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Data Intensive Computing
• “Data-intensive computing is a class of parallel computing 

applications which use a data parallel approach to 
processing large volumes of data typically terabytes or 
petabytes in size and typically referred to as Big Data”    

• Sources of Big Data 

‣  Walmart generates 267 million item/day, sold at 6,000 stores 

‣ Large Synoptic survey telescope captures 30 terabyte data/
day 

‣ Millions of bytes from regular CAT or MRI scan
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Adapted from Prof. Bryant’s slides @CMU 

-- Wikipedia



How can we use the data?

• Derive additional information from analysis of the 
big data set 

‣ business intelligence: targeted ad deployment, spotting 
shopping habit  

‣ Scientific computing: data visualization 

‣ Medical analysis: disease prevention, screening
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So Much Data
• Easy to get 

‣ Explosion of Internet, rich set of data acquisition methods 

‣ Automation: web crawlers 

• Cheap to Keep 

‣ Less than $100 for a 2TB disk 

• Hard to use and move 

‣ Process data from a single disk --> 3-5 hours 

‣ Move data via network --> 3 hours - 19 days
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Adapted from Prof. Bryant’s slides @CMU 

Spread data across many disk drives



Challenges

• Communication and computation are much more 
difficult and expensive than storage 

• Traditional parallel computers are designed for fine-
grained parallelism with a lot of communication 

• low-end, low-cost clusters of commodity servers 

‣ complex scheduling 

‣ high fault rate
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Data-Intensive Scalable 
Computing

• Scale out not up 

‣ data parallel model 

‣ divide and conquer 

• Failures are common 

• Move processing to the data 

• Process data sequentially
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However...
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slide from Jimmy Lin@U of Maryland

Message Passing 
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Shared Memory 
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Different programming models 

Different programming constructs 
mutexes, conditional variables, barriers, … 
masters/slaves, producers/consumers, work queues, … 

Fundamental issues 
scheduling, data distribution, synchronization, 
inter-process communication, robustness, fault 
tolerance, … 

Common problems 
livelock, deadlock, data starvation, priority inversion… 
dining philosophers, sleeping barbers, cigarette smokers, … 

Architectural issues 
Flynn’s taxonomy (SIMD, MIMD, etc.), 
network typology, bisection bandwidth 
UMA vs. NUMA, cache coherence  

The reality: programmer shoulders the burden 
of managing concurrency… 



Typical Problem Structure

• Iterate over a large number of records 

• Extract some of interest from each 

• shuffle and sort intermediate results 

• aggregate intermediate results 

• generate final output
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Parallelism

Key idea: provide a functional 
abstraction for these two 

operations

Map function

Reduce function

slide from Jimmy Lin@U of Maryland



MapReduce
• A framework for processing parallelizable problems 

across huge data sets using a large number of 
machines 

‣ invented and used by Google [OSDI’04] 

‣ Many implementations 

- Hadoop, Dryad, Pig@Yahoo! 

‣ from interactive query to massive/batch computation 

- Spark, Giraff, Nutch, Hive, Cassandra

9



MapReduce Features

• Automatic parallelization and distribution 

• Fault-tolerance 

• I/O scheduling 

• Status and monitoring

10



MapReduce v.s. Conventional Parallel 
Computers

11
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Comparing Parallel Computation ModelsComparing Parallel Computation Models

DISC + DISC + MapReduceMapReduce Provides CoarseProvides Coarse--Grained ParallelismGrained Parallelism
� Computation done by independent processes
� File-based communication

ObservationsObservations
� Relatively “natural” programming model
� Research issue to explore full potential and limits

z Dryad project at MSR
z Pig project at Yahoo!

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

MapReduce

MPI

Adapted from Prof. Bryant’s slides @CMU 

1. Coarse-grained parallelism 
2. computation done by independent processors 

3. file-based communication



Diff. in Data Storage

• Data stored in separate repository 

• brought into system for computation

12
Adapted from Prof. Bryant’s slides @CMU 
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System Comparison: DataSystem Comparison: Data

� Data stored in separate 
repository
z No support for collection or 

management

� Brought into system for 
computation
z Time consuming
z Limits interactivity

� System collects and 
maintains data
z Shared, active data set

� Computation colocated with 
storage
z Faster access 

SystemSystem

DISCConventional Supercomputers
Conventional MapReduce ConventionalConventional

Data stored locally to individual 
systems 

computation co-located with 
storage



Diff. in Programming 
Models

Adapted from Prof. Bryant’s slides @CMU 
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System Comparison:
Programming Models
System Comparison:
Programming Models

� Programs described at very 
low level
z Specify detailed control of 

processing & communications

� Rely on small number of 
software packages
z Written by specialists
z Limits classes of problems & 

solution methods

� Application programs 
written in terms of high-level 
operations on data

� Runtime system controls 
scheduling, load balancing, 
…

Conventional Supercomputers

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

DISC

• Programs described at low level 

• Rely on small number of software packages
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Conventional
MapReduce

Application programs written in 
terms of high-level operations 

on data 

Run-time system controls 
scheduling, load balancing,...



Diff. in Interaction

• Conventional 

‣ batch access 

‣ conserve machine rscs 

‣ admit job if specific rsc 
requirement is met 

‣ run jobs in batch mode

14

MapReduce 

- interactive access 

- conserve human rscs 

- fair sharing between users 

- interactive queries and 
batch jobs

Adapted from Prof. Bryant’s slides @CMU 



Diff. in Reliability

• Conventional 

‣ restart from most recent 
checkpoint 

‣ bring down system for 
diagnosis, repair, or 
upgrades

15

MapReduce 

- automatically detect and 
diagnosis errors 

- replication and speculative 
execution 

- repair or upgrade during 
system running



Programming Model
Input & Output: each a set of key/value pairs 

Programmer specifies two functions: 

map (in_key, in_value) -> list(out_key,intermediate_value) 

Processes input key/value pair 

Produces set of intermediate pairs 

reduce (out_key, list(intermediate_value)) -> list(out_value) 

Combines all intermediate values for a particular key 

Produces a set of merged output values (usually just one) 

        Inspired by similar primitives in LISP and other languages

16 slide from Dean et al. OSDI’04



Example: Count word 
occurrences
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  map(String input_key, String input_value): 
    // input_key: document name 

    // input_value: document contents 
    for each word w in input_value: 

      EmitIntermediate(w, "1"); 

  reduce(String output_key, Iterator intermediate_values): 
    // output_key: a word 

    // output_values: a list of counts 
    int result = 0; 

    for each v in intermediate_values: 
      result += ParseInt(v); 
    Emit(AsString(result)); 
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map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 9 

a 1 5 b 2 7 c 2 3 6 9 

r1 s1 r2 s2 r3 s3 

slide from Jimmy Lin@U of Maryland



MapReduce Runtime
• Handles scheduling 

‣ Assigns workers to map and reduce tasks 

• Handles “data distribution” 

‣ Moves the process to the data 

• Handles synchronization 

‣ Gathers, sorts, and shuffles intermediate data 

• Handles faults 

‣ Detects worker failures and restarts 

• Everything happens on top of a distributed FS

19
slide from Jimmy Lin@U of Maryland



MapReduce Workflow
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Map-side Sort/Spill

21

Map Task

MapOutputBuffer

IFile

IFile

IFile

Map-side
Merge IFile

Tod Lipcon@Hadoop summit

1. In memory buffer holds 
serialized, unsorted key-values

2. Output buffer fills up. 
Content sorted, partitioned  

and spilled to disk

3. Maptask finishes, all  
IFIles merge to a single 

IFile per task



MapOutputBuffer
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Metadata

Raw, serialized
key-value pairs

io.sort.record.percent * io.sort.mb

io.sort.mb

(1 - io.sort.record.percent) * io.sort.mb

Tod Lipcon@Hadoop summit



Reduce Merge

23

Remote Map
Outputs 

(via parallel 
HTTP)

IFile

IFile

IFile

Fits in
RAM?

Tod Lipcon@Hadoop summit

RAMManager

Local disk

Merge to disk

Yes, fetch to RAM

No, fetch to disk

Merge
iterator

Reduce
Task



Task Granularity and Pipelining

Fine granularity tasks: many more maps than 
machines 

- Minimizes time for fault recovery 

- Can pipeline shuffling with map execution 

- Better dynamic load balancing

24 slide from Dean et al. OSDI’04



MapReduce Optimizations

• # of map and reduce tasks on a node 

‣ A trade-off between parallelism and interferences 

• Total # of map and reduce tasks 

‣ A trade-off between execution overhead and 
parallelism

25

Rule of thumb:
1. adjust block size to make each map run 1-3 mins
2. match reduce number to the reduce slots



MapReduce Optimizations (cont’)

• Minimize # of IO operations 

‣ Increase MapOutputBuffer size to reduce spills 

‣ Increase ReduceInputBuffer size to reduce spills 

‣ Objective: avoid repetitive merges 

• Minimize IO interferences 

‣ Properly set # of map and reduce per node 

‣ Properly set # of parallel reduce copy daemons

26



Fault Tolerance

• On worker failure 

‣ detect failure via periodic heartbeat 

‣ re-execute completed (data in local FS lost) and in-
progress map tasks 

‣ re-execute in-progress reduce tasks  

- data of completed reduce is in global FS

27



Redundant Execution

• Some workers significantly lengthen completion time 

‣ resource contention form other jobs 

‣ bad disk with soft errors transfer data slowly 

• Solution 

‣ spawn “backup” copies near the end of phase 

‣ the first one finishing commits results to the master, 
others are discarded

28 slide from Dean et al. OSDI’04



Distributed File System

• Move computation (workers) to the data 

‣ store data on local disks  

‣ launch workers (maps) on local disks 

• A distributed file system is the answer 

‣ same path to the data 

‣ Google File System (GFS) and HDFS

29



GFS: Assumptions
• Commodity hardware over “exotic” hardware 

• High component failure rates 

‣ Inexpensive commodity components fail all the time 

• “Modest” number of HUGE files 

• Files are write-once, mostly appended to 

‣ Perhaps concurrently 

• Large streaming reads over random access 

• High sustained throughput over low latency

30
slide from Jimmy Lin@U of Maryland



MapReduce Design
• GFS 

‣ File stored as chunks (64MB) 

‣ Reliability through replication (each chunk replicated 3 times) 

• MapReduce 

‣ Inputs of map tasks match GFS chunks size 

‣ Query GFS for input location 

‣ Schedule map tasks to one of the replica as close as possible

31



Research in MapReduce

32



Issue: Fairness vs. Locality 

• Place tasks on remote node due to fairness 
constraints  

• A simple technique 

‣ Wait for 5 seconds before launch a remote task

33 FromZaharia-EuroSys10



Issue: Heterogeneous 
Environment

• MapReduce run speculative copy of tasks to 
address straggler issues 

• Task execution progresses are inherently different 
on machines with different capabilities 

• Speculative execution is not effective 

• Solution: calibrate task progress with predictions on 
machine capabilities

34 From Zaharia-OSDI08



Data Skew
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(b) Reduce: Expensive Key

Figure 2: (a) Distribution of map task runtime for
CloudBurst with 162 mappers. The bimodal distribution
corresponds to the two di↵erent types of input datasets
being processed. (b) Distribution of reduce task runtime
for CloudBurst with 128 reducers. The reduce is com-
putationally expensive and has a smooth runtime distri-
bution, but there is a factor of five di↵erence in runtime
between the fastest and the slowest reduce tasks.

The map function takes a key and value of arbitrary types
K1 and V 1, and returns a sequence of (key, value) pairs
of possibly di↵erent types, K2 and V 2. All values associ-
ated with the same key K2 are grouped into a sequence and
passed to the reduce function, which emits arbitrary key-
value pairs of a final type K3 and V 3.

Optionally, in the Hadoop implementation of MapReduce,
users can also specify a custom partition function that re-
distributes the output of map tasks to reduce tasks.

In this paper, we focus on the common class of MapReduce
applications that consist of pure map and reduce functions,
which operate on individual input keys without keeping any
state between consecutive keys.

2.2 Types of Skew
In previous work, we analyzed the types of skew that arise

in a variety of existing MapReduce applications [22]. Here,
we briefly review four common types of skew that SkewTune
is designed to address.
Map phase: Expensive Record. Map tasks process a
collection of records in the form of key-value pairs, one-by-
one. Ideally, the processing time does not vary significantly
from record to record. However, depending on the applica-
tion, some records may require more CPU and memory to
process than others. These expensive records may simply
be larger than other records, or the map algorithm’s run-
time may depend on the record value. PageRank [4] is an
application that can experience this type of skew (Figure 1).
PageRank is a link analysis algorithm that assigns weights
(ranks) to each vertex in a graph by iteratively aggregating
the weights of its inbound neighbors. Vertexes with a large
outdegree take disproportionately longer to process because
the map generates an output tuple per outgoing edge.
Map phase: Heterogeneous Map. MapReduce is a
unary operator, but can be used to emulate an n-ary opera-
tion by logically concatenating multiple datasets as a single
input. Each dataset may require di↵erent processing, lead-
ing to a multi-modal distribution of task runtimes. Figure
2(a) illustrates an example using the Cloudburst applica-
tion [29]. CloudBurst is a MapReduce implementation of
the RMAP algorithm for short-read gene alignment2, which
aligns a set of genome sequence reads against a reference se-

2http://rulai.cshl.edu/rmap/

quence. CloudBurst distributes the approximate alignment
computation across reduce tasks by partitioning n-grams of
both sequences and reads. As a skew-mitigation strategy,
the sequences bearing frequent n-grams are replicated across
reduce tasks, while other sequences are hash-partitioned.
These two algorithms exhibit di↵erent runtimes.
Reduce phase: Partitioning skew. In MapReduce, the
outputs of map tasks are distributed among reduce tasks
via hash partitioning (by default) or some user-defined par-
titioning logic. The default hash partitioning is usually ad-
equate to evenly distribute the data. However, hash parti-
tioning does not guarantee an even distribution. For exam-
ple, in the inverted index building application, if the hash
function partitions the data based on the first letter of a
word, reducers processing more popular letters are assigned
a disproportional amount of data.
Reduce phase: Expensive Key Group. In MapReduce,
reduce tasks process a sequence of (key, set of values) pairs,
called key groups. As in the case of expensive records pro-
cessed by map, expensive key groups can skew the runtime
of reduce tasks. Figure 2(b) illustrates an example.

2.3 SkewTune Design Requirements
Before presenting the SkewTune approach, we first discuss

the rationale behind its design. When designing SkewTune,
we had the following goals in mind:
Developer Transparency. The first goal behind Skew-
Tune is to make it easier for MapReduce developers to
achieve high performance. For this reason, we do not want
these developers to even be aware that skew problems can
arise. We want SkewTune to simply be an improved version
of Hadoop that executes their jobs faster. As a result, we
reject all design alternatives that require operator writers to
either implement their jobs following special templates [3] or
provide special inputs such as cost functions for their oper-
ators [21]. Instead, SkewTune should operate on unchanged
MapReduce jobs.
Mitigation Transparency. Today, MapReduce makes
certain guarantees to users: The output of a MapReduce
job is a series of files, with one file per reducer. The user
can configure the number of reducers. Additionally, the in-
put of each reducer is sorted on the reduce key by the user-
provided comparator function thus the output is produced
in a specific order. To facilitate adoption and to ensure the
correctness and e�ciency of the overall application, we want
SkewTune to preserve these guarantees. The output of a job
executed with SkewTune should be the same as the output
of a job executed without SkewTune: it should include the
same number of files with the same data order inside these
files. Indeed, users often create data analysis workflows and
the application consuming the output of a MapReduce job
may rely on there being a specific number of files and on
the data being sorted within these files. By preserving these
properties, SkewTune also helps ensure predictability: the
same job executed on the same input data will produce the
same output files in the same order.
Maximal Applicability. In MapReduce (and in other par-
allel data processing systems), many factors can cause skew
in a UDO. Section 2 presented an overview of several such
factors. We designed SkewTune to handle these di↵erent
types of skew rather than specializing SkewTune for only one
type of skew [6, 16]. In general, SkewTune strives to make
the least number of assumptions about the cause of skew.
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Figure 2: (a) Distribution of map task runtime for
CloudBurst with 162 mappers. The bimodal distribution
corresponds to the two di↵erent types of input datasets
being processed. (b) Distribution of reduce task runtime
for CloudBurst with 128 reducers. The reduce is com-
putationally expensive and has a smooth runtime distri-
bution, but there is a factor of five di↵erence in runtime
between the fastest and the slowest reduce tasks.

The map function takes a key and value of arbitrary types
K1 and V 1, and returns a sequence of (key, value) pairs
of possibly di↵erent types, K2 and V 2. All values associ-
ated with the same key K2 are grouped into a sequence and
passed to the reduce function, which emits arbitrary key-
value pairs of a final type K3 and V 3.

Optionally, in the Hadoop implementation of MapReduce,
users can also specify a custom partition function that re-
distributes the output of map tasks to reduce tasks.

In this paper, we focus on the common class of MapReduce
applications that consist of pure map and reduce functions,
which operate on individual input keys without keeping any
state between consecutive keys.

2.2 Types of Skew
In previous work, we analyzed the types of skew that arise

in a variety of existing MapReduce applications [22]. Here,
we briefly review four common types of skew that SkewTune
is designed to address.
Map phase: Expensive Record. Map tasks process a
collection of records in the form of key-value pairs, one-by-
one. Ideally, the processing time does not vary significantly
from record to record. However, depending on the applica-
tion, some records may require more CPU and memory to
process than others. These expensive records may simply
be larger than other records, or the map algorithm’s run-
time may depend on the record value. PageRank [4] is an
application that can experience this type of skew (Figure 1).
PageRank is a link analysis algorithm that assigns weights
(ranks) to each vertex in a graph by iteratively aggregating
the weights of its inbound neighbors. Vertexes with a large
outdegree take disproportionately longer to process because
the map generates an output tuple per outgoing edge.
Map phase: Heterogeneous Map. MapReduce is a
unary operator, but can be used to emulate an n-ary opera-
tion by logically concatenating multiple datasets as a single
input. Each dataset may require di↵erent processing, lead-
ing to a multi-modal distribution of task runtimes. Figure
2(a) illustrates an example using the Cloudburst applica-
tion [29]. CloudBurst is a MapReduce implementation of
the RMAP algorithm for short-read gene alignment2, which
aligns a set of genome sequence reads against a reference se-

2http://rulai.cshl.edu/rmap/

quence. CloudBurst distributes the approximate alignment
computation across reduce tasks by partitioning n-grams of
both sequences and reads. As a skew-mitigation strategy,
the sequences bearing frequent n-grams are replicated across
reduce tasks, while other sequences are hash-partitioned.
These two algorithms exhibit di↵erent runtimes.
Reduce phase: Partitioning skew. In MapReduce, the
outputs of map tasks are distributed among reduce tasks
via hash partitioning (by default) or some user-defined par-
titioning logic. The default hash partitioning is usually ad-
equate to evenly distribute the data. However, hash parti-
tioning does not guarantee an even distribution. For exam-
ple, in the inverted index building application, if the hash
function partitions the data based on the first letter of a
word, reducers processing more popular letters are assigned
a disproportional amount of data.
Reduce phase: Expensive Key Group. In MapReduce,
reduce tasks process a sequence of (key, set of values) pairs,
called key groups. As in the case of expensive records pro-
cessed by map, expensive key groups can skew the runtime
of reduce tasks. Figure 2(b) illustrates an example.

2.3 SkewTune Design Requirements
Before presenting the SkewTune approach, we first discuss

the rationale behind its design. When designing SkewTune,
we had the following goals in mind:
Developer Transparency. The first goal behind Skew-
Tune is to make it easier for MapReduce developers to
achieve high performance. For this reason, we do not want
these developers to even be aware that skew problems can
arise. We want SkewTune to simply be an improved version
of Hadoop that executes their jobs faster. As a result, we
reject all design alternatives that require operator writers to
either implement their jobs following special templates [3] or
provide special inputs such as cost functions for their oper-
ators [21]. Instead, SkewTune should operate on unchanged
MapReduce jobs.
Mitigation Transparency. Today, MapReduce makes
certain guarantees to users: The output of a MapReduce
job is a series of files, with one file per reducer. The user
can configure the number of reducers. Additionally, the in-
put of each reducer is sorted on the reduce key by the user-
provided comparator function thus the output is produced
in a specific order. To facilitate adoption and to ensure the
correctness and e�ciency of the overall application, we want
SkewTune to preserve these guarantees. The output of a job
executed with SkewTune should be the same as the output
of a job executed without SkewTune: it should include the
same number of files with the same data order inside these
files. Indeed, users often create data analysis workflows and
the application consuming the output of a MapReduce job
may rely on there being a specific number of files and on
the data being sorted within these files. By preserving these
properties, SkewTune also helps ensure predictability: the
same job executed on the same input data will produce the
same output files in the same order.
Maximal Applicability. In MapReduce (and in other par-
allel data processing systems), many factors can cause skew
in a UDO. Section 2 presented an overview of several such
factors. We designed SkewTune to handle these di↵erent
types of skew rather than specializing SkewTune for only one
type of skew [6, 16]. In general, SkewTune strives to make
the least number of assumptions about the cause of skew.

Map: heterogeneous
data set

Reduce: expensive keys

From SkewTune-SIGMOD12



Issue: Hadoop Design
• Input	data	skew	among	reduce	tasks	
- Non-uniform	key	distribu9on		Different	par99on	size	

- Lead	to	disparity	in	reduce	comple9on	9me	

• Inflexible	scheduling	of	reduce	task	
- Reduce	tasks	are	created	during	job	ini9aliza9on	

- Tasks	are	scheduled	in	the	ascending	order	of	their	IDs	

- Reduce	tasks	can	not	start	even	if	their	input	par99ons	are	available	

• Tight	coupling	of	shuffle	and	reduce	
- shuffle	starts	only	the	corresponding	reduce	is	scheduled	

- Leave	parallelism	between	and	within	jobs	unexploited

36



A Close Look
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Our Approach (ICAC’13)
• Decouple	shuffle	phase	from	reduce	tasks	
- Shuffle	as	a	plaHorm	service	provided	by	Hadoop	

- Pro-ac9vely	and	determinis9cally	push	map	output	to	different	slave	nodes	

• Balancing	the	par99on	placement	
- Predict	par99on	sizes	during	task	execu9on		

- Determine	which	node	should	a	par99on	been	shuffled	to		

- Mi9gate	data	skew	

• Flexible	reduce	task	scheduling	
- Assign	par99ons	to	reduce	tasks	only	when	scheduled

38



Shuffle-on-Write
• Map	output	collec9on	
- MapOutputCollector	

- DataSpillHandler	

• Data	shuffling	

- Queuing	and	Dispatching	

- Data	Size	Predictor	

- Shuffle	Manager	

Map	output	merging	

- Merger	

- Priority-Queue	merge	sort

39

“shuffle”	when	Hadoop	spills	intermediate	results



Results

• Execu9on	Trace	
- Slow	start	of	Hadoop	does	not	eliminate	

shuffle	delay	for	mul9ple	reduce	wave	

- Overhead	of	remote	disk	access	of	

Hadoop-A	[SC’11]	

- iShuffle	has	almost	no	shuffle	delay

40



MapReduce in the Cloud?
• Amazon Elastic MapReduce  

• Can possibly solve data skews 

• Techniques for preserving locality ineffective 

‣ virtual topology       physical topology 

‣ an extra layer of locality 

- off-rack, rack-local, node-local, host-local 

• Unaware of interference in the cloud

41



MapReduce in the Cloud
• An extra layer of locality

‣ node-local, rack-local, and host-local

• Interferences significantly slow down tasks

42
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Figure 7: Task Scheduling Policy Extension 

A TaskTracker with one free slot requests a task from the JobTracker and there are three task candidates, 
which work on different data blocks, to be scheduled. Under the previous task scheduling policy, JobTracker 
has equal chance to schedule task1 and task2 to TaskTracker. With the HVE task scheduling policy 
extension, JobTracker will always schedule task2 to this TaskTracker, which is a smart choice to enjoy 
physical host level data locality. 

One thing need to note here is the HVE task scheduling policy extension is not a replacement of existing 
Hadop job schedulers but is tested to work well with existing job schedulers, including: FIFOScheduler, 
FairScheduler and CapacityScheduler. 
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Interference and Locality-Aware 
MapReduce Task Scheduling (HPDC’13)
• Export hardware topology information to Jobtracker 

• Estimate interferences from finished tasks and host statistics

43
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Figure 6: Job completion time due to different schedulers.
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Figure 7: Data locality due to different schedulers.

much more difficult for them. Compared with large jobs,
small jobs have much fewer input file blocks, which makes
them having much less nodes with local data. Therefore,
achieving the server locality could significantly increase the
number of local nodes without degrading the performance.
As shown in Figure 7, for the small job TeraSort(2), the
schedulers which are unaware of the server locality could
only achieve less than 35% local access. ILA was able to
improve it to 85%.

The second observation is that interference could cause
much more severe performance degradation than remote data
access. Remote data access could only affect individual tasks
but interference may impose impact on the scheduled task
and all of the co-hosted tasks. As shown in Figure 6 and
Figure 8, LAO scheduler led to more job and task slow-
down than IAO scheduler. This observation explains why
ILA scheduler mitigates interference before improving data
locality if there is a conflict between these two aspects.

5.3 Benefits of Interference and Locality Aware
Scheduling

In this section, we demonstrate effectiveness of IASM and
LASM modules with the specifically designed experiments.

Benefit from IASM. IASM is the component in ILA
conducting the interference-aware scheduling. To isolate
the effect from data locality, we selected the Matrix and
TeraGen applications in evaluation because neither of them
requires input data. Each Matrix job was comprised of 150
map tasks and each TeraGen job contained 400 map tasks.
We submitted 3 Matrix jobs and 3 TeraGen jobs to the
cluster alternatively with 15 seconds time interval.

Figure 9 shows the normalized completion time of each
type of jobs due to different schedulers. Since there is no
data locality effect, ILA and IAO were reduced to the same

scheduler, which speeded up the jobs by 2.0-3.0 times com-
pared with the interference-oblivious schedulers. Delay and
LAO schedulers became equivalent to PureFair scheduler
without the data locality effect. There was also no obvious
improvement achieved by either LATE or Capacity sched-
uler. Their performance were mainly limited by the side ef-
fect of interference. From Figure 9, we can also see that job’s
completion time only varied within 18% due to ILA schedul-
ing. In contrast, under the interference-oblivious scheduling,
job’s performance fluctuated in a much wider range from
10% to 70%. The reason is that interference seldom evenly
affects all the tasks in one job. Task’s performance heav-
ily depends on the current system status of the host VM,
the physical server and its own characteristics. Thus only
the interference aware scheduling could provide a stable and
predictable system.

Benefit from LASM. LASM module is in charge of the
locality aware scheduling. To demonstrate its effectiveness,
we eliminated the influence from VM interference by design-
ing a micro-benchmark with a set of elaborately modified
applications. We carefully adjusted the resource demand of
PiEst and Grep applications by injecting idle loops into the
programs. These modified applications, noted as MPiEst
and MGrep, still consume sufficient resources to maintain
their characteristics but will not cause resource contention
even running on co-hosted VMs. Each MPiEst job con-
tained 100 map tasks and each MGrep contained 350 tasks.
We submitted 3 MPiEst jobs and 3 MGrep jobs and also
run some independent applications to mimic background
network traffic without interfering with the scheduling.

Figure 10 shows the normalized completion time and the
percentage of local tasks due to different schedulers. For the
I/O-bound job MGrep, the schedulers with LASM mod-
ules (ILA and LAO) brought the percentage of local tasks

Significant improvement on job completion times
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locality. We also optimize reduce scheduling to adapt to the
heterogeneous computation in the map phase.

FlexMap is transparent to users and does not require any
change to the existing MapReduce jobs. It continuously mea-
sures the efficiency of map task execution beginning with a
small size and automatically determines the minimum task
size that avoids high JVM startup overhead. FlexMap assigns
the minimum task size to the slowest machine(s) and tasks
on faster machines are proportionally larger based on their
performance relative to the slowest machine. We implemented
FlexMap in Hadoop-2.6.0 (a.k.a., YARN) and evaluated its
performance on three MapReduce clusters: a 12-node het-
erogeneous cluster, a 20-node cluster in a university cloud,
and a 40-node multi-tenant cluster. Experimental results with
the Purdue MapReduce Benchmark suite (PUMA) [18] show
that FlexMap reduce job completion time by as much as 30%
compared to stock Hadoop.

The rest of this paper is organised as follows. Section II
introduces the background of YARN, discusses existing issues
and presents a motivating example. Section III elaborates on
FlexMap’s architecture and key designs. Section IV presents
evaluation results. Related work is presented in Section V. We
conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe the basics of MapReduce
in the context of Apache YARN and show how automatic
parallelization with homogeneous tasks causes severe perfor-
mance degradation in heterogeneous environments. We further
demonstrate that task size has complex implications for job
performance, load balancing, and resource utilization.

A. MapReduce Execution
MapReduce execution is divided into two functions: map

and reduce. The map function takes the input data and pro-
duces a list of intermediate key/value pairs. The intermediate
values associated with the same key are grouped together
and passed to the same reduce function via shuffle, an all-
map-to-all-reduce communication phase. The reduce function
processes the intermediated key/value pairs and generates the
final results. MapReduce partitions the input data into even-
sized splits and stores them on a distributed file system (DFS)
throughout the cluster. Each input split corresponds to a map
task and the split size matches the block size in the DFS. For
example, the default block size in Hadoop Distributed File
System (HDFS) [19] is 64 MB, which is also the default size
of map tasks. Each split/block is replicated on multiple nodes
for fault tolerance. Map tasks are statically bound to their input
splits. When a worker node has computational resources, it
preferably runs map tasks which have replicas of input splits
stored on the node to preserve data locality. If no local splits
are available, map tasks that have splits on remote nodes will
be launched.

B. Resource Allocation in YARN
YARN, the Apache Hadoop NextGen MapReduce, has

evolved to an generic and fine-grained distributed computing

TABLE I
THE HARDWARE CONFIGURATION OF A HETEROGENEOUS CLUSTER

Machine model CPU model Memory Disk Number
PowerEdge T320 Intel Sandy Bridge 2.2GHz 24GB 1TB 2
PowerEdge T430 Intel Sandy Bridge 2.3GHz 128GB 1TB 1
PowerEdge T110 Intel Nehalem 3.2GHz 16GB 1TB 2
OPTIPLEX 990 Intel Core 2 3.4GHz 8GB 1TB 7

framework that supports multiple applications, e.g., MapRe-
duce, Spark, and MPI. It consists of two main components:
resource manager (RM) and application master (AM). RM is
responsible for allocating resources at across multiple appli-
cations. It leases resources, such as CPU cores and physical
memory, to applications in the form of containers, which
contain locality information and are bound to particular nodes.
AM is an application specific library. It negotiates with RM
to acquire resource leases (or containers) for the application.
Upon containers become available on worker nodes, RM
compares them with the container requests sent by AM. If
there are matches, such containers are granted to AM. If not,
some random containers are assigned to AM. For MapReduce,
when a job’s input data is loaded onto HDFS, AM requests
containers with the locality of input splits. As RM may not
always be able to satisfy the requests, the granted containers
can include those from unwanted nodes. When AM dispatches
tasks to such containers, map tasks read their inputs from
remote nodes, causing degraded performance.

C. Degraded MapReduce Performance due to Heterogeneity
Next, we show that performance heterogeneity, caused by

heterogeneous hardware or unpredictable resource contentions
in shared cloud environments, can severely degrade MapRe-
duce performance and inflict significant load imbalance.

We evaluated the performance of the wordcount benchmark
from the HiBench benchmark suite [20] in two heterogeneous
environments. We first created a heterogeneous cluster with
machines with multiple generations of hardware. The cluster
consisted of four machine types and a total number of 12
machines. Table I lists the hardware configuration of the
cluster nodes. These machines differ in CPU speed, memory
speed and sizes. The performance difference across different
types of machines was constant. We are also interested in
MapReduce performance in a dynamic environment, e.g., a
shared cloud infrastructure. We created a 20-node virtual
cluster in our university cloud, where approximately 400 vir-
tual machines (VMs) from various classes in the engineering
college share the cloud infrastructure. All virtual nodes had
the same configuration of 4 virtual CPUs (vCPUs) and 4GB
memory, but their performance varies unpredictably due to
the resource contentions from co-located instructional VMs.
The input size of wordcount was set to 9GB and each YARN
container was configured with 1 CPU and 1GB memory. Each
node in the physical cluster and virtual cluster ran 8 and 4
YARN containers, respectively. Speculation was enabled in
YARN and HDFS block size was set to the default 64MB.

Figure 1 (a) and (b) show the map tasks runtime of
wordcount on the physical and virtual clusters, respectively.
The figures sort map tasks according to the ascending order

Hardware heterogeneity due to multiple 
generations of machines

Performance heterogeneity can also be 
due to multi-tenant interferences in the cloud
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Fig. 1. Map task runtime of wordcount in heterogeneous clusters.

of their completion times. We selected wordcount as the
benchmark because its computation at the map phase is simple
and data skewness is unlikely to cause disparate runtimes.
Figure 1 (a) shows that hardware heterogeneity caused sig-
nificant imbalance between individual map tasks. The slowest
map task ran as much as twice longer than the fastest task.
The imbalance between map tasks was exacerbated in the
virtual cluster, where interferences from other VMs caused
large performance disparity between MapReduce nodes. As
shown in Figure 1 (b), about 20% of the map tasks experienced
slowdowns in the cloud and were 5x slower than the faster
tasks. Although YARN implements the state-of-art LATE
scheduling algorithm [12] for speculative execution, perfor-
mance heterogeneity still incurred more than 50% of runtime
slowdown on the physical cluster compared to that on a same-
sized homogeneous cluster containing only slow machines.
While we were unable to measure wordcount performance
on the virtual cluster in an interference-free environment, we
expect the overall slowdown to be even greater than that on
the physical cluster. Similar results were also observed in [14].

Analysis We analyze why existing load balancing mecha-
nisms in MapReduce failed and attribute the root causes to
uniform map sizes and the static binding of input splits and
map tasks. Recall that in YARN, RM grants containers based
on their embedded locality information. Figure 2 illustrates
how homogeneous map tasks can make load balancing inef-
fective and lead to idleness in the cluster. We assume that
there are three machines, two slow and one fast nodes, in
the cluster. The ratio of the machine capacities is 1:1:3. The
default replication factor of 3 is used. In such a small cluster,
every node stores the entire input data. Ideally, perfect load
balancing guarantees that the amount of data processed at each
machine is proportional to its respective capacity. However, as
shown in Figure 2, the number of tasks completed (denoted by
dotted rectangles) is 1:1:2. Although the fast node has access
to all input data, it is unable to process data proportional to
its capacity. The culprit is that map tasks have fixed sizes and
static bindings to input splits. For example, because the first
two splits (denoted as the solid cycle and rectangle in Figure 2)
are being processed at the two slow nodes, the fast node is
unable to process their replicas even it has sufficient capacity.

Speculative execution can possibly mitigate stragglers due
to a few slow machines, but it is not a reliable solution to load
imbalance. As discussed in [12], speculation can fail in many
scenarios. First, speculation is not effective if there are more
slow machines than fast machines, no matter how fast these
machines are. There lack sufficient containers to launch all

Slow Slow Fast

Capacity:1 Capacity:1 Capacity:3

Fig. 2. Uniform map task size and static input binding limits the effectiveness
of load balancing in MapReduce. The shapes denote the replicas of different
splits and the dotted rectangles represent the containers that run map tasks.

speculative copies. Second, for MapReduce jobs with multiple
waves of map tasks, speculation only occurs at the last wave.
It is likely that the stragglers on slow machines have made
considerable progress and are not eligible for speculation.

These findings motivated us to develop a new mechanism to
addressing performance heterogeneity in MapReduce cluster.
We believe that tasks running on heterogeneous machines
should take different amount of input data. Next, we study
how different task sizes affect task performance, load balance,
and cluster utilization.

D. Implications of Map Task Size
Since map tasks are statically bound to input splits, the

block size in HDFS determines the size of a task. As discussed
earlier, fine-grained tasks help mitigate load imbalance due to
performance heterogeneity but incur high parallel overhead.
It is challenging to strike a balance between efficiency and
load balance in parallel computing. To quantitatively study the
implications of map task sizes in heterogeneous environments,
we ran wordcount on the 20-node virtual cluster and compared
the variance of map runtimes using the default 64MB and fine-
grained 8MB block sizes. The larger the variance between task
execution times, the higher degree of load imbalance. Figure 3
(a) shows the probability density function (PDF) of normalized
map execution time under different block sizes. The longest
task execution is normalized to a runtime of 1. As shown in
the figure, small task size (i.e., 8MB) resulted in low runtime
variance and most task execution time fall in the range of 0.3-
0.5. In contrast, larger block size (i.e., 64MB) led to heavy
tails in runtime distribution and large variance between task
execution times. The results suggest that fine-grained tasks be
more resilient to performance heterogeneity as more work or
a large number of small tasks can be load balanced onto fast
machines, which leads to uniform and short execution times.

The overall MapReduce performance is the result of com-
plex interplays between task granularity and performance
heterogeneity. Small tasks helps load balancing but incurs high
overhead; large tasks enable efficient execution, though suffer
load imbalance. We quantify task productivity by calculating
the ratio of effective task runtime and total task runtime:

Productivity =
Effective runtime

Total runtime
, (1)

where effective runtime refers to the period since a map task
starts to read input from HDFS until it finishes writing inter-
mediate results back to HDFS. The total runtime includes task
execution overhead, such as YARN container allocation time
and JVM startup time. Productivity measures the efficiency

fastest:slowest

2:1 5:1
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Fig. 1. Map task runtime of wordcount in heterogeneous clusters.

of their completion times. We selected wordcount as the
benchmark because its computation at the map phase is simple
and data skewness is unlikely to cause disparate runtimes.
Figure 1 (a) shows that hardware heterogeneity caused sig-
nificant imbalance between individual map tasks. The slowest
map task ran as much as twice longer than the fastest task.
The imbalance between map tasks was exacerbated in the
virtual cluster, where interferences from other VMs caused
large performance disparity between MapReduce nodes. As
shown in Figure 1 (b), about 20% of the map tasks experienced
slowdowns in the cloud and were 5x slower than the faster
tasks. Although YARN implements the state-of-art LATE
scheduling algorithm [12] for speculative execution, perfor-
mance heterogeneity still incurred more than 50% of runtime
slowdown on the physical cluster compared to that on a same-
sized homogeneous cluster containing only slow machines.
While we were unable to measure wordcount performance
on the virtual cluster in an interference-free environment, we
expect the overall slowdown to be even greater than that on
the physical cluster. Similar results were also observed in [14].

Analysis We analyze why existing load balancing mecha-
nisms in MapReduce failed and attribute the root causes to
uniform map sizes and the static binding of input splits and
map tasks. Recall that in YARN, RM grants containers based
on their embedded locality information. Figure 2 illustrates
how homogeneous map tasks can make load balancing inef-
fective and lead to idleness in the cluster. We assume that
there are three machines, two slow and one fast nodes, in
the cluster. The ratio of the machine capacities is 1:1:3. The
default replication factor of 3 is used. In such a small cluster,
every node stores the entire input data. Ideally, perfect load
balancing guarantees that the amount of data processed at each
machine is proportional to its respective capacity. However, as
shown in Figure 2, the number of tasks completed (denoted by
dotted rectangles) is 1:1:2. Although the fast node has access
to all input data, it is unable to process data proportional to
its capacity. The culprit is that map tasks have fixed sizes and
static bindings to input splits. For example, because the first
two splits (denoted as the solid cycle and rectangle in Figure 2)
are being processed at the two slow nodes, the fast node is
unable to process their replicas even it has sufficient capacity.

Speculative execution can possibly mitigate stragglers due
to a few slow machines, but it is not a reliable solution to load
imbalance. As discussed in [12], speculation can fail in many
scenarios. First, speculation is not effective if there are more
slow machines than fast machines, no matter how fast these
machines are. There lack sufficient containers to launch all
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Fig. 2. Uniform map task size and static input binding limits the effectiveness
of load balancing in MapReduce. The shapes denote the replicas of different
splits and the dotted rectangles represent the containers that run map tasks.

speculative copies. Second, for MapReduce jobs with multiple
waves of map tasks, speculation only occurs at the last wave.
It is likely that the stragglers on slow machines have made
considerable progress and are not eligible for speculation.

These findings motivated us to develop a new mechanism to
addressing performance heterogeneity in MapReduce cluster.
We believe that tasks running on heterogeneous machines
should take different amount of input data. Next, we study
how different task sizes affect task performance, load balance,
and cluster utilization.

D. Implications of Map Task Size
Since map tasks are statically bound to input splits, the

block size in HDFS determines the size of a task. As discussed
earlier, fine-grained tasks help mitigate load imbalance due to
performance heterogeneity but incur high parallel overhead.
It is challenging to strike a balance between efficiency and
load balance in parallel computing. To quantitatively study the
implications of map task sizes in heterogeneous environments,
we ran wordcount on the 20-node virtual cluster and compared
the variance of map runtimes using the default 64MB and fine-
grained 8MB block sizes. The larger the variance between task
execution times, the higher degree of load imbalance. Figure 3
(a) shows the probability density function (PDF) of normalized
map execution time under different block sizes. The longest
task execution is normalized to a runtime of 1. As shown in
the figure, small task size (i.e., 8MB) resulted in low runtime
variance and most task execution time fall in the range of 0.3-
0.5. In contrast, larger block size (i.e., 64MB) led to heavy
tails in runtime distribution and large variance between task
execution times. The results suggest that fine-grained tasks be
more resilient to performance heterogeneity as more work or
a large number of small tasks can be load balanced onto fast
machines, which leads to uniform and short execution times.

The overall MapReduce performance is the result of com-
plex interplays between task granularity and performance
heterogeneity. Small tasks helps load balancing but incurs high
overhead; large tasks enable efficient execution, though suffer
load imbalance. We quantify task productivity by calculating
the ratio of effective task runtime and total task runtime:

Productivity =
Effective runtime

Total runtime
, (1)

where effective runtime refers to the period since a map task
starts to read input from HDFS until it finishes writing inter-
mediate results back to HDFS. The total runtime includes task
execution overhead, such as YARN container allocation time
and JVM startup time. Productivity measures the efficiency

Speculative execution or remote task execution 
is not effective for load balancing unless mappers are infinitely small

Mappers are not infinitely small and
are statically bound to a HDFS block
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Fig. 3. Map task size has important implications for job performance and efficiency. (a) Small tasks are more resilient to performance heterogeneity; (b)-(d)
small tasks incur high execution overhead and job efficiency measures the overall load balance in MapReduce clusters.

of map computation given the fixed execution overhead. We
further use the efficiency of the map phase to quantify load
imbalance:

Efficiency =
Serial runtime

Map phase runtime ⇥ # of available containers
. (2)

Because the map phase does not require any synchronizations
between map tasks, inefficiency is mainly due to load imbal-
ance. As it is not always possible to obtain jobs’ serial runtime
in production systems, we approximate it using the sum of all
map tasks. The result over-estimates the serial runtime as it
also includes the execution overhead of each task. We estimate
the runtime of the map phase as the time between the first
container starts and the last container that runs a map task
stops in the cluster. The map phase runtime also includes the
execution overhead due to container and JVM startup. Given
the same task size, the overhead and number of containers are
fixed. Thus, high efficiency indicates good balance.

We first ran wordcount on a 6-node homogeneous cluster
consisting of only the OPTIPLEX machines and studied the
relationship between task size, job completion time, and task
productivity. Figure 3 (b) and (c) show that small task sizes
incurred significant overhead with a productivity as low as
0.28 (i.e., 8MB). A low productivity indicated that most task
runtime was dominated to container and JVM startup time.
As task size increases, wordcount completion time decreased
and productivity increased. However, large task size is more
susceptible to heterogeneity induced imbalance. Figure 3 (d)
shows the job completion time and efficiency on a 6-node
heterogeneous cluster. The heterogeneity was emulated by
running CPU-intensive interferences on three nodes of the 6-
node homogeneous cluster. By comparing Figure 3 (b) and (d),
we can see that heterogeneity inflicted significant performance
slowdown at each task size and the slowdown was mainly due
to dropped efficiency at each size.

Figure 3 (d) shows that, in a heterogeneous environment, job
completion time initially dropped as task size increased, sug-
gesting that improved productivity outweighed load imbalance
(i.e., low efficiency). Further increasing task size led to de-
graded performance when load imbalance dominated. Through
these experiments, we had two key findings on improving
MapReduce performance in heterogeneous environments:

• Load balancing should be performed at fine granularity
to mitigate performance heterogeneity but tasks should
be run at coarse granularity to avoid execution overhead.

• The optimal task size depends on the interplay between
the execution overhead, such as container and JVM
startup time, the computation needed by a particular job,
and the degree of performance heterogeneity.

[Summary] The existing homogeneous map task model in
MapReduce fails to simultaneously satisfy the requirements
of load balancing and execution efficiency in heterogeneous
environments. Further, it is unable to exploit the data re-
dundancy (i.e., replicas of the same HDFS block) available
on MapReduce clusters to address heterogeneity. These lim-
itations motivated us to design an elastic map task model
for MapReduce to enjoy the best of two worlds. Next, we
present the design of FlexMap, a new map execution engine
that enables fine-grained load balancing while preserving high
execution efficiency in heterogeneous environments.

III. FLEXMAP DESIGN

The key idea of FlexMap is to launch heterogeneous tasks
with different sizes in the map phase to match the processing
capability of heterogeneous machines. It closely monitors
the processing speed of worker nodes through heartbeat to
determine the task size for each wave of map computation. All
machines in the MapReduce cluster start with the same fine-
grained map size with the basic block unit (BU), i.e., 8MB, and
grow their task sizes independently. Map tasks grow based on
two criteria: 1) vertical growth according to task productivity
and 2) horizontal growth proportional to machine speed.
This design achieves load balancing by assigning different
task sizes to heterogeneous machines, which realizes load
differentiation at steps as fine as a basic BU, and avoids high
execution overhead of running small tasks.

A. Architecture Overview

FlexMap centers on the design of two new mechanisms:
multi-block execution (MBE) and late task binding (LTB) to
enable elastic map tasks:

• Multi-block execution realizes elastic tasks by dynam-
ically changing the number of BUs in map tasks’ input
splits. With the new MBE engine, map tasks take an array
of BUs as input.

• Late task binding allows map tasks to be created at
the time of job submission, but delays the input-to-task
binding to when tasks are dispatched to worker nodes.

Productivity = Effective runtime/Total runtime

Efficiency = Serial time/Map phase time * # of slots
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Fig. 4. The architecture of FlexMap in a YARN cluster.

It maximally preserves data locality in heterogeneous
environments.

Figure 4 shows the architecture of FlexMap in YARN.
FlexMap augments the AM with three new components:
DataProvision (DP), SpeedMonitor (SM), and late task bind-
ing (LTB). To support elastic map tasks, worker nodes are
equipped with multi-block execution (MBE). The augmented
framework works as follows: upon receiving a job submission,
1) AM initializes a large number of map templates each using
one basic BU (i.e., 8 MB block) as input; 2) AM requests
containers for these tasks from the RM. These containers
embed resource demands but lack locality information; 3) RM
grants containers to AM when they become available. The
granted containers are bound to particular nodes; 4) given a
container, AM estimates the speed of the host node of the
container using SM and calculates the task size using DP.
Based on the task size, LTB creates a real map task and
its input split contains a sequence of basic BUs which are
provisioned from the container’s host node; 5) the created
elastic map task is dispatched to the corresponding node; 6)
worker nodes periodically update their speed to SM through
heartbeat. When all BUs of a job have been provisioned, AM
stops creating new map tasks.

B. Multi-block Execution
Multi-block execution engine is inherited from the tradi-

tional MapReduce execution engine but is able to process
multiple blocks at once. The existing map execution engine has
two constraints: 1) a map is bound to and can only process
one block; 2) the task (block) size is defined in the cluster
configuration file and cannot be changed without restarting
the whole cluster. MBE replaces the original map execution
engine and re-defines the input split as an array of BUs. A BU
is the smallest unit in task size changes and we empirically
set it to 8 MB. The size of a map is determined by the
number of elements (or BUs) in the input split array. MBE
does not require any changes to user program but needs minor
modifications to the existing map task interface. First, map
tasks are modified to continuously read BUs until reaching
the end of the input split array. Second, MBE breaks the
calculation of task progress in MapReduce, which tracks how
far the map has progressed through the input split. With MBE,
progress calculation is based on the aggregate size of all BUs
in the array.

C. Late Task Binding

Two major changes in AM are needed to support LTB.
Traditional MapReduce binds individual map tasks to different
HDFS blocks, one map per block, when a job is submitted.
Such locality information is embedded in container requests.
When a container is granted by RM, the map task that meets
the locality constraint will be dispatched to the container and
execute on the corresponding worker node. LTB breaks the
stated map execution flow and delays the creation of map
tasks to when a container is granted, from where task size
can be determined based on the speed of the machine hosting
the container. The first change is to the job submission step.
LTB divides a job’s input file to even-sized BUs (i.e., 8MB
blocks) and creates a large number of fine-grained map, each
is bound to one BU. These tasks are templates from which
elastic map tasks will be created. Not all the task templates
will eventually turn into real map tasks. If all BUs from a job
are processed, unused map templates will be discarded and
the job completes. Based on the map templates, AM requests
a large number of containers and these containers do not have
locality constraints.

The second change is to the map dispatch step. Traditional
MapReduce simply dispatches map to an affiliated container.
In contrast, LTB needs to create a real map task from a
template before dispatching the task. As discussed earlier, the
new map task engine MBE takes an array of BUs as the
input split. Given a granted container, LTB is responsible for
constructing the input split and forming a map task based
on the speed of the machine that hosts the container. We
will discuss the algorithms that determine the task size in
Section III-E. The key challenge lies in preserving data locality
in the newly created map task. Given a granted container
and a task size of n BUs, LTB maximizes data locality by
constructing the input split from BUs that have replicas on
the machine hosting the container.

LTB maintains two HashMaps in AM to trace the locality
information of unprocessed BUs of a job. The NodeToBlock
hash map takes a node ID and outputs a list of BUs locally
stored on the node. The BlockToNode hash map contains
an inverse mapping from a BU ID to a list of nodes that
store the replicas of the BU. To construct an n-BU map task,
LTB obtains a list of BUs from NodeToBlock using the
container’s node ID. For each BU in the list, LTB looks up
the node ID that stores a replica of the BU in BlockToNode
and deletes the BU from the corresponding entry indexed by
the node ID in NodeToBlock. As such, LTB guarantees that
a BU will only be processed by one map task. This process is
repeated for n times until all BUs are appended to the input
split. LTB ensures mutual exclusive access to both hash maps
in case of multiple mappers being simultaneously created. If
the container’s hosting node has less than n BUs available,
LTB chooses BUs remotely stored on other nodes to satisfy
the n-BU task size requirement. LTB follows a heuristic to
select remote BUs from nodes that have most unprocessed
BUs.
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Fig. 5. FlexMap significantly outperformed stock Hadoop in job performance in two heterogeneous environments.

FlexMap generates a random number in range (0, 1] and
randomly picks a node i. If the random number follows in
(0, c2i ], dispatch the reducer onto this node. If not, repeat
the process until a node is found to run the reducer. This
design ensures that more reducers will be dispatched onto
faster nodes.

G. Implementation
We have implemented FlexMap on top of YARN. The

implementation was based on Hadoop-2.6.0 and consisted of
about 2500 lines of Java code. SpeedMonitor was implemented
at the AM as a standalone process. The heartbeat communi-
cations between the AM and worker nodes were implemented
using RPC. Java class elasticMapTask extends the default
mapTask and Hadoop was modified to use the new map
task interface when a job is submitted. The new map class
provides functions to read an array of blocks in the input split.
To support late task binding, we implemented a setBlock
interface for map tasks. When the task size is determined,
a mapper calls setBlock to expand its input split. To
dynamically set mapper size when YARN containers become
available, we modified RMContainerAllocator to signal
JobImpl the availability of new containers. JobImpl then
calls the dynamic map sizing algorithm (Algorithm 1) to
determine the corresponding mapper size given the locality
of the container.

IV. EVALUATION

In this section, we evaluate FlexMap on three heterogeneous
environments: 1) a 12-node physical cluster that consists
of three types of machines; 2) a 20-node virtual cluster in
our university cloud; and 3) a larger scale 40-node cluster
running multi-tenant workloads. These environments present
different challenges to FlexMap. We evaluate the effectiveness
of FlexMap in reducing job completion time and improving
job efficiency.

A. Experimental Settings
Platform settings Table I lists the hardware configurations of
the three types of machines in the physical cluster. The virtual
cluster ran 8 HP BL460c G6 blade servers interconnected with
10Gbps Ethernet. Each server was equipped with 2-way Intel
quad-core Xeon E5530 CPUs and 64GB memory. VMware
vSphere 5.1 was used to provide the server virtualization.
Each virtual node was configured with 4 vCPUs and 4GB
memory. The multi-tenant cluster consisted of 40 nodes, each

was equipped with two Intel Xeon E5-2640 CPUs and 128GB
memory. These servers were connected with 10 Gbps Ethernet.
We ran multiple MapReduce applications simultaneously on
this cluster.
MapReduce settings We deployed Hadoop version 2.6.0
(a.k.a., YARN) on these clusters and each node ran Ubuntu
14.10. In each cluster, one node ran as the Resource Manager
and NameNode. The remaining nodes were worker nodes
for HDFS and MapReduce computation. We used two HDFS
block sizes: the default 64MB and the industry recommended
128MB. If not otherwise stated, the replication factor for each
HDFS block was set to the default 3. Each YARN container
was configured with one CPU and 1GB memory. Each node
had 8, 4, and 32 containers in the physical, virtual, and large-
scale clusters, respectively. FlexMap used a basic block unit
of 8MB as the starting size of all mappers.
Workloads We used the PUMA benchmark suite [18] as
the evaluation workload. It consists of various MapReduce
benchmarks and real-world test inputs. Table II shows the
benchmark configurations. As the three clusters differ in size,
we scaled the input sizes of the benchmarks to match the
size of the clusters. We followed the industry guidelines [21]
to ensure that mappers finish in 30-40 seconds and reducers
complete in one wave. As a result, we used two input sizes:
small and large. The small input was used for the small scale
physical and virtual clusters while the large input was for the
40-node cluster. These benchmarks had realistic input data
from TeraGen, Wikipedia, and Netflix.

TABLE II
PUMA BENCHMARK DETAILS

Benchmark Input Size(GB) Input Data
wordcount (WC) 20(small) 256(large) Wikipedia
inverted-index (II) 20(small) 256(large) Wikipedia
term-vector (TV) 10(small) 256(large) Wikipedia
grep (GR) 20(small) 256(large) Wikipedia
kmeans (KM) 10(small) 256(large) Netflix data, k=6
histogram-movies (HM) 10(small) 128(large) Netflix data
histogram-ratings (HR) 10(small) 128(large) Netflix data
tera-sort (TS) 10(small) 128(large) TeraGen

B. Reducing Job Completion Time
In this subsection, we study how effective FlexMap is in

reducing job completion time (JCT). We used two HDFS block
(or mapper) sizes, 64MB and 128MB, in the experiments.
These two mapper sizes were the optimal sizes, which led to
the shortest job runtimes, for different benchmarks on homo-
geneous clusters. Figure 5 (a) and (b) show the job completion
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Fig. 7. The changes in map task size and productivity during the execution of histogram-ratings in two heterogeneous environments.

environments with significant performance heterogeneity, the
benefit of FlexMap is likely to outweigh its overhead.

E. Dynamic Mapper Sizing

We have shown that FlexMap improves both job perfor-
mance and efficiency in heterogeneous environments. It is
interesting to study how FlexMap achieved the improvement
and how task sizes changed during MapReduce execution.
Figure 7 shows the changes in mapper size and productivity for
the histogram-ratings benchmark in the physical and virtual
clusters. Task productivity is defined in Section II-D as equa-
tion (1). It measures the portion of mapper runtime that is truly
spent in the map computation. The higher the productivity, the
lower the map execution overhead, including YARN container
and JVM startup time. We recorded mapper size changes at
the AM and calculated their respective productivities. We used
a simple performance probe to identify the fastest and slowest
node in the physical and virtual clusters.

Figure 7 (a) and (b) plot the task size and productivity
in the physical cluster. The x-axis shows the progress of the
entire map phase. Starting with the fine-grained task size, i.e.,
8MB, it took almost 40% of the map phase time before the
first wave of mappers finished. After the first-wave feed back
was obtained, both fast and slow nodes grow their mapper
sizes. Fast node grew task size at a faster speed than the slow
node did. At the completion of each mapper wave, not only
was the size unit on each node doubled, the fast node also
increased task size in proportion to its relative speed to the
slowest node. As a result, the fast node was able to quickly
attain high productivity in a few waves. The slow node never
grew its task size to high productivity before the map phase
completed. This suggests that FlexMap was able to assign
more data to fast nodes in this heterogeneous cluster. Finally,
the optimal task sizes determined by FlexMap for histogram-
ratings were 32 BUs (or 32 ⇤ 8 = 256 MB) and 8 BUs (or
8 ⇤ 8 = 64MB) for the fast and slow nodes, respectively. Note
that the optimal task size for the fast machine was larger than
the 128MB block size in stock Hadoop. It suggests that large
task size does not necessarily cause performance degradation
in heterogeneous environments. The key is to match the
amount of computation to machine capability.

The performance discrepancy between fast and slow nodes
was more significant on the virtual cluster. As shown in
Figure 7 (c) and (d), the final task size of the slow node
was 2 BUs compared to 64 BUs for the fast node. One can
infer that the slow node, which had considerable interference,

did not contribute much to the overall job completion. In
stock Hadoop, homogeneous mappers running on such slow
nodes can greatly delay the overall job completion. Speculative
execution is unlikely to be efficient or even effective. Specu-
lation can only be triggered by the lacking of task progress on
slow nodes, which not only incurs repeated computation but
may also miss the best timing for load balancing. In the next
subsection, we show that speculation is effective if a cluster
contains a few slow machines. In contrast, FlexMap promptly
identified the performance difference between machines and
pro-actively assigned more work to fast machines.

F. Results on a Large Scale Multi-tenant Cluster
It is important to evaluate the effectiveness of FlexMap at a

larger scale. First, on small clusters, there exists considerable
data redundancy on each worker node. FlexMap can easily
construct large tasks from local HDFS blocks. For example,
with a replication factor of 3, each node stores 25% of the job
input on a 12-node cluster 1. Ideally, only 4 fast machines are
needed to complete the job and data locality can be preserved.
In such an environment, FlexMap is likely to outperform
stock Hadoop. However, as cluster size increases, FlexMap
may need to access remote BUs to construct a large mapper.
Second, it is interesting to study how effective FlexMap is as
the number of slow machines in the cluster increases.

We evaluated the performance of various MapReduce
benchmarks on the 40-node cluster. The benchmarks under test
were allowed to use the entire cluster. We created performance
heterogeneity by co-running a CPU-intensive background job
on the cluster. The job was run on a subset of the cluster nodes
to create 5%, 10%, 20%, and 40% slow machines, respectively.
This setting emulates a multi-tenant environment in which a
varying number of co-running users create a heterogeneous
environment for a foreground MapReduce job. We compare
the performance of FlexMap with stock Hadoop and Hadoop
with speculation disabled.

Figure 8 shows the performance due to FlexMap, stock
Hadoop, and a Hadoop variation. Job completion time is nor-
malized to that of stock Hadoop. From Figure 8 (a), we can see
that stock Hadoop with speculation enabled achieved similar
performance compared to FlexMap. Performance deteriorated
if speculation was disabled, indicating that speculation is ef-
fective in addressing a few faulty or slow nodes. As the portion
of slow machines increased, the performance of Hadoop with

1Assume job input size to be 1 and replicas are uniformly distributed on
worker nodes. Thus, each node has access to 3

12 = 25% of the job input.
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Fig. 8. Normalized job completion time (JCT) in a 40-node multi-tenant cluster with a varying number of slow machines.

and without speculation converged. It suggests that speculation
alone is not an effective approach to attaining load balancing
in heterogeneous environments. As shown in Figure 8 (a) -
(d), FlexMap slightly outperformed stock Hadoop when there
were few slow machines and the performance gain expanded
when more machines were slowed down. FlexMap was able to
reduce job completion time by as much as 27% compared to
Hadoop. One exception is inverted-index in Figure 8 (a), for
which FlexMap had worse performance than stock Hadoop. It
again confirms that FlexMap incurs overhead and the cost of
expanding task sizes can outweigh its benefit in load balance.
Remote BU access seemed not to be an issue as FlexMap’s
gain did not plummet as the portion of slow nodes increased.
10 Gbps Ethernet could have played a role in bridging the
performance gap between local and remote data access.

V. RELATED WORK

There exist studies that addressed straggler tasks caused by
heterogeneity in Hadoop clusters. Zaharia et al., [12] were
the first work to point out and address the shortcomings
of MapReduce in heterogeneous environments. The authors
observed that the built-in stragglers identification mechanism
does not work correctly in heterogeneous environments. They
proposed better techniques for identifying, prioritizing, and
scheduling speculative tasks. Tarazu [14] found that remote
map tasks on fast machines will greatly increase the network
traffic. These traffic may compete with shuffle and result in
performance degradation. The authors addressed this issue
by performing communication-aware load balancing to avoid
bursty network traffic. PIKACHU [15] extended Tarazu by
implementing a new key/value partitioning scheme and further
improved the performance of Hadoop in heterogeneous clus-
ters. These studies mainly focused on optimizing communica-
tions in the reduce phase. In contrast, FlexMap identifies the
inefficiencies at the map phase in heterogeneous environments
and is complementary to the reduce-based optimizations.

There is also research that mitigates data skewness.
SkewReudce [17] alleviated computational skew by balancing
data distribution across nodes using a user-define cost function.
SkewTune [16] repartitioned the data of stragglers to take the
advantage of idle slots freed by short tasks. However, unlike
our approach that provision data to task before the task is dis-
patched, these approaches require extra I/O operations for data

partitioning, which may exacerbate performance interference
and increase the network traffic. There are some other work
that addressed skewness from different perspectives [22] [23].
Scarlett [22] proposed a framework that replicates blocks
based on their popularity. By accurately predicting file popu-
larity, Scarlett can minimize the interference of running jobs
co-hosted on the same cluster. [23] tackled the problem of
performance prediction with progress indicator of MapReduce
application when facing data skewness.

Another group of work focused on improving performance
in the cloud via adaptive resource allocations. FlexSlot [24]
mitigated performance interference in the cloud by dynami-
cally changing the number and size of execution slots. Bu et
al., proposed interference and locality-aware task scheduling
in shared cloud environments [13]. Bazzar [25] was a cloud
framework that predicted the resource demand of applications
based on high-level performance goals. It translated the per-
formance goal of an application into multiple resource require-
ments and selected the best combination that is most suitable
for a cloud provider. [26] efficiently distributed resources
by dynamically allocating the overall capacity among VMs
based on their demands. However, these approaches focus on
VM management and cannot be easily extended to Big Data
frameworks, such as Hadoop.

VI. CONCLUSIONS

Optimizing MapReduce performance in heterogeneous en-
vironments has been a challenging problem. In this work, we
focus on improving the task execution at the map phase by
dynamically provision map tasks to match the distinct machine
capacity in a heterogeneous cluster. The result is running
heterogeneous map tasks on heterogeneous cluster nodes. To
this end, we design FlexMap, to enable elastic map tasks in
MapReduce. FlexMap achieves fine-grained load balancing
at the granularity of block unit and avoids high execution
overhead using coarse-grained map tasks. It implements two
new mechanisms: multi-block execution and late task bind-
ing. FlexMap is transparent to users and does not require
any changes to existing MapReduce programs. Experimental
results on three heterogeneous clusters with representative
workloads show its effectiveness in reducing job completion
time and improving overall efficiency.


