CSE 5306 Distributed Systems

Security

Jia Rao

http://ranger.uta.edu/~jrao/

1

Security Threats

- Interception
 - Access by unauthorized users
- Interruption
 - Service or data becomes unavailable
- Modification
 - Unauthorized tampering of data or service
- Fabrication
 - Additional data or info is fabricated

Security Objectives

• Confidentiality

Prevent/detect/deter improper disclosure of information

• Integrity

Prevent/detect/deter improper modification of information

- Availability
 - Prevent/detect/deter improper denial of services offered by the system
- Other goals

Accountability, non-repudiation, anonymity

Security Mechanisms

- Implement functions that help prevent, detect, and respond to security attacks
 - ✓ Three layers of defense
 - Prevention, detection, and tolerance
- Some basic mechanisms

✓ Encryption, authentication, authorization, auditing

Cryptography and Security

Cryptography

 Study of fundamental algorithms such as encryption/decryption, hash, and digital signatures, to protect data

• Security

Study of protocols to protect a system

Often build upon cryptographic techniques

Cryptography

- Convert data into unintelligible form
- Types:
 - Secret key (symmetric) cryptography
 - A secret key is involved in the converting process
 - Reversible only when the secret key is known
 - Public key (asymmetric) cryptography
 - Two keys public and private

✓ Hash functions: no key

Communication and Attack Model

Intruders and eavesdroppers in communication.

Symmetric Cryptography

- Same key is used for encryption and decryption
- Ciphertext approximately the same length as plaintext
- Examples:
 - ✓ RC4, DES, IDEA, AES

Two-party Communication Problem

- Problem:
 - Alice (A) and Bob (B) want to securely communicate with each other
- Solution:
 - ✓ Establish a shared key (K)
 - Encrypt message (M) with the shared key
 - $A \rightarrow B: E_k(M)$
 - Problem: no guarantee of integrity

Asymmetric Cryptography

- A public/private key pair is used
 - ✓ Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Avoid the exchange of secret key between communicating parties

Digital Signature

- Sign
 - Only the one with the private key can sign a message (i.e., create a digital signature)
- Verify
 - ✓ Anyone who has the public key can verify a digital signature
- The signer cannot deny that he/she has done so

Applications of Asymmetric Cryptography (1/2)

• Secure data transmission

 Alice encrypts m using Bob's public key and Bob decrypts m using his private key

• Secure storage in public media

Can create a safety copy: using public key of trusted person

- Authentication
 - No need to store secrets, only need public keys
 - Secret key cryptography: need to share secret key for every person to communicate with

Applications of Asymmetric Cryptography (2/2)

• Digital signatures

Sign message M with the private key

• Key exchange

Establish a common session key between two parties

Hash Functions

• Length of H(m) is much shorter than the length of the original message m

✓ Usually fixed lengths: 128 or 160 bits

- Also known as
 - ✓ Message digests
 - ✓ One-way transformations
 - ✓ One-way functions

Properties of Hash Functions

- Flexibility
 - Can be applied to a block of data of any size
- Convenience
 - Produce a fixed-length short output
- Performance: easy to compute
- One-way property:
 - ✓ Given H(m) but not m, it is difficult to find m
- Weak collision free:
 - Given H(m), it is difficult to find m' such that H(m') = H(m)
- Strong collision free:
 - ✓ It is difficult to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Authentication Based on a Shared Secret Key

A Simplified but Unsecure Protocol

The Reflection Attack

Key Distribution Center

The Needham-Schroeder authentication protocol.

An Improved NS Protocol

