MapReduce

Data Intensive Computing

* “Data-intensive computing is a class of parallel computing
applications which use a data parallel approach to
processing large volumes of data typically terabytes or
petabytes in size and typically referred to as Big Data”

» Sources of Big Data -- Wikipedia

» Walmart generates 267 million item/day, sold at 6,000 stores

> Large Synoptic survey telescope captures 30 terabyte data/
day

> Millions of bytes from regular CAT or MRI scan

Adapted from Prof. Bryant’s slides @CMU

2

How can we use the data?

* Derive additional information from analysis of the
big data set

» pusiness intelligence: targeted ad deployment, spotting
shopping habit

» Scientific computing: data visualization

» Medical analysis: disease prevention, screening

Adapted from Prof. Bryant’s slides @CMU

So Much Data

* Easy to get
» Explosion of Internet, rich set of data acquisition methods

» Automation: web crawlers

* Cheap to Keep

» Less than $100 for a 2TB disk

Spread data across many disk drives
* Hard to use and move

» Process data from a single disk --> 3-5 hours

» Move data via network --> 3 hours - 19 days
Adapted from Prof. Bryant’s slides @CMU

Challenges

 Communication and computation are much more
difficult and expensive than storage

* Traditional parallel computers are designed for fine-
grained parallelism with a lot of communication

* |low-end, low-cost clusters of commodity servers
» complex scheduling

» high fault rate

Data-Intensive Scalable
Computing

Scale out not up
» data parallel model

» divide and conquer
Failures are common
Move processing to the data

Process data sequentially

However...

Fundamental issues ” : del
scheduling, data distribution, synchronization, Different programming modeis

inter-process communication, robustness, fault Message Passing Shared Memory
tolerance, ... ‘ | Il LIl

vivyy vEVV Y

P, P, P, P, P, P, P, P, P,

Memory

Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth .]
SUMA. Different programming constructs

UMA vs. NUMA, cache coherence
mutexes, conditional variables, barriers, ...
masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion...
dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden
of managing concurrency...

slide from Jimmy Lin@U of Maryland

Typical Problem Structure

lterate over a large number of records
Extract some of interest from eachparallelism Map function
shuffle and sort intermediate results

aggregate intermediate results Reduce function

Key idea: provide a functional
abstraction for these two
operations

genere

slide from Jimmy Lin@U of Maryland

MapReduce

* A framework for processing parallelizable problems
across huge data sets using a large number of
machines

»invented and used by Google [OSDI'04]

 Many implementations
Hadoop, Dryad, Pig@Yahoo!
» from interactive query to massive/batch computation

Spark, Giraff, Nutch, Hive, Cassandra

9

MapReduce Features

Automatic parallelization and distribution
Fault-tolerance
/O scheduling

Status and monitoring

10

MapReduce v.s. Conventional Parallel

MapReduce
MPI
SETI@home Threads O PRAM
o o o
< >
Low Communication High Communication
Coarse-Grained Fine-Grained

1. Coarse-grained parallelism
2. computation done by independent processors
3. file-based communication

Adapted from Prof. Bryant’s slides @CMU
11

Diff. in Data Storage

Conventional MapReduce

System i System

e Data stored in Separa’[e reposi’[ory £ Data stored |OCa”y to individual
SyStemS

* brought into system for computation ¥ computation co-located with

storage

Adapted from Prof. Bryant’s slides @CMU
12

Diff. in Programming
Models

Conventional

MapReduce
Application .
7y t Programs
Machine-Independent I
Software Programming Model
Packages]
Runtime
4 i Machine-Dependent System
Programming Model
Hardware Hardware

¥ Application programs written in
terms of high-level operations
on data

* Programs described at low level

* Rely on small number of software packages

X Run-time system controls
scheduling, load balancing,...

Adapted from Prof. Bryant’s slides @CMU
13

Diff. in Interaction

Conventional
» patch access
» conserve machine rscs

» - admit job If specific rsc
requirement is met

»run jobs in batch mode

14

* MapReduce

Interactive access
conserve human rscs
fair sharing between users

iInteractive queries and
batch jobs

Adapted from Prof. Bryant’s slides @CMU

Diff. in Reliability

* Conventional * MapReduce

- automatically detect and

»restart from most recent diagnosis errors

checkpoint
- replication and speculative

+ bring down system for execution

diagnosis, repair, of - repair or upgrade during
upgrades system running

15

Programming Model

Input & Output: each a set of key/value pairs

Programmer specifies two functions:
map (in_key, in_value) -> list(out_key,intermediate value)
Processes input key/value pair

Produces set of intermediate pairs

reduce (out_key, list(intermediate value)) -> list(out_value)
Combines all intermediate values for a particular key
Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages

16 slide from Dean et al. OSDI'04

Example: Count word
occurrences

map(String input_key, String input_value):
/[input_key: document name
/[input_value: document contents
for each word w in input_value:
Emitintermediate(w, "1");

reduce(String output_key, lterator intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += Parselnt(v);
Emit(AsString(result));

17

Ki vi Ky Vo k3 vy Ky vy Ks V5 Kg Vg

map map map map

a1 b 2 c 3 ¢ 6 a b5 ¢ 2 b 7 ¢ 9

Shuffle and Sort: aggregate values by keys

a 15 b 2 7 c 2 36 9
reduce reduce reduce
ry Sy r, Sy r'3 Sj

slide from Jimmy Lin@U of Maryland
18

MapReduce Runtime

Handles scheduling

»Assigns workers to map and reduce tasks

Handles “data distribution”

» Moves the process to the data

Handles synchronization

» (Gathers, sorts, and shuffles intermediate data

Handles faults

» Detects worker failures and restarts

Everything happens on top of a distributed FS

19

slide from Jimmy Lin@U of Maryland

MapReduce Workflow

Client
Program

DFS

Submit Job > Job
Tlacker |
M1

Assign Taskirackers
Co ordinate map and reduce phases
Task Provide Job progress info

Tracker

R1

ﬂl‘ask

Tracker
DFS

read reduce()
v

Output
fike 2

Outputformat

"

(|

Map Phase Reduce Phase

20

Map-side Sort/Spilli

2. Output buffer fills up.
Content sorted, partitioned
and spilled to disk

Map Task 3. Maptask finishes, all

IFlles merge to a single
IFile per task

Map-side

MapOutputBuffer

Merge

1. In memory buffer holds
serialized, unsorted key-values

21 Tod Lipcon@Hadoop summit

MapOutputBuffer

Metadata io.sort.record.percent * io.sort.mb

jo.sort.mb

Raw, serialized (1 - io.sort.record.percent) * io.sort.mb
key-value pairs

22 Tod Lipcon@Hadoop summit

Reduce Merge

Yes, fetch to RAM

Remote Map

Outputs

-
AN RAMManager

(via parallel
HTTP)

Merge to disk
No, fetch to disk .

Local disk

LT
i g
LiFie

Merge
iterator

23 Tod Lipcon@Hadoop summit

Task Granularity and Pipelining

Fine granularity tasks: many more maps than
machines

- Minimizes time for fault recovery

- Can pipeline shuffling with map execution

Process Time >

User Program |MapReduce() .. wait ...

Master Assign tasks to worker machines...

Worker | Map 1 Map 3

Worker 2 Map 2

Worker 3 Reduce |
Worker 4 Reduce 2

slide from Dean et al. OSDI'04
24

MapReduce Optimizations

* # of map and reduce tasks on a node

» A trade-off between parallelism and interferences

» Jotal # of map and reduce tasks

» A trade-off between execution overhead and

parallelism

Rule of thumb:
1. adjust block size to make each map run 1-3 mins
2. match reduce number to the reduce slots

25

MapReduce Optimizations (cont’)

* Minimize # of 10 operations
»Increase MapQOutputBuffer size to reduce spills
»Increase ReducelnputBufter size to reduce spills
» Objective: avoid repetitive merges

* Minimize 10 interterences
» Properly set # of map and reduce per node

» Properly set # of parallel reduce copy daemons

20

Fault Tolerance

* On worker failure
» detect failure via periodic heartbeat

» re-execute completed (data in local FS lost) and in-
progress map tasks

» re-execute in-progress reduce tasks

data of completed reduce is in global FS

27

Redundant Execution

« Some workers significantly lengthen completion time
» resource contention form other jobs

» bad disk with soft errors transter data slowly
« Solution
» spawn “backup” copies near the end of phase

»the first one finishing commits results to the master,
others are discarded

slide from Dean et al. OSDI'04
28

Distributed File System

 Move computation (workers) to the data
» store data on local disks
» launch workers (maps) on local disks

* A distributed file system is the answer

» same path to the data

» Google File System (GFS) and HDFS

29

GFS: Assumptions

Commodity hardware over “exotic” hardware
High component failure rates
» Inexpensive commodity components fail all the time
“‘Modest” number of HUGE files
Files are write-once, mostly appended to
» Perhaps concurrently
Large streaming reads over random access

High sustained throughput over low latency

slide from Jimmy Lin@U of Maryland
30

MapReduce Design

* GFS

» File stored as chunks (64MB)

» Reliability through replication (each chunk replicated 3 times)
 MapReduce

» Inputs of map tasks match GFS chunks size

» Query GFS for input location

» Schedule map tasks to one of the replica as close as possible

31

Research in MapReduce

32

Issue: Fairness vs. Locality

 Place tasks on remote node due to fairness
constraints

* A simple technigque

» Walt for 5 seconds before launch a remote task

33 FromZaharia-EuroSys10

Issue: Heterogeneous
Environment

MapReduce run speculative copy of tasks to
address straggler issues

Task execution progresses are inherently different
on machines with different capabilities

Speculative execution is not effective

Solution: calibrate task progress with predictions on
machine capabilities

34 From Zaharia-OSDI08

Data Skew

N 30000
wof sl il
Sonof 2 20000p il
Q 3 : : : ‘
8 3 3 3 3 3 3 3) i i i
sl Ly5000F T
o 150 : : : : : : : ()] : : :
E S £ ; ;
€ ool S 10000} S el AR Rt AR R
CE 100 T :
Sl 5000 i AR Rt AR R
||| 0
00720 40 60 80 100 120 140 160 180 020 40 60R k80 100120 140
Rank an
Map: heterogeneous Reduce: expensive keys

data set

35 From SkewTune-SIGMOD12

Issue: Hadoop Design

* Input data skew among reduce tasks

- Non-uniform key distribution Different partition size

Lead to disparity in reduce completion time
* Inflexible scheduling of reduce task

- Reduce tasks are created during job initialization

- Tasks are scheduled in the ascending order of their IDs

- Reduce tasks can not start even if their input partitions are available
* Tight coupling of shuffle and reduce

- shuffle starts only the corresponding reduce is scheduled

- Leave parallelism between and within jobs unexploited

36

Task ID

A Close Look

60

o — | e

----------------- T L T

. i LU
:m Map Tasks
1

Reduce

100 150 200

Workload: tera-sort with 4GB dataset
Platform: 10-node Hadoop cluster
1 map and 1 reduce slots per node

37

Our Approach (ICAC’13)

* Decouple shuffle phase from reduce tasks

- Shuffle as a platform service provided by Hadoop

Pro-actively and deterministically push map output to different slave nodes
« Balancing the partition placement

Predict partition sizes during task execution

Determine which node should a partition been shuffled to

Mitigate data skew
* Flexible reduce task scheduling

- Assign partitions to reduce tasks only when scheduled

38

Shuffle-on-Write

* Map output collection

MapOutputCollector
DataSpillHandler

* Data shuffling

Queuing and Dispatching
Data Size Predictor

Shuffle Manager
Map output merging

Merger

Priority-Queue merge sort

Ve
Shufiler
(Remote)

[— — - - - - - -

Data
Dispatcher

DataSize
Predictor

“shuffle” when Hadoop spills intermediate results

39

Results

. 200 7
« Execution Trace -
% 100 [R .. Reduce Taske.
.. 50 i
- Slow start of Hadoop does not eliminate 0 .
0 500 7000 7500 2000
. Time (s)
shuffle delay for multiple reduce wave
(a) Hadoop.
- Overhead of remote disk access of rar—
200 P -
Hadoop_A [SC’ll] S 150 ¢ . ' Reduce Tasks
@ 100 ' Map Tasks
. 50 Reduce
- iShuffle has almost no shuffle delay . . .
0 500 7000 7500 2000
Time (s)
(b) Hadoop-A.
"o __Shuffle | | |
2 150 Reduce Tasks T
= oo L OOOOOOOIOE......cc redee Taske.)
50 Reduce .
0 500 I7000 I7500 I2000

(¢) 1Shuffle.

40

MapReduce in the Cloud?

Amazon Elastic MapReduce

Can possibly solve data skews

Techniques for preserving locality ineffective
»virtual topology i physical topology

» - an extra layer of locality

off-rack, rack-local, node-local, host-local

Unaware of interference in the cloud

41

MapReduce in the Cloud

An extra layer of locality

node-local, rack-local, and host-local node-local host-local

JobTracker l

Jm} 1off-rack
rack-local I.I l I.H ‘

Exploit locality and avoid interferences

Interferences significantly slow down tasks ‘. ‘

[D Virtual Machine | TaskTracker . Task Split]

42

Interference and Locality-Aware
MapReduce Task Scheduling (HPDC’13)

Export hardware topology information to Jobtracker

Fstimate interferences from finished tasks and host statistics

%
Pure Fair ==X

Delay ==X

B = LATE m—m
Capacity ==
IAO ——=
LAO C—

(%F(%m%ﬂ(%@ﬂ@ﬂ

TeraSort(2) TeraSort(10) RWrite(40) Grep(120) WCount(250) TeraGen(600) Kmean(1) PiEst(480) PiEst(1000)

Normalized Completion Time
O = N W A~ O O N ©

Significant improvement on job completion times

43

Performance Heterogeneity in
Clouds

THE HARDWARE CONFIGURATION OF A HETEROGENEOUS CLUSTER

Machine model CPU model Memory | Disk | Number
PowerEdge T320 | Intel Sandy Bridge 2.2GHz 24GB ITB 2
PowerEdge T430 | Intel Sandy Bridge 2.3GHz 128GB ITB 1
PowerEdge T110 Intel Nehalem 3.2GHz 16GB ITB 2
OPTIPLEX 990 Intel Core 2 3.4GHz 8GB ITB 7

Hardware heterogeneity due to multiple
generations of machines

Performance heterogeneity can also be
due to multi-tenant interferences in the cloud

44

Imbalance Due to Performance
Heterogeneity

10 (a) Physical cluster 10 (b) Virtual cluster

0

)

£ 80} 80

_S 60} 60

]

O

9 40] 40!

X

)

Y 20, 20

n

= o_

Map tasks Map tasks
2:1 5:1

fastest:slowest

45

Load Balancing isn’t Effective

Capacity:1 Capacity:1 Capacity:3

- = - ===

@ o m| o &

-—- = =2~ ~37
® X || & k|| &k
Slow Slow Fast

Speculative execution or remote task execution
Is not effective for load balancing unless mappers are infinitely smali

Mappers are not infinitely small and
are statically bound to a HDFS block

46

Probality density

°© o o o

o o o o
D

©

o

=
T

000 I I I I L I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

W
T

N
T

Execution

(a) runtime variance
T T T T

in virtual cluster
T

8M
64M ||

Normalized task execution time

Job execution time (s)

Overhead v.s. Load Balancing

500

400

300

200

100

_’""‘---0-..,’

(b) Job execution in homogeneous cluster

8M
Block size

=
o

©
o)

o
)

©
N

e
[N)

KX 0.0
leM 32M 64M 96M 128M

2
o >
g g
L o
E o
q—
v 5
o)
° v

O

|_

=
o

o
o)

o
o

©
>

o
[N)

o
o

(c) Task execution in homogeneous cluster
T T T T T T

Ve]
—
-
8M 16M 32M 64M 96M 128M
Block size

Job execution time (s)

Productivity = Effective runtime/Total runtime

1000

800

600

400

200

(d) Job execution in heterogeneous cluster

16M

32M 64M
Block size

96M 128M

Efficiency = Serial time/Map phase time * # of slots

47

e © e =
> o o) <)

Job efficiency

o
[N}

0.0

Elastic Mappers

* |dea: run large mappers on tast machines

Approach: start with small mappers (8MB) and
expand based on machine capacity

) 3. Receive container
] <location : Node 1> [Scheduler]

[SpeedMonitor

2. Request container

[LateTaSkBlndlng] <location :ANY> | ResourceManager
AppMaster Yy
1. Initialize task 4. Provision data
<InputSplits:block1,block2..>\ 6.Heartbeat
£ <task1 : speed1>
<task2 : speed2>
5. Set up container [
Multi-block [Multi-block
execution Node 1 ‘____e_x_ecutlon Node X
Céntalnern Block| [Block] 1 [Block Contalneru—— m Bocd iBesd| |
— - - m m ® & o ool "ZZZZ'_'_'_'_'_'_'_'
C % _—
k_o/%c _— Contalner«—— Block Bk,ck] |B|oc|

48

Improving Overall Performance

(a) Physical cluster | | | _(b) Virtual cluster | |
|- hadoop-128m hadoop-64m [flexmap | Bh |- hadoop-128m hadoop-64m [flexmap |

49

Task size

35

30

25

20

15

10

Expanding Mapper Size

(a) Physical cluster

— fast

slow

0

20 40 60 80
Progress of map phase(%)

Task productivity

(b) Physical cluster

Task size

20 40 60 80
Progress of map phase(%)

50

70

(c) Virtual cluster

— fast

slow

Progress of map phase(%)

y
o o o
N o0 ©

Task productivit
°© o o o
w H [6,] [e)}

°© o o
o = N

(d) Virtual cluster

— fast
slow

-

20
Progress of map phase(%)

Results on a 40-node Cluster

=
N

|- stock hadoop no speculation [flexmap|]

b 1.2 E E
5 10 . }
Q

N 0.8 , -
f_EU 0.6 . B
< 0.4 / . .
(@)

Z 0.2 / . .

' | TV GR KM HR

|- stock hadoop no speculation [flexmap

1]

=
o

o
o)

N
»

(@) 5% slow node | | | (

Normalized JCT

o
[N

S

°
o

b) 10% slow node
G

Normalized JCT

HM TS TV R KM HR HM TS
| (c) 20% slow node | | 1o (d) 40% slow node _ | |
- |- stock hadoop no speculation — flexmaplf |- stock hadoop no speculation — flexmapl
.) - b 1.0 - -]
0.8] B § 0.8 . I
0.6 . - (__U 0.6 ! - /
0.4 ! B g 0.4 . B
0.2 - - 2 0.2 - - /
o0 TV GR KM HR HM TS o0 TV GR KM HR HM TS

51

