• The server crashes and then recover and announce to
all clients that he is up and running again

ü The question is what the client should do
ü The client does not know if its request will be actually carried

out by the server

Example: Printing Text (2/3)

• Four strategies at the client
ü Never reissue a request: text may not be printed
ü Always reissue a request: text may be printed twice
ü Reissue a request only if it did not receive the acknowledgement

of its request
ü Reissue a request only if it has received the acknowledgement of

its request

• Three events that could happen at the server
ü Send the completion message (M), print the text (P), and crash

(C)
ü Six different orderings: MPC, MC(P), PMC, PC(M), C(PM),

C(MP)

Example: Printing Text (3/3)

Different combinations of client and server
strategies in the presence of server crashes.

Lost Reply Message

• A common solution is to set a timer
ü If the timer expires, send the request again

• However, the client cannot tell why there was no reply
ü The request gets lost in the channel? Or the server is just slow?

• If the request is idempotent, then we can always reissue a
request with no harm

ü We can structure requests in an idempotent way
ü However, this is not always true, e.g., money transfer

• Other possible solutions
ü Ask the server to keep a sequence number
ü Use a bit in the message indicating if it is the original request

Basic Reliable-Multicasting
Schemes

A simple solution to reliable multicasting when all receivers are known and are
assumed not to fail. (a) Message transmission. (b) Reporting feedback.

Scalability in Reliable
Multicasting

• The basic scheme discussed has some limitations
ü If there are N receivers, the sender must be prepared to receive N ACKs

• Only send NACKs, but still no guarantee

ü The sender has to keep old messages
• Set a limit on the buffer, no retransmission for very old messages

• Nonhierarchical feedback control
ü Several receivers have scheduled a request for retransmission, but the

first retransmission request leads to the suppression of others

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting. Each local coordinator
forwards the message to its children and later handles retransmission

requests.

Atomic Multicast
• Consider a replicated database system constructed on

top of a distributed system, we require that
ü An update should be either performed at all replicas or none

at all
ü All updates should be done in the same order in all replicas

• The atomic multicast problem
ü A message is delivered to either all processes or to none

• Virtually synchronous

ü Messages are delivered in the same order to all processes
• Message ordering

Virtual Synchrony

• The principle of virtual synchronous multicast
üNo multicast can pass the view-change barrier

Message Ordering (1/3)

• Virtual synchrony does not address the ordering of multicast
• The are four different cases

ü Unordered multicast
• Receivers may receive messages in a different order

ü FIFO-ordered multicast
• The messages from the same sender should be received in the same

order as they are sent
ü Causally-ordered multicasts

• If a message m1 causally precedes m2, then m1 should be always
received before m2 at any receiver, even if the senders are different

ü Totally-ordered multicast
• Messages are delivered to all receivers in the same order
• They may not be FIFO-ordered or causally-ordered

Message Ordering (2/3)

Three communicating processes in the same group. The
ordering of events per process is shown along the vertical
axis.

Message Ordering (3/3)

Four processes in the same group with two different
senders, and a possible delivery order of messages

under FIFO-ordered multicasting

Implementing Virtual
Synchrony

• What we will discuss is the implementation in Isis
ü A fault-tolerant distributed system that is used in industry for many years

• Assume point-to-point communication is reliable
• The task is to deliver all unstable messages before view changes

ü M is stable if one knows for sure that it has been received by all
members

Distributed Commit

• Requires an operation being performed by all
processes in the group or none at all
ü Atomic multicasting is an example of this general

problem

• It is often achieved by means of a coordinator
ü One-phase commit protocol

• The coordinator tells everyone what to do
• No feedback when a member may fail to perform

ü Two-phase commit protocol
• Cannot efficiently handle the failure of the coordinator

ü Three-phase commit protocol

Two-Phase Commit

(a) The finite state machine for the coordinator in 2PC.
(b) The finite state machine for a participant.

Handling Failures

• Both coordinator or participants may fail
ü Timeout mechanisms are often applied, and
ü Each saves its state to persistent storage

• If a participant is in INIT state
ü Abort if no request from coordinator within a given time limit

• If the coordinator is in WAIT state
ü Abort if not all votes are collected within a given time limit

• If a participant is in READY state
ü We cannot simply decide to abort since

• A GLOBAL_COMMIT or GLOBAL_ABORT may have been issued

ü Let everyone block until coordinator recovers
ü Contact other participants for more informed decision

Actions to Take in READY State

Actions taken by a participant P when residing in state READY
and having contacted another participant Q.

Three-Phase Commit

• Two-phase commit is a blocking commit protocol
ü When all participants are in READY state, no decision

can be made until coordinator recovers

(a) The finite state machine for the coordinator in 3PC.

(b) The finite state machine for a participant.

Error Recovery

• Two forms of error recovery
üBackward recovery brings the system from its

present erroneous state back to a previously correct
state, e.g., checkpointing

üForward recovery brings the system to a correct
new state from which it can continue to execute,
e.g., erasure code

Recovery – Stable Storage

(a) Stable storage. (b) Crash after drive 1 is updated. (c) Bad spot.

Checkpointing

A recovery line.

Independent Checkpointing

The domino effect.

Coordinated Checkpointing

• Synchronize the checkpointing in all processes
ü The saved state is automatically globally consistent

• Achieved by using a two-phase blocking protocol
ü The coordinator multicasts a request to do checkpoint
ü Upon receiving such a request, a process queues any

subsequent message and notify the coordinator that it
has taken a checkpoint

ü When the coordinator receives all notifications, it
multicasts a CHECKPOINT_DONE message

ü Everyone moves forward after seeing
CHECKPOINT_DONE

Message Logging

• Checkpointing is expensive,
ü It is thus important to reduce the number of checkpointing

• The main intuition is
ü If we can replay all the transmission since the last checkpoint,

we can reach a globally consistent state
ü i.e., trade off communication with frequent checkpointing

• The challenge of message logging is how to deal with
orphan process

ü i.e., the process survived the crash, but is in an inconsistent
state with the crashed process after recovery

Orphan Process – An Example

Incorrect replay of messages
after recovery, leading to an orphan process.

Orphan Process - Definition

• A message m is said to be stable if
ü It can no longer be lost, e.g., it has been written to stable storage

• DEP(m): include processes that depend on the delivery of m
ü i.e., the processes to which m has been delivered
ü If m’ causally depends on m, then DEP(m’) DEP(m)

• COPY(m): include processes that have a copy of m, but m
has not been written to stable storage

ü If all these processes crashes, we can never replay m

• Orphan process Q can then be precisely defined as
ü There exists m such that Q DEP(m) but everyone in COPY(m)

has crashed, i.e., it depends on m but m can no longer be
replayed

⊂

∈

Handling Orphan Process

• Our objective is
ü The ensure that if process in COPY(m) crashes, then no surviving

process left in DEP(m), i.e., DEP(m) COPY(m)

• Thus, whenever a process becomes dependent on m, it should
keep a copy of m

ü This is hard since it may be too late when you realize that you are
dependent on m

• Pessimistic logging protocols: ensures that
ü Each non-stable message is delivered to at most one process, i.e., there

is at most one process dependent on a non-stable message

• Optimistic logging protocols
ü Any orphan process is rolled back so that it is not in DEP(m)

⊂

• Replicated log => replicated state machine
ü All servers execute same commands in same order

• Consensus module ensures proper log replication

• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Slides adapted from Ousterhout and
Ongaro@Stanford

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients
shl

Decompose the problem:

• Basic Paxos (“single decree”):
üOne or more servers propose values
üSystem must agree on a single value as chosen
üOnly one value is ever chosen

• Multi-Paxos:
üCombine several instances of Basic Paxos to agree

on a series of values forming the log
Slide 53

The Paxos Approach

Slides adapted from Ousterhout and
Ongaro@Stanford

• Safety:
ü Only a single value may be chosen
ü A server never learns that a value has been chosen unless it

really has been

• Liveness (as long as majority of servers up and
communicating with reasonable timeliness):

ü Some proposed value is eventually chosen
ü If a value is chosen, servers eventually learn about it

The term “consensus problem” typically refers to this single-
value formulation

Slide 54

Requirements for Basic Paxos

Slides adapted from Ousterhout and
Ongaro@Stanford

• Proposers:
ü Active: put forth particular values to be chosen
ü Handle client requests

• Acceptors:
ü Passive: respond to messages from proposers
ü Responses represent votes that form consensus
ü Store chosen value, state of the decision process
ü Want to know which value was chosen

For this presentation:
ü Each Paxos server contains both components

Slide 55

Paxos Components

Slides adapted from Ousterhout and
Ongaro@Stanford

• Simple (incorrect) approach:
a single acceptor chooses
value

• What if acceptor crashes
after choosing?

• Solution: quorum
ü Multiple acceptors (3, 5, ...)
ü Value v is chosen if accepted

by majority of acceptors
ü If one acceptor crashes,

chosen value still available

Single Acceptor
Proposers

Acceptor

add jmp shl sub

jmp

Slides adapted from Ousterhout and
Ongaro@Stanford

• Acceptor accepts only first value it receives?

• If simultaneous proposals, no value might be chosen

Slide 57

Problem: Split Votes

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accept?(green)

accepted(red)

accepted(blue)

accepted(green)

accepted(red)

accepted(blue)

Acceptors must sometimes accept multiple (different) values

Slides adapted from Ousterhout and
Ongaro@Stanford

• Acceptor accepts every value it receives?
• Could choose multiple values

Once a value has been chosen, future proposals must
propose/choose that same value (2-phase protocol)

Problem: Conflicting Choices

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen

Blue Chosen

Slides adapted from Ousterhout and
Ongaro@Stanford

• s5 needn’t propose red (it hasn’t been chosen yet)
• s1’s proposal must be aborted (s3 must reject it)

Must order proposals, reject old ones

Conflicting Choices, cont’d

time

s1
s2
s3
s4
s5

accept?(red)

prop(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen??

Blue Chosen

Slides adapted from Ousterhout and
Ongaro@Stanford

• Each proposal has a unique number
ü Higher numbers take priority over lower numbers
ü It must be possible for a proposer to choose a new proposal

number higher than anything it has seen/used before

• One simple approach:

ü Each server stores maxRound: the largest Round Number it has
seen so far

ü To generate a new proposal number:
• Increment maxRound
• Concatenate with Server Id

ü Proposers must persist maxRound on disk: must not reuse
proposal numbers after crash/restart

Proposal Numbers

Server IdRound Number

Proposal Number

Slides adapted from Ousterhout and
Ongaro@Stanford

Two-phase approach:

• Phase 1: broadcast Prepare RPCs
üFind out about any chosen values
üBlock older proposals that have not yet completed

• Phase 2: broadcast Accept RPCs
üAsk acceptors to accept a specific value

Basic Paxos

Slides adapted from Ousterhout and
Ongaro@Stanford

Basic Paxos
Acceptors

3) Respond to Prepare(n):
ü If n > minProposal then minProposal = n

ü Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n, value):
ü If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

ü Return(minProposal)

March 1, 2013

Proposers

1) Choose new proposal number n

2) Broadcast Prepare(n) to all servers

4) When responses received from
majority:
ü If any acceptedValues returned, replace value

with acceptedValue
for highest acceptedProposal

5) Broadcast Accept(n, value) to all
servers

6) When responses received from
majority:
ü Any rejections (result > n)? goto (1)

ü Otherwise, value is chosen

Three possibilities when later proposal prepares:
1. Previous value already chosen:

ü New proposer will find it and use it

Basic Paxos Examples

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Prepare proposal 3.1 (from s1)”

“Accept proposal 4.5
with value X (from
s5)”

X

Y

values

Slides adapted from Ousterhout and
Ongaro@Stanford

Three possibilities when later proposal prepares:
2. Previous value not chosen, but new proposer sees it:

ü New proposer will use existing value
ü Both proposers can succeed

Basic Paxos Examples, cont’d

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Slides adapted from Ousterhout and
Ongaro@Stanford

Three possibilities when later proposal prepares:
3. Previous value not chosen, new proposer doesn’t see it:

ü New proposer chooses its own value
ü Older proposal blocked

Basic Paxos Examples, cont’d

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

Slides adapted from Ousterhout and
Ongaro@Stanford

• Competing proposers can livelock:

• One solution: randomized delay before restarting
ü Give other proposers a chance to finish choosing

• Multi-Paxos will use leader election instead

Liveness

time

s1
s2
s3
s4
s5

A 3.1 XP 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

Slides adapted from Ousterhout and
Ongaro@Stanford

