MapReduce



Data Intensive Computing

* “Data-intensive computing is a class of parallel computing
applications which use a data parallel approach to
processing large volumes of data typically terabytes or
petabytes in size and typically referred to as Big Data”

» Sources of Big Data -- Wikipedia

» Walmart generates 267 million item/day, sold at 6,000 stores

> Large Synoptic survey telescope captures 30 terabyte data/
day

> Millions of bytes from regular CAT or MRI scan

Adapted from Prof. Bryant’s slides @CMU
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How can we use the data?

* Derive additional information from analysis of the
big data set

» pusiness intelligence: targeted ad deployment, spotting
shopping habit

» Scientific computing: data visualization

» Medical analysis: disease prevention, screening

Adapted from Prof. Bryant’s slides @CMU



So Much Data

* Easy to get
» Explosion of Internet, rich set of data acquisition methods

»  Automation: web crawlers

* Cheap to Keep

» Less than $100 for a 2TB disk

Spread data across many disk drives
* Hard to use and move

» Process data from a single disk --> 3-5 hours

» Move data via network --> 3 hours - 19 days
Adapted from Prof. Bryant’s slides @CMU



Challenges

 Communication and computation are much more
difficult and expensive than storage

* Traditional parallel computers are designed for fine-
grained parallelism with a lot of communication

* |low-end, low-cost clusters of commodity servers
» complex scheduling

» high fault rate



Data-Intensive Scalable
Computing

Scale out not up
» data parallel model

» divide and conquer
Failures are common
Move processing to the data

Process data sequentially



However...

Fundamental issues ” : del
scheduling, data distribution, synchronization, Different programming modeis

inter-process communication, robustness, fault Message Passing Shared Memory
tolerance, ... ‘ | Il LIl

vivyy vEVV Y
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Memory

Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth . ]
SUMA. Different programming constructs

UMA vs. NUMA, cache coherence
mutexes, conditional variables, barriers, ...
masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion...
dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden
of managing concurrency...

slide from Jimmy Lin@U of Maryland



Typical Problem Structure

lterate over a large number of records
Extract some of interest from eachparallelism Map function
shuffle and sort intermediate results

aggregate intermediate results  Reduce function

Key idea: provide a functional
abstraction for these two
operations

genere

slide from Jimmy Lin@U of Maryland



MapReduce

* A framework for processing parallelizable problems
across huge data sets using a large number of
machines

»invented and used by Google [OSDI'04]

 Many implementations
Hadoop, Dryad, Pig@Yahoo!
» from interactive query to massive/batch computation

Spark, Giraff, Nutch, Hive, Cassandra

9



MapReduce Features

Automatic parallelization and distribution
Fault-tolerance
/O scheduling

Status and monitoring
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MapReduce v.s. Conventional Parallel

MapReduce
MPI
SETI@home Threads O PRAM
o o o
< >
Low Communication High Communication
Coarse-Grained Fine-Grained

1. Coarse-grained parallelism
2. computation done by independent processors
3. file-based communication

Adapted from Prof. Bryant’s slides @CMU
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Diff. in Data Storage

Conventional MapReduce

System i System

e Data stored in Separa’[e reposi’[ory £ Data stored |OCa”y to individual
SyStemS

* brought into system for computation ¥ computation co-located with

storage

Adapted from Prof. Bryant’s slides @CMU
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Diff. in Programming
Models

Conventional

MapReduce
Application .
7y t Programs
Machine-Independent I
Software Programming Model
Packages ]
Runtime
4 i Machine-Dependent System
Programming Model
Hardware Hardware

¥ Application programs written in
terms of high-level operations
on data

* Programs described at low level

* Rely on small number of software packages

X Run-time system controls
scheduling, load balancing,...

Adapted from Prof. Bryant’s slides @CMU
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Diff. in Interaction

Conventional
»  patch access
»  conserve machine rscs

» - admit job If specific rsc
requirement is met

»run jobs in batch mode

14

* MapReduce

Interactive access
conserve human rscs
fair sharing between users

iInteractive queries and
batch jobs

Adapted from Prof. Bryant’s slides @CMU



Diff. in Reliability

* Conventional * MapReduce

- automatically detect and

»restart from most recent diagnosis errors

checkpoint
- replication and speculative

+ bring down system for execution

diagnosis, repair, of - repair or upgrade during
upgrades system running
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Programming Model

Input & Output: each a set of key/value pairs

Programmer specifies two functions:
map (in_key, in_value) -> list(out_key,intermediate value)
Processes input key/value pair

Produces set of intermediate pairs

reduce (out_key, list(intermediate value)) -> list(out_value)
Combines all intermediate values for a particular key
Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages

16 slide from Dean et al. OSDI'04



Example: Count word
occurrences

map(String input_key, String input_value):
/[ input_key: document name
/[ input_value: document contents
for each word w in input_value:
Emitintermediate(w, "1");

reduce(String output_key, lterator intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += Parselnt(v);
Emit(AsString(result));
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map map map map

a1 b 2 c 3 ¢ 6 a b5 ¢ 2 b 7 ¢ 9

Shuffle and Sort: aggregate values by keys

a 15 b 2 7 c 2 36 9
reduce reduce reduce
ry Sy r, Sy r'3 Sj

slide from Jimmy Lin@U of Maryland
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MapReduce Runtime

Handles scheduling

»Assigns workers to map and reduce tasks

Handles “data distribution”

» Moves the process to the data

Handles synchronization

» (Gathers, sorts, and shuffles intermediate data

Handles faults

» Detects worker failures and restarts

Everything happens on top of a distributed FS

19

slide from Jimmy Lin@U of Maryland



MapReduce Workflow

Client
Program

DFS

Submit Job > Job
Tlacker |
M1

Assign Taskirackers
Co ordinate map and reduce phases
Task Provide Job progress info

Tracker

R1

ﬂl‘ask

Tracker
DFS

read reduce()
v

Output
fike 2

Outputformat

"

( |

Map Phase Reduce Phase
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Map-side Sort/Spilli

2. Output buffer fills up.
Content sorted, partitioned
and spilled to disk

Map Task 3. Maptask finishes, all

IFlles merge to a single
IFile per task

Map-side

MapOutputBuffer

Merge

1. In memory buffer holds
serialized, unsorted key-values

21 Tod Lipcon@Hadoop summit



MapOutputBuffer

Metadata io.sort.record.percent * io.sort.mb

jo.sort.mb

Raw, serialized (1 - io.sort.record.percent) * io.sort.mb
key-value pairs

22 Tod Lipcon@Hadoop summit



Reduce Merge

Yes, fetch to RAM

Remote Map

Outputs

-
AN RAMManager

(via parallel
HTTP)

Merge to disk
No, fetch to disk .

Local disk

LT
i g
LiFie

Merge
iterator

23 Tod Lipcon@Hadoop summit



Task Granularity and Pipelining

Fine granularity tasks: many more maps than
machines

- Minimizes time for fault recovery

- Can pipeline shuffling with map execution

Process Time >

User Program |MapReduce() .. wait ...

Master Assign tasks to worker machines...

Worker | Map 1 Map 3

Worker 2 Map 2

Worker 3 Reduce |
Worker 4 Reduce 2

slide from Dean et al. OSDI'04
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MapReduce Optimizations

* # of map and reduce tasks on a node

» A trade-off between parallelism and interferences

» Jotal # of map and reduce tasks

» A trade-off between execution overhead and

parallelism

Rule of thumb:
1. adjust block size to make each map run 1-3 mins
2. match reduce number to the reduce slots
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MapReduce Optimizations (cont’)

* Minimize # of 10 operations
»Increase MapQOutputBuffer size to reduce spills
»Increase ReducelnputBufter size to reduce spills
» Objective: avoid repetitive merges

* Minimize 10 interterences
» Properly set # of map and reduce per node

» Properly set # of parallel reduce copy daemons
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Fault Tolerance

* On worker failure
» detect failure via periodic heartbeat

» re-execute completed (data in local FS lost) and in-
progress map tasks

» re-execute in-progress reduce tasks

data of completed reduce is in global FS
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Redundant Execution

« Some workers significantly lengthen completion time
» resource contention form other jobs

» bad disk with soft errors transter data slowly
« Solution
» spawn “backup” copies near the end of phase

»the first one finishing commits results to the master,
others are discarded

slide from Dean et al. OSDI'04
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Distributed File System

 Move computation (workers) to the data
» store data on local disks
» launch workers (maps) on local disks

* A distributed file system is the answer

» same path to the data

» Google File System (GFS) and HDFS
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GFS: Assumptions

Commodity hardware over “exotic” hardware
High component failure rates
» Inexpensive commodity components fail all the time
“‘Modest” number of HUGE files
Files are write-once, mostly appended to
» Perhaps concurrently
Large streaming reads over random access

High sustained throughput over low latency

slide from Jimmy Lin@U of Maryland
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MapReduce Design

* GFS

» File stored as chunks (64MB)

» Reliability through replication (each chunk replicated 3 times)
 MapReduce

» Inputs of map tasks match GFS chunks size

» Query GFS for input location

» Schedule map tasks to one of the replica as close as possible

31



Research in MapReduce
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Issue: Fairness vs. Locality

 Place tasks on remote node due to fairness
constraints

* A simple technigque

» Walt for 5 seconds before launch a remote task

33 FromZaharia-EuroSys10



Issue: Heterogeneous
Environment

MapReduce run speculative copy of tasks to
address straggler issues

Task execution progresses are inherently different
on machines with different capabilities

Speculative execution is not effective

Solution: calibrate task progress with predictions on
machine capabilities

34 From Zaharia-OSDI08



Data Skew

N 30000
wof sl il
Sonof 2 20000p il
Q 3 : : : ‘
8 3 3 3 3 3 3 3 ) i i i
sl Ly5000F T
o 150 : : : : : : : ()] : : :
E S £ ; ;
€ ool S 10000} S el AR Rt AR R
CE 100 T :
Sl 5000 i AR Rt AR R
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 0
00720 40 60 80 100 120 140 160 180 020 40 60R k80 100120 140
Rank an
Map: heterogeneous Reduce: expensive keys

data set

35 From SkewTune-SIGMOD12



Issue: Hadoop Design

* Input data skew among reduce tasks

- Non-uniform key distribution Different partition size

Lead to disparity in reduce completion time
* Inflexible scheduling of reduce task

- Reduce tasks are created during job initialization

- Tasks are scheduled in the ascending order of their IDs

- Reduce tasks can not start even if their input partitions are available
* Tight coupling of shuffle and reduce

- shuffle starts only the corresponding reduce is scheduled

- Leave parallelism between and within jobs unexploited

36



Task ID

A Close Look

60

o — | e

----------------- T L T

. i LU
:m Map Tasks
1

Reduce

100 150 200

Workload: tera-sort with 4GB dataset
Platform: 10-node Hadoop cluster
1 map and 1 reduce slots per node
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Our Approach (ICAC’13)

* Decouple shuffle phase from reduce tasks

- Shuffle as a platform service provided by Hadoop

Pro-actively and deterministically push map output to different slave nodes
« Balancing the partition placement

Predict partition sizes during task execution

Determine which node should a partition been shuffled to

Mitigate data skew
* Flexible reduce task scheduling

- Assign partitions to reduce tasks only when scheduled
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Shuffle-on-Write

* Map output collection

MapOutputCollector
DataSpillHandler

* Data shuffling

Queuing and Dispatching
Data Size Predictor

Shuffle Manager
Map output merging

Merger

Priority-Queue merge sort

Ve
Shufiler
(Remote)

[ — — - - - - - -

Data
Dispatcher

DataSize
Predictor

“shuffle” when Hadoop spills intermediate results
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Results
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MapReduce in the Cloud?

Amazon Elastic MapReduce

Can possibly solve data skews

Techniques for preserving locality ineffective
»virtual topology i physical topology

» - an extra layer of locality

off-rack, rack-local, node-local, host-local

Unaware of interference in the cloud

41



MapReduce in the Cloud

An extra layer of locality

node-local, rack-local, and host-local  node-local host-local

JobTracker l

Jm} 1off-rack
rack-local I.I l I.H ‘

Exploit locality and avoid interferences

Interferences significantly slow down tasks ‘. ‘

[D Virtual Machine | TaskTracker . Task Split ]
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Interference and Locality-Aware
MapReduce Task Scheduling (HPDC’13)

Export hardware topology information to Jobtracker

Fstimate interferences from finished tasks and host statistics

%
Pure Fair ==X

Delay ==X

B = LATE m—m
Capacity ==
IAO ——=
LAO C—

(%F(%m%ﬂ(%@ﬂ@ﬂ

TeraSort(2) TeraSort(10) RWrite(40)  Grep(120) WCount(250) TeraGen(600) Kmean(1) PiEst(480) PiEst(1000)

Normalized Completion Time
O = N W A~ O O N ©

Significant improvement on job completion times
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Performance Heterogeneity in
Clouds

THE HARDWARE CONFIGURATION OF A HETEROGENEOUS CLUSTER

Machine model CPU model Memory | Disk | Number
PowerEdge T320 | Intel Sandy Bridge 2.2GHz 24GB ITB 2
PowerEdge T430 | Intel Sandy Bridge 2.3GHz 128GB ITB 1
PowerEdge T110 Intel Nehalem 3.2GHz 16GB ITB 2
OPTIPLEX 990 Intel Core 2 3.4GHz 8GB ITB 7

Hardware heterogeneity due to multiple
generations of machines

Performance heterogeneity can also be
due to multi-tenant interferences in the cloud
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Imbalance Due to Performance
Heterogeneity

10 (a) Physical cluster 10 (b) Virtual cluster
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2:1 5:1

fastest:slowest
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Load Balancing isn’t Effective

Capacity:1 Capacity:1 Capacity:3

- = - ===

@ o m| o &

-—- = =2~ ~37
® X || & k|| &k
Slow Slow Fast

Speculative execution or remote task execution
Is not effective for load balancing unless mappers are infinitely smali

Mappers are not infinitely small and
are statically bound to a HDFS block
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Probality density
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(c) Task execution in homogeneous cluster
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(d) Job execution in heterogeneous cluster
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Efficiency = Serial time/Map phase time * # of slots
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Elastic Mappers

* |dea: run large mappers on tast machines

Approach: start with small mappers (8MB) and
expand based on machine capacity

) 3. Receive container
] <location : Node 1> [ Scheduler ]

[ SpeedMonitor

2. Request container

[LateTaSkBlndlng] <location :ANY> | ResourceManager
AppMaster Yy
1. Initialize task 4. Provision data
<InputSplits:block1,block2..>\  6.Heartbeat
£ <task1 : speed1>
<task2 : speed2>
5. Set up container [
Multi-block [ Multi-block
execution Node 1 ‘____e_x_ecutlon Node X
Céntalnern Block| [Block] 1 [Block Contalneru—— m Bocd iBesd| |
— - - m m ® & o ool "ZZZZ'_'_'_'_'_'_'_'
C % _—
k_o/%c _— Contalner«—— Block Bk,ck] |B|oc|
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Improving Overall Performance

(a) Physical cluster | | | _(b) Virtual cluster | |
|- hadoop-128m hadoop-64m [ flexmap | Bh |- hadoop-128m hadoop-64m [ flexmap |
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Task size
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Results on a 40-node Cluster
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