vScale: Automatic and Efficient Processor Scaling for
SMP Virtual Machines

Luwei Cheng

Facebook
chengluwei@fb.com

Jia Rao

University of Colorado at Colorado
Springs

Francis C.M. Lau

The University of Hong Kong
fcmlau@cs.hku.hk

jrao@uccs.edu

Abstract

SMP virtual machines (VMs) have been deployed exten-
sively in clouds to host multithreaded applications. A widely
known problem is that when CPUs are oversubscribed, the
scheduling delays due to VM preemption give rise to many
performance problems because of the impact of these delays
on thread synchronization and I/O efficiency. Dynamically
changing the number of virtual CPUs (vCPUs) by consid-
ering the available physical CPU (pCPU) cycles has been
shown to be a promising approach. Unfortunately, there are
currently no efficient mechanisms to support such vCPU-
level elasticity.

We present vScale, a cross-layer design to enable SMP-
VMs to adaptively scale their vCPUs, at the cost of only mi-
croseconds. vScale consists of two extremely light-weight
mechanisms: i) a generic algorithm in the hypervisor sched-
uler to compute VMs’ CPU extendability, based on their pro-
portional shares and CPU consumptions, and ii) an efficient
method in the guest OS to quickly reconfigure the vCPUs.
vScale can be tightly integrated with existing OS/hypervisor
primitives and has very little management complexity. With
our prototype in Xen/Linux, we evaluate vScale’s perfor-
mance with several representative multithreaded applica-
tions, including NPB suite, PARSEC suite and Apache web
server. The results show that vScale can significantly re-
duce the VM'’s waiting time, and thus can accelerate many
applications, especially synchronization-intensive ones and
I/O-intensive ones.

1. Introduction

Multicore computing systems are prevalent in cloud data-
centers. In order to exploit hardware parallelism, SMP-VMs

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys '16, April 18-21, 2016, London, United Kingdom

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4240-7/16/04. ... $15.00

DOI: http://dx.doi.org/10.1145/2901318.2901321

are commonly adopted when hosting multithreaded appli-
cations. To boost cost-effectiveness, cloud providers allow
their datacenters to be oversubscribed, i.e., by consolidating
multiple independent VMs onto a small number of cores or
servers. For example, in private clouds, running 40-60 VMs
per server is not rare, which means 2—4 VMs per pCPU in
a typical 16-core SMP machine; some deployment can run
as many as 120 VMs per host [38]; in desktop virtualiza-
tion, VMware even suggests putting as many as 8—10 virtual
desktops on a pCPU [9]. With such a high degree of sharing
a pCPU, the scheduling delays can easily be in the order of
tens or even hundreds of milliseconds. The coarse-grained
scheduling of modern hypervisors (Xen uses a time slice of
30ms by default [4] while VMware uses 50ms [8]) attests to
this fact.

The performance of multithreaded applications critically
depends on the synchronization latency between cooperative
threads as well as the delay due to external I/O (if any). How-
ever, abrupt delays to vCPUs, which do not exist in ded-
icated environments, can seriously twist the expected be-
haviors, as in the following three situations. First, for ap-
plications that rely on busy-waiting synchronization prim-
itives (e.g., spin lock), when a lock-holder vCPU is pre-
empted, the contending vCPUs have to wait for a long time,
wasting a tremendous amount of CPU cycles. This is illus-
trated in Figure 1(a): vC' PUy, is holding a spin lock but has
been preempted by the hypervisor; meanwhile, vC' PU,, is
vainly busy-waiting there but cannot make any progress until
vC PU,, gets scheduled again and releases the lock. Second,
for applications that adopt blocking primitives (e.g., mutex
and semaphore), where one thread sleep-waits until being
woken up by the kernel scheduler via an inter-processor in-
terrupt (IPI), the wakeup signal can also be delayed by the
hypervisor scheduler (as shown in Figure 1(b)). Third, for
I/O-bound applications, both throughput and responsiveness
are highly sensitive to vCPU scheduling delays because pre-
empted vCPUs are unable to respond to I/O interrupts (as
shown in Figure 1(c)).

To deal with these problems, many sophisticated solu-
tions have been proposed in previous works which mainly

Lock
holder

Lock
waiter
(spinning)

(a) Wasted time on preempted lock-holder.

(b) Delayed virtual IPIs for kernel wakeup.

- H
interl;upfs ypervisor

[vodevices | [pcPul - -+ - [pcPul

(c) Delayed processing for 1/O.

Figure 1: The delays from the scheduling queue (the vCPU stack) can seriously affect an SMP-VM’s performance in three
situations: (a) wasted CPU time in busy-waiting synchronization primitives such as spin lock, (b) thread’s response latency in
blocking synchronization primitives such as mutex and semaphore, (c) delayed processing for I/O interrupts.

fall into two categories: i) to modify the hypervisor sched-
uler to evade the virtualization reality, such as to avoid the
delays by prioritizing certain types of interrupts [27, 34], to
shorten the delays with soft real-time methods or smaller
time slices [29, 39, 49, 50], or to make vCPUs progress at
similar rates by co-scheduling them [8, 41, 46]; ii) to para-
virtualize certain OS components to make them delay-aware,
such as to refactor the kernel’s spin lock [20, 35], the inter-
rupt balancer [14], the transport layer [15, 21, 25], etc. Al-
though these methods can alleviate performance degradation
in their assumed scenarios, none of them offers a systematic
solution to address or mitigate the problems illustrated in
Figure 1 as a whole.

Actually, if an SMP-VM could let its weaker vCPUs join
a few stronger ones, a large part of the scheduling delays can
be avoided because each vCPU will have a higher chance
of occupying a dedicated pCPU. VCPU-Bal [40] is the first
work that followed and validated the effectiveness of this
idea. Unfortunately, due to the lack of light-weight tuning
mechanisms in the guest OS and the hypervisor, the au-
thors are only able to “simulate” the scenario rather than
doing a real run of it. To implement the idea, two key chal-
lenges must be properly addressed. The first challenge has
to do with the CPU availability in the hypervisor, which of-
ten fluctuates. In a physical server, if one VM does not use
up its CPU allocation, under work-conserving schemes, the
scheduler should proportionally allocate the surplus CPU re-
sources to the other VMs. This makes one VM’s pCPU al-
location highly dependent on the other VMs’ consumption
patterns. For example, a VM running HPC applications may
tend to chew up many CPU cycles, whereas a virtual desk-
top running interactive applications may only need to con-
sume CPU cycles sparingly. So when a CPU-intensive VM
co-locates with an interactive VM, their pCPU availabilities
should not be the same. However, current hypervisor sched-
ulers mainly focus on fair allocation of CPU cycles, and pay
minimal effort to predict each VM’s CPU extendability, i.e.,
if a VM adds more vCPUs to compete for CPU cycles, what
should be the VM’s maximum allocation under the current
machine-wide load? This semantic gap (due to the VM’s
lack of knowledge of pCPU utilization and co-located VMs’

pCPU consumptions) precludes SMP guests from accurately
determining their optimal number of active vCPUs.

The second challenge is that, as vCPU scaling may hap-
pen frequently in response to the VM’s changing CPU ex-
tendability, it is important that vCPU reconfiguration be suf-
ficiently efficient. Unfortunately, Linux’s CPU hotplug (the
only available mechanism in the kernel) is too heavy-weight
to react promptly enough: adding or removing a vCPU can
take more than 100 milliseconds. Although Chameleon [36]
and Bolt [37] succeeded to significantly reduce the overhead,
they are not purposely designed for virtual environments and
thus they are suboptimal when reconfiguring vCPUs (§6 has
more discussions). Since virtual SMP is significantly differ-
ent from physical SMP in many respects, such as their rep-
resentations and the way they interact with the underlying
layer, we believe a reconfiguration design focusing specifi-
cally on vCPUs rather than pCPUs can be more effective.

In this paper, we propose vScale to address the above
challenges. To make SMP-VMs aware of their CPU avail-
ability, vScale extends the hypervisor scheduler to predict
each VM'’s maximum CPU allocation, which is derived from
their entitlements and consumptions. This value is accessible
to each VM via vScale’s high-performance communication
channel (between the hypervisor and the guest OS). In the
user space, vScale’s daemon closely monitors the resource
changes, and then instructs vScale’s kernel module to redis-
tribute the workload onto a more reasonable number of vC-
PUs, i.e., pack them into fewer vCPUs or spread them over
more vCPUs. Our approach does not introduce any new ab-
straction for the kernel to manage, but embeds the necessary
actions seamlessly in Linux’s current load balancing poli-
cies. The most attractive feature of vScale is its extremely
low overhead: both resource monitoring and vCPU reconfig-
uration incur only microsecond-level costs. This efficiency
makes possible real-time and self-scaling of vCPUs, which
is infeasible in state-of-the-art virtualization platforms.

We implement a prototype of vScale with Xen 4.5.0 and
Linux 3.14.15. Experiments with NPB and PARSEC show
that more than half of the applications can be accelerated,
especially those that involve heavy thread synchronization
via either application-level busy-waiting, kernel-level busy-

waiting, or blocking. For example, in NPB’s evaluations, the
execution time of LU is reduced by more than 70%; in sev-
eral other applications, 20% to 40% reduction of execution
times can be easily observed. For the PARSEC suite, vScale
can accelerate some applications from 10% to 20%. When
evaluating the Apache web server which is affected by both
inter-vCPU communication and I/O efficiency, vScale re-
markably improves the throughput, the connection time and
the response time, especially under very high load.

In the following, §2 discusses previous studies on perfor-
mance problems caused by VM scheduling delays, which
motivate us to work on vCPU scaling. §3 introduces the de-
sign of vScale. We describe the implementation details of
our prototype with Xen/Linux in §4. Evaluation results are
presented in §5, including both low-level and application-
level results. §6 discusses the related work. We conclude the
paper and present our plan for future work in §7.

2. Prior Solutions

Regarding performance problems caused by VM schedul-
ing delays, previous studies followed two main directions: 1)
scheduling approaches in the hypervisor to make VMs ag-
nostic, and ii) para-virtualization approaches to customize
selected individual OS components

2.1 Scheduling Approaches

To tackle the Lock-Holder Preemption (LHP) problem,
VMware adopts strict co-scheduling (gang scheduling) in
ESX 2.x; however, this approach has the CPU fragmenta-
tion problem as well as the vCPU priority inversion prob-
lem [40], i.e., a vCPU with higher priority has to run after a
vCPU with lower priority just because the latter is in a gang.
ESX 3.x introduces relaxed co-scheduling to only track the
slowest vCPU and let each vCPU make co-scheduling deci-
sions independently [8]. Balance scheduling [41] proposes
to place sibling vCPUs in different pCPUs to increase the
likelihood of co-scheduling, but it affects CPU fairness be-
cause it prevents the hypervisor from migrating vCPUs for
load balancing. The hypervisor can also leverage advanced
hardware support to detect the guest’s excessive spinning,
such as Intel’s Pause Loop Exiting (PLE) or AMD’s Pause
Filter (PF) [18, 44, 51]. For blocking primitives like mu-
tex and semaphore, demand-based scheduling [27] identifies
TLB shutdown and reschedules IPI as heuristics to preempt
vCPUs. Overall, there is no known solution that can solve
these problems combined that could happen to both busy-
waiting and blocking synchronization primitives.

To improve VM'’s I/O performance, the boost mecha-
nism [34] allows a blocked vCPU to preempt the current
one if CPU fairness is not compromised. vSlicer [50] uses a
smaller time slice for latency-sensitive VMs, but it requires
the users to explicitly specify such VMs, which is difficult
in practice as many VMs run a mixed workload. Soft real-
time schedulers [29, 47] can also improve interrupt respon-

siveness, but maintaining CPU fairness remains a challenge.
Side-core approaches [24, 49] partition pCPUs into fast-tick
cores (1ms or 0.1ms) and slow-tick cores (30ms) in order to
schedule them differentially. vAMP [26] proposes to allocate
interactive vVCPUs more pCPU resource. These approaches
require either the hypervisor to identify the VM’s I/O pat-
terns or binding I/O tasks to specific vCPUs in the guest.
Besides, a common problem is that the number of VM con-
text switches would inevitably increase because the hypervi-
sor keeps swapping VMs in response to I/O events. Such
frequent VM switching would cause many cache flushes
and thus reduce memory access efficiency (see [24]). This
is probably the reason why Xen adopts 30ms as the default
time slice while VMware uses 50ms.

2.2 Para-Virtualization Approaches

For the LHP problem, an OS-informed approach [42] lets
the hypervisor delay the preemption of lock-holder vCPUs,
but this method has security concerns as well as the CPU
fairness problem. Paravirtualized spin locks [20, 35, 45]
avoid wasting CPU cycles in LHP by asking the lock wait-
ers to yield CPU control after spinning for a limited time.
The essence of these approaches is to turn busy-waiting into
spin-then-yield, so they can still suffer from delayed virtual
IPIs for kernel synchronization. Besides, all the above ap-
proaches only target at a very specific lock: kernel’s spin-
lock, but offer no way to deal with the spinning happening in
other places, such as OpenMP’s user-space spinning and the
ad-hoc spinning in many applications [48].

For I/O processing, in the transport layer, vSnoop [25]
and vFlood [21] leverage Xen’s driver domain to continue
sending and receiving packets on behalf of the VM when
it is preempted; PVTCP [15] focuses on detecting spuri-
ous timeouts and abnormal RTTs. In the interrupt layer,
vBalance [14] dynamically migrates interrupts from pre-
empted vCPUs to the running ones; vPipe [22] introduces
a new set of APIs to offload data processing from the VM
to the hypervisor. In general, para-virtualization often re-
quires non-trivial re-engineering effort, making kernel man-
agement more complicated. Besides, it is unclear how one
solution can be integrated with another.

2.3 Motivation

All previous works assume a fixed number of vCPUs. On
the other hand, the VM’s kernel scheduler keeps distribut-
ing the workload onto all vCPUs. As a result, every vCPU
takes part in competing for the VM’s limited pCPU alloca-
tion, with each one only earning a slice per cycle and there-
fore suffering from a long scheduling delay. As of now, the
cooperation between the OS scheduler and the hypervisor
scheduler is still not fully studied. To our best knowledge,
VCPU-Bal [40] is the first work that proposes the idea of
dynamic vCPUs; but they only simulated the idea, primar-
ily because there are currently no light-weight knobs for re-
configuring vCPUs: the overhead of Linux’s CPU hotplug

Dom0
1
___t_of"_s _______________ User |
1
read the VM's | VScale balancer Kernel
backends
Device extend|b|l|ty I——&‘ mlgrate |
drivers __I:l_ ﬂ_ D I:ll workload ! D DI -
VCPU vScale) VCPUFVCPUF———TvCPUL-
_‘—r channel | | |
| vCPU scheduler (with vScale extension) |

| | |
pCPU pCPU .. pCPU

Figure 2: The architecture of vScale in Xen.

is over 100 milliseconds, which is too disruptive to applica-
tions with fine-grained synchronizations. Additionally, when
determining the number of active vCPUs, VCPU-bal only
considers the VMs’ weight but not their consumption, mak-
ing it not work-conserving in the hypervisor. Finally, VCPU-
Bal uses a centralized management VM (e.g., Xen’s dom0)
to control the guest domains, which can potentially become
a performance bottleneck as the number of VMs increases.

3. Design

This section presents the design of vScale. Using Xen [10] as
a reference, Figure 2 illustrates vScale’s architecture. There
are three components: a user-space daemon, a kernel-space
balancer and an extension in the hypervisor scheduler. vS-
cale’s user-space daemon constantly probes the VM’s CPU
extendability via the hypervisor and then instructs vScale’s
kernel balancer to swiftly redistribute the workload onto an
appropriate number of vCPUs.

3.1 Design Considerations

To enable greater practicability as well as ease of use, we
subscribe to the following principles when designing vScale:

e Scalability — Xen’s domO actually has a full-featured
toolstack which can perform many operations such as
monitoring and vCPU hotpluging. Therefore, for conve-
nience, one would be tempted to directly build a solution
based on it. However, as modern hardware becomes in-
creasingly powerful, one machine may host hundreds or
even thousands of tiny VMs in the future (such as 1ibOS
VMs [28, 30]), and domO can easily become a perfor-
mance bottleneck. We believe a scalable design should
be decentralized and completely bypass domO.

¢ Flexibility — We purposely implement vScale as an op-
tional service rather than an inseparable OS component.
As such, we only push new mechanisms to the low-level
stacks (OS kernel and hypervisor), but export the inter-
faces to the user space. This flexibility is important in
that if some application sets CPU affinity (so the threads
should not be migrated) or assumes a fixed number of
processors, vScale’s service can be selectively disabled.

Algorithm 1 The calculation of VM CPU extendability

1: Variables: Virtual CPU v; Weight of the i;, VM w;; The
number of pCPUs in the shared CPU pool P; System-wide
unused CPU capacity csiqck; Competitor VM set S.

: Output: The optimal virtual CPU number n; for the ¢, VM.

/* CPU extendibility calculation period t */

Cslack = 0

S=0

: for each VM do

Si’fm‘»,»(t) = Zwi/j t-P

if Si(t) < Si,fm'r(t) then

Cslack += Si, fair(t) — si(t)
Si,ext (t) = Si,fair(t)
N = lrsl,ﬂ:t(t)—‘
else
add VM to competitor set S

end if

: end for

: for each VM in competitor set S do

- Cslack + Si, fair(t)

R A A

—_ =
[

—_ == s
IR A R

Siext (t) = E::U_]

n; = ’VSi,crzt(t)—‘
: end for

- =
o ®

¢ Generality — When computing the VM’s CPU capability,
we do not modify the resource allocation policy but only
extend it. The extension will also be applicable to other
proportional-share schedulers.

3.2 Calculate VM’s CPU Extendability

To bridge the semantic gap between the OS scheduler and
the hypervisor scheduler, it is important for the VM kernel
to know its maximum CPU availability, so as to maintain
the workload on an appropriate number of vCPUs. vScale
defines a VM’s CPU extendability as the maximum amount
of CPU it is able to receive from the hypervisor, assuming
fair CPU sharing between VMs and the work-conserving
CPU allocation. CPU extendability and per-pCPU capacity
together determine the optimal number of vCPUs a VM
should have in order to avoid scheduling delays.

In proportional CPU sharing, a VM’s CPU entitlement
is determined by three parameters: weight (relative impor-
tance), reservation (lower bound) and cap (upper bound).
Under work-conserving scheduling, a VM’s unused CPU
time can be allocated to other VMs that have unsatisfied de-
mands. Although a proportional-share scheduler at the hy-
pervisor is able to distribute the unused CPU time to VMs
according to their weights, the set value of the vCPU number
is crucial for VM performance. While a large number of vC-
PUs will inevitably lead to fragmented CPU allocations that
cause scheduling delays, a small number of vCPUs would
likely fail to exploit hardware parallelism in SMP VMs. To
this end, vScale dynamically changes VMs’ vCPU numbers
based on the calculation of CPU extendability.

Algorithm 1 shows the calculation of VM CPU extend-
ability. vScale classifies VMs into two roles based on their
CPU demands:

e Competitor — VMs that have over-consumed their fair
allocation. They compete for unused CPU resources of
other VMs.

e Releaser — VMs that have under-utilized their fair allo-
cation. The CPU resources released by these VMs would
be proportionally allocated to all competitor VMs.

vScale assumes a pool of P CPUs shared by all VMs and
calculates VMs’ extendability in a predefined period ¢. It first
determines a VM’s fair CPU share, i.e., s; qir(t) based on
the weight of the VM (line 7). The difference between a re-
leaser VM’s fair share and its actual CPU consumption, i.e.,
si(t), is the VM’s contribution to the overall CPU slack (line
9). The competitor VMs are added to the competitor set S.
The CPU extendability of a releaser VM is set to its fair CPU
share (line 10) even it cannot fully utilize its allocation. This
design ensures that a releaser VM is always able to exploit
the deserved parallelism when its CPU demand ramps up. In
contrast, the CPU extendability of a competitor VM is the
sum of its fair share and its proportional share in the CPU
slack (line 17). The optimal vCPU number of a VM is calcu-
lated as the ratio of CPU extendability and the period ¢ (line
11 and 18). The ratio indicates how many pCPUs with full
capacity a VM can possibly have given its potential maxi-
mum CPU availability (i.e., CPU extendability). Note that a
VM’s CPU extendability should also satisfy its reservation
and cap. vScale uses a ceiling function to allow a VM to
have one additional vCPU for the partial CPU allocation to
the last vCPU.

The algorithm is generic and thus can be easily inte-
grated into various proportional-share schedulers, such as
the virtual-runtime based ones and their variations [13, 19,
43]. Besides, it enforces max-min fairness between VMs and
prevents VMs from manipulating vCPU numbers for extra
CPU allocations. CPU extendability effectively shapes the
VMs for their competition for pCPUs, thereby mitigating
scheduling delays.

3.3 Fast vCPU Reconfiguration

In Linux, there are mainly two types of schedulable entities
that can eat up CPU cycles: threads and interrupts routines.
Threads can be divided into user-level threads (uthreads) and
kernel-level threads (kthreads), based on their memory ad-
dress spaces. Uthreads are dynamically launched at runtime
to encapsulate applications, so migrating them across CPUs
will not break the kernel. As for kthreads, some have system-
wide functions that serve the whole OS, and so can run on
any CPU, such as filesystem related daemons (ext4-xxx),
the kernel auditing daemon (kauditd) and the RCU dae-
mon (rcu_sched) which is responsible for detecting RCU’s
grace period. Per-CPU kthreads are not migratable because

Uthreads (migratable)
Threads < Per-CPU (not migratable)

Kthreads <

System-wide (migratable)

Per-CPU interrupts (not migratable)

Interrupts Inter-CPU interrupts (not migratable)

External I/O interrupts (migratable)

Figure 3: Linux kernel’s schedulable entities.

they are statically created at boot time to only serve the local
CPU. For example, ksoftirqd is responsible for process-
ing local soft interrupts; kworker is a placeholder for kernel
worker threads, which perform most of the actual process-
ing for the kernel; the swapper kthread instructs the local
CPU to enter idle when there are no active threads. Migrating
them at random will undoubtedly cause the kernel to panic.

Regarding interrupts, according to their sources and des-
tinations, they can be divided into local interrupts, inter-
processor interrupts (IPIs) and external 1/0 interrupts. Both
local interrupts and IPIs are generated for specific CPUs. For
instance, timer interrupts are generated for the local CPU to
create timed events for many kernel components (e.g., the
scheduling tick and resource accounting); reschedule IPIs
are largely used to wake up a thread on another CPU, or to
pull a thread remotely in an effort to balance the workload.
Apparently, migrating these interrupts can cause correctness
problems because the original CPU will lose some impor-
tant events. These issues, however, are not associated with
external I/O interrupts, and as long as the kernel can receive
them, they can be redirected to any active CPU.

We classify the schedulable entities into different cate-
gories, as in Figure 3. Though not all of them are migrat-
able, we find that when uthreads, system-wide kthreads and
I/0 interrupts are all scheduled away, the hosting vCPU be-
comes completely idle. This can be explained as follows: 1)
per-CPU kthreads are actually servants for others, so when
there are no applications and I/O interrupts to drive them,
they become quiescent; 2) timer interrupt can be automati-
cally suspended when one vCPU becomes idle (the feature
of dynamic ticks); 3) no expensive memory context switches
will happen because all kthreads share the same kernel ad-
dress space; 4) as the scheduling queue is empty, other vC-
PUs will not issue reschedule IPIs here; 5) a vCPU that stays
idle does not need to participate in RCU’s grace period de-
tection [32]. Note that in Xen, a vCPU never receives TLB
shutdown IPIs due to the para-virtualization of the memory
management unit (MMU) [7].

Based on the above insights, we depict vScale’s steps
to reconfigure vCPU in Algorithm 2. For coordination, we
introduce a global CPU mask variable cpu_freeze mask.
Once the user-space daemon decides to freeze one vCPU,

Algorithm 2 The algorithm to freeze one vCPU in vScale.
Unfreezing vCPU follows the similar order.

1: Operations performed on the master vCPU:
2: begin
3: /* The following operations must be executed
4 in this order */
5: (1) Set the corresponding bit of cpu_freeze mask, so that
6: other vCPUs will not push tasks to the target vCPU;
7: (2) Update the power of the scheduling domain and group
8 that include the target vCPU;
9: (3) Notify the hypervisor so that the target vCPU will
10: stop earning CPU credits;
11: (4) Send a reschedule IPI to the target vCPU, to trigger
12: its local scheduler;
13: end
14: Operations performed on the target vCPU:
15: begin
16: /* The following operations have no
17: particular order */
18: (a) In the scheduler function, move all migratable threads
19: to other active vCPUs;
20: (b) When the vCPU goes to idle, do not pull tasks from
21: other active vCPUs;
22: (c) Migrate I/O interrupts to other active vCPUs;
23: end

the master vCPU (vCPUOQ) immediately sets the correspond-
ing bit of cpu_freeze mask. In this way, the target vCPU
will stop pulling tasks from other vCPUs; meanwhile, other
vCPUs will not push tasks to the target vCPU. Another issue
is that Linux CFS has the concepts of scheduling domain and
scheduling group [16], so their scheduling power must also
be updated accordingly. After that, the master vCPU notifies
the target vCPU to migrate its local threads, by trapping into
the scheduler function. vCPU deactivation follows similar
operations. This split design ensures that the master vCPU’s
overhead is minimized because it does not need to block to
wait for the target vCPU to finish all the migration work.

4. Implementation

We have implemented vScale in Linux 3.14.35 and Xen
4.5.0. To minimize code changes, the implementation reuses
existing functions and primitives as much as possible. In the
following, we describe our major modifications in detail.

4.1 Modifications to Linux Guest OS

User-level component. It is important that vScale daemon
executes deterministically because we want the SMP-VM to
respond timely to the underlying change of CPU extendabil-
ity. To achieve this, first, we put vScale daemon in the real-
time scheduling class to ensure that other fair-share threads
cannot preempt it; second, we bind it to vCPUO (the master
vCPU) so that it will not be migrated. Two system calls and
two hypercalls are added to enable the communication with
the kernel and the hypervisor: with sys_getvscaleinfo

and SCHEDOP_getvscaleinfo, the daemon can directly ob-
tain the VM’s CPU extendability from the hypervisor sched-
uler; with sys_cpufreeze and SCHEDOP cpufreeze, the
change of one vCPU’s status can be quickly synchronized
to the guest kernel as well as the hypervisor.

Kernel-level component. Linux’s SMP load balancing
is triggered in the following scenarios: 1) idle balance —
when one core goes idle, 2) fork balance — when a new
task is created, 3) wakeup balance — when a task wakes
up, 4) periodic balance — the kernel regularly checks each
scheduling domain to make sure that the load imbalance
is within a satisfactory range. In vScale, all the above op-
erations will consult cpu_freeze mask. Specifically, after
one vCPU has been frozen, push-based runqueue selection
is forbidden in find_idlest_cpu() while pull-based load
balancing is disabled in idle_balance(). To update the
power of the scheduling domain/group that includes this
vCPU, vScale calls update_group_power () to proactively
notify them of the vCPU’s absence. The hypervisor is also
informed so that it can adjust the resource allocation policy.
Finally, vCPUO calls resched_task() to tickle the target
vCPU’s scheduler function to carry on with the migration
work. When unfreezing a vCPU, the only difference is that
vCPUO calls wake_up_idle_cpu() to ask the target vCPU
to migrate some threads from other active vCPUs.

In __schedule(), if the vCPU finds that its correspond-
ing bit has been set in cpu_freeze_mask, it will first activate
all migratable threads in the local wake_1ist, and then iter-
ate the runqueue to migrate all threads away. Runqueue se-
lection for these threads is based on the load of all active vC-
PUs, using select_task_rq(). Uthreads and kthreads can
be easily distinguished with the PF_KTHREAD flag. Another
way to tell them apart is that kthread’s mm_struct is empty
because they do not need to be accessible in the user space.
For per-CPU kthreads, they are marked in task_struct
with an additional flag so that vScale will not migrate them
(which would otherwise cause kernel panic).

Interrupts also consume considerable CPU cycles, so
they must be redirected. For I/O interrupts, they are not
migrated until they occur. In Xen, as all I/O interrupts are
of IRQT_EVTCHN type, vScale can easily identify them and
then redirect them by calling rebind_irq_to_cpu(), which
in fact would make a hypercall to change the event’s vCPU
mapping. The current implementation only assumes virtu-
alized devices. For passthrough devices (e.g., SR-IOV), we
presume that it would require the hypervisor’s cooperation to
redirect hardware interrupts [5]. For timer interrupts, Linux
kernel’s dynamic ticks guarantee that idle vCPUs will not
receive them. Otherwise, if the guest OS adopts periodic
ticks, vScale explicitly suspends VIRQ_TIMER after the tar-
get vCPU becomes idle. To avoid sporadic firings, frozen
vCPUs are skipped in clocksource_watchdog. Note that
although a frozen vCPU can still respond to IPIs, it will
never receive them (unless during system shutdown, via

smp_call_function) as it does not have runnable threads
for other vCPUs to tickle.

4.2 Modifications to Xen Hypervisor

The first issue is that in Xen 4.5.0, weight is defined as a per-
vCPU parameter. In this model, if an SMP-VM freezes some
vCPUgs, it will earn less credits, which is unfair. We modify
weight to be per-VM so that no matter how many vCPUs the
VM uses, it receives unchanged CPU credits.

vScale is built upon the concept of CPU-Pool: a set of
pCPUs are put together to enforce the same scheduling pol-
icy. In each pool, there is a master pCPU in charge of credit
allocation for all VMs. In the master pCPU, we add another
function called vscale_ticker_fn() to periodically calcu-
late CPU extendability for all SMP-VMs (UP-VMs are omit-
ted because they have no room for scaling). The default re-
calculation period is 10ms. Each VM’s CPU consumption
is accurately tracked in burn_credits(). The pool’s idle
CPU time is actually the aggregation of all idle vCPUs’ run-
ning times (Xen runs an idle vCPU on each pCPU, simi-
lar to Linux’s per-CPU idle process). To enable SMP-VMs
to read their CPU extendability from vScale channel, the
struct domain is augmented to store this value. In Xen’s
credit allocation function csched_acct (), if a vCPU has
been marked as frozen by the guest OS, it will be removed
from the domain’s active list so that the other vCPUs can
earn more credits (thus more chances to run).

When the master vCPU (vCPUO) freezes or unfreezes
another vCPU, it is important that thread migration hap-
pens on the target vCPU in a timely fashion. Therefore, the
reschedule IPIs from vCPUO to the target vCPU (sent in
resched_task() and wake_up_idle_cpu()) must be de-
livered as soon as possible. To this end, we ensure that the
hypervisor tickles the reconfigured vCPU and prioritizes its
scheduling whenever there are IPIs pending for it.

5. Evaluation

‘We conduct the experiments on two Dell PowerEdge M 1000e
blade servers connected by a GbE switch. Each server has
two quad-core Intel Xeon 5540 2.53GHz CPUs with hyper-
threading enabled, 16 GB RAM and two 250GB SATA
disks. We run Xen 4.5.0 as the hypervisor and Linux 3.14.15
as the OS for both dom0 and domUs. Because dom0 serves
as the I/O proxy for all domUs, to guarantee its efficiency, we
run it on 4 dedicated logical cores while domUs are put in a
separate pCPU pool. We first measure vScale’s mechanism-
level overheads and then use several representative multi-
threaded applications for a more comprehensive evaluation.

5.1 Low-level Results

vScale incurs overhead in three places: 1) computing VM’s
CPU extendability, 2) resource monitoring via the vScale
channel, and 3) workload migration via the vScale balancer.

To compute VM’s CPU extendability, vScale directly uti-
lizes the hypervisor scheduler’s runtime data, i.e., each VM’s

Table 1: The overhead of reading from vScale channel.

The breakdown of one operation Overhead (us)
(1) System call (sys_getvscaleinfo) =0.69
(2) Hypercall (SCHEDOP_getvscaleinfo) +0.22 =091

5 30 w/o workload]

S 25 w/ disk 1/0 z 2

o w/ network /O [NNNNNNN

[0]

o 20

E 15

el

S 10

<

E.) 5 T { [T T 7“ J

& Lk wit BN BN o
1 0

1 20 30 40 50
Number of VMs

Figure 4: The min-avg-max overhead of reading VMs’ CPU
consumptions using 1ibx1, with different background I/O
workload in domO.

CPU consumption and allocation. The cost is similar to
but intuitively smaller than Xen’s credit accounting func-
tion csched_acct (), because vScale only needs to compute
domain-level results while csched_acct () needs to com-
pute both domain-level and vCPU-level results.

5.1.1 Resource Monitoring via vScale Channel

We vary the number of co-located VMs from 1 to 50. In
one VM'’s user space, we read from the vScale channel
for 1 million times to measure the execution time. Table 1
shows that the average overhead is only 0.91us, because the
operation only involves a system call and a hypercall.

To make a comparison, we evaluate the efficiency of
Xen’s 1ibx1 [2] toolstack in domO, which is used to mon-
itor each VM’s CPU consumption. VCPU-Bal [40] actu-
ally adopts this centralized approach. Since dom0’s major
responsibility is to forward I/O for all guest domains, we
evaluate 1ibx1 under three different scenarios: a) all VMs
are idle; b) one VM conducts disk I/O using Linux dd com-
mand; ¢) one VM transmits data to another machine via the
network using netperf [3]. Figure 4 shows the results of
10 thousand executions. First, when domO has no workload
(the gray bar), it spends around 480us on each VM, but the
overall overhead increases linearly along with the number
of VMs. Second, when domO gets busier with I/O, the ex-
ecution time of 1ibx1 becomes much longer: for example,
with network I/O traffic, reading 50 VMs’ CPU consumption
takes more than 6ms, with the maximum delay approaching
30ms. Note that this increase is only caused by one VM’s I[/O
activities. If more VMs become I/O-intensive, we anticipate
the overhead to be much larger because dom(would be more
congested to forward I/O data. Moreover, as future hardware
will be more powerful to host more VMs per server, espe-
cially with the emergence of tiny VMs such as Mirage [30]

Table 2: The number of timer interrupts and reschedule IPIs
received by each vCPU, before and after vCPU3 are frozen.
The other types of IPIs such as function-call IPIs are not
generated. The tick rate of the guest OS is 1000 HZ.

Table 3: The overhead of freezing one vCPU in vScale bal-
ancer. Unfreezing one vCPU has a similar cost. The variable
of cpu_freeze_lock is to prevent concurrent executions of
vScale’s system call.

vTimer INTs /sec | vCPUO | vCPU1 | vCPU2 | vCPU3 Operations on the master vCPU (vCPUO) Overhead (us)
all are active 1000 1000 1000 1000 (1) System call (sys_freezecpu) =0.69
vCPUS3 is frozen 1000 1000 1000 0 (2) Acquire and release cpu_freeze_lock +0.06 =0.75
with interrupts’ status saved and restored
vIPIs / sec vCPUO vCPU1 vCPU2 vCPU3 (3) Change cpu,freezeJnask +0.03=0.78
all are active 21.2 20.7 21.6 20.7 (4) Update the power of sched domains and +0.12=0.90
vCPUS3 is frozen 27.1 28.7 28.3 0 groups with an RCU lock held
(5) Notify the hypervisor about the change +0.22=1.12
via a hypercall (SCHEDOP _freezecpu)
and OSv [28], it will be more costly to monitor all VMs in (6) Send a reschedule IPI +0.98 =2.10
dom0. In contrast, vScale is a per-VM approach which com- i
pletely bypasses the centralized dom0. Operations on the target vCPU Overhead (us)
(a) Migrate N threads =Nx(09~1.1)
5.1.2 vCPU Reconfiguration with vScale Balancer (b) Migrate device interrupts =(0.8 ~1.2)
We first validate the effect of freezing vCPU with the vScale
balancer. In a 4-vCPU VM, we run kernel-build workload
in parallel and deactivate one vCPU at runtime. We read
from /proc/interrupts to get the number of interrupts o.; ﬁ
each vCPU receives. Table 2 shows that although vScale L 06 -
does not disable vCPU3’s interrupts, after it is frozen, it S o4 [‘I vaosz o
stays desirably in quiescence without being disturbed by 2 4] SN
the other vCPUs. This is because timer interrupt completely ° 50 100 150 200
stops when the vCPU stays in idle and IPIs have been moved Hotplug latency (millisecond)
to the other vCPUs due to thread migration. This effect is)
exactly the same as that of Linux CPU hotplug, but vScale 08 (
realizes it at a significantly lower cost (see below). w06 ’|I ” Wy Tr—
With the vScale balancer, reconfiguring vCPUs involves © o4 | J vé31:‘2‘:t15g
the participation of both the master vCPU and the target 0'3 g az
vCPU. To evaluate how the time is spent on the master 0 50 100 150 200

vCPU, we instrument the sys_freezecpu system call to
force an early return from different depths. Table 3 de-
tails the results averaged out of 1 million executions. Since
vCPUO only undertakes minimum necessary work without
being blocked, its overhead is only 2.1us. Deactivating a
vCPU incurs the same overhead. To evaluate the cost on
the target vCPU, we write a program to generate a desired
number of threads on each vCPU, and use ktime_get () in
__schedule () to record the overall migration time. It shows
that on average, migrating one thread only takes 0.9-1.1us.
We speculate the time is mainly spent on runqueue selec-
tion because the vCPU needs to acquire the scheduler locks
of two runqueues. For device interrupts (e.g., network and
disk), vScale migrates them only when they occur. In Xen,
it is realized by changing the event channel’s binding vCPU
via a hypercall, incurring the overhead of 0.8—1.2s.

Next, we measure the overhead of Linux’s CPU hotplug,
because dom0 depends on it to add and remove vCPUs. In
Xen’s 1ibx1, this is realized by writing the vCPU’s avail-
ability to a shared database (XenStore) between domO and
domU through XenBus [6]; in domU’s callback function, the
kernel will invoke its CPU hotplug. We evaluate 4 different

Unhotplug latency (millisecond)

Figure 5: The overhead of Linux’s CPU hotplug/unhotlpug
with different kernel versions.

kernel versions, ranging from Linux 2.6.32 to 4.2. With each
version, we add and remove vCPU3 for 100 times and record
the latency of each operation. Figure 5 shows the results in
CDF format. It can be seen that the overhead of removing
one vCPU is from a few milliseconds to over 100 millisec-
onds; adding one vCPU is relatively faster, being 350-500us
at best with Linux 3.14.15, but still incurs tens of millisec-
onds in the other 3 kernels. Compared with vScale which
only incurs microsecond-level overheads, Linux CPU hot-
plug is slower by 100x to 100,000x.

5.2 Application Results

We evaluate vScale using three popular multithreaded appli-
cations (suites). Each of them exhibits unique characteristics
that can be affected by VM scheduling in different aspects,
as has been illustrated in Figure 1.

o 14 - - o 14 - - o 14 - -
£ Xen/Linux mmmm Xen/Linux + pvlock === £ Xen/Linux mmmm Xen/Linux + pvlock === £ Xen/Linux mmmm Xen/Linux + pvlock ===
T 12 vScale vScale + pvlock T 12 vScale vScale + pvlock T 12 vScale vScale + pvlock
o o o
= = 1 = T .
3 R HR B 3 AN 3 NN [
3 1IN 71 o o i o I 71N TR m
® i IS IS 7R 1R 3 06 i 3 AN IR i
I m 78 118 1N S 04 i i 1N 11N 7 n
® i N BN ER s N ® 7NN 7N 7N N
N VN W BN N NN N N 7N
JERS /1R 11 IR (1R 11 £ 02 N £ NI 0
g N N DY ¥ [N
2 7 Z15 7N 21N 20N ¢ S Z1\ 71 20N 4 S A 71N 71N 20N 0N A ZINM 7
bt cg dc ep ft is Ilu mg sp ua bt cg dc ep ft is Ilu mg sp ua bt cg dc ep ft is lu mg sp ua

(a) GOMP_SPINCOUNT = 30 billion.

(b) GOMP_SPINCOUNT = 300K.

(c) GOMP_SPINCOUNT = 0.

Figure 6: Performance results in NPB-OMP suite with different user-level spinning counts. The SMP-VM has 4 vCPUs.

o 14 - - o 14 - - o 1.4 - -
E Xen/Linux mmmm Xen/Linux + pvlock == E Xen/Linux mmmm Xen/Linux + pvlock =2 £ Xen/Linux mmmm Xen/Linux + pvlock ==
= 12 vScale vScale + pvlock = 12 vScale vScale + pvlock = 12 vScale vScale + pvlock
o o o
= 20 CIH 71 O E 7T FIm I 7N £ 1
g AN 77 IS g AN 7N 7N g
g AN IR TR IS] IR IS IS 718 g 08
° N 11 IS8 71 C N 71 i 5 o6
2 7N 1N TN 2 1 71 T TN 3
o 21N 7NE 7N N 2 71NN 2\ 71Nl 7N 8
N INE ZINE ZINE 70N N IS 21N ZINE 70N N 04
s I 7NN 7NN A] 71N N 7AW 7N T
g A1\ 71N 71N 70N = NN PN O 3
£ I8 1118 IS8 7N E 7NN 11 IS 7 E 02
N N

S NI 21 7 21N 20N G 4 S I 21N 71N 208 210 21N 7N 70N ¢ 2

bt cg dc ep ft is Ilu mg sp ua bt cg dc ft is lu mg sp ua bt cg dc ep ft is

(a) GOMP_SPINCOUNT = 30 billion.
Figure 7: Performance results in NPB-OMP suite with different user-level spinning counts. The SMP-VM has 8 vCPUs.

e NPB-OMP 3.3 — the suite consists of 10 applications
written in OpenMP. OpenMP allows programmers to
specify the spinning time for thread synchronization.

e PARSEC 3.0 — the suite consists of 13 applications. Ex-
cept freqmine (written in OpenMP), the others are all
compiled with Pthread library, which adopts sleep-then-
wakeup primitives for thread synchronization.

e Apache Web Server 2.2.15 — this application is also writ-
ten in Pthread. Its performance is affected by the effi-
ciency of both inter-vCPU interrupts and I/O interrupts.

5.2.1 Experimental Settings

In multi-tenant clouds, users can essentially run arbitrary
workload in their VMs. As vScale is particularly useful
when pCPU consumptions of co-located VMs frequently
change, we set up several virtual desktops as background
VMs to generate fluctuating workload. Desktop applications
are mostly interactive-oriented and therefore generate spiked
CPU consumption, such as launching an application, wait-
ing for human’s input, etc. In our settings, each background
VM has 2 vCPUs and runs a “photo-slideshow” application
which periodically opens a 2802 x 1849 jpeg image file. We
evaluate vScale in two types of VMs: a 4-vCPU VM and
an 8-vCPU VM. During the tests, for consolidation purpose,
we keep an average of 2 vCPUs per pCPU by launching
a proper number of background VMs. Though with higher
vCPU densities, it will be much easier for vScale to demon-
strate its advantages, we find the ratio of 2 is already enough
to illustrate vScale’s effect. The VMs’ weights are also prop-
erly configured so that all vCPUs will be treated equally by
the hypervisor scheduler.

(b) GOMP_SPINCOUNT = 300K.

(¢) GOMP_SPINCOUNT = 0.

Aside from the default Xen/Linux, we also investigate the
performance of Linux kernel’s pv-spinlock [20]. It is impor-
tant to note that though both pv-spinlock and vScale can mit-
igate LHP problem, they work in different layers so they can
actually be integrated seamlessly. Overall, we have 4 dif-
ferent settings for comparison: a) vanilla Xen/Linux, which
serves as the baseline; b) Xen/Linux with pv-spinlock; c)
vScale; d) vScale with pv-spinlock.

5.2.2 NPB-OMP Results

In OpenMP, programmers can specify how long a thread
spins before giving up CPU control. This can be done
by configuring OMP_WAIT POLICY and GOMP_SPINCOUNT.
By default, GOMP_SPINCOUNT is automatically determined
by OMP_WAIT_POLICY: it is 30 billion when the policy is
ACTIVE, O when the policy is PASSIVE and 300K when
the policy is undefined. In each spin operation, the program
checks whether the assumed synchronization variable has
reached a desired value or not; if yes, it returns directly;
otherwise, it executes cpu_relax() function which is im-
plemented as a compiler barrier in GCC-OpenMP, and then
starts the next spinning. If the number of times of spinning
has exceeded GOMP_SPINCOUNT, the program will give up
CPU control via sys_futex system call (“futex” is Linux’s
kernel mechanism to support application-level asynchronous
communication via sleep-and-wakeup), and count on the
kernel’s process scheduler to wake it up. Though busy-
waiting wastes CPU cycles, it avoids the overhead of context
switches in the kernel and the delay of virtual IPIs in the hy-
pervisor. Since it is difficult or even impossible to determine
an optimal spin threshold that fits all applications, because
it depends on the running environment as well as workload

| _The4-vCPUVM —— The 8VvCPUVM ——
0 1t 2 3 4 5 6 7 8 9 10
Time (second)
Figure 8: The change of active vCPUs when running bt
application with vScale enabled in a 4-vCPU VM and an
8-vCPU VM respectively.

of active vCPUs
O=NWHrUOTON®

vScale vs. Xen/Linux -- w/o pvlock
vScale vs. Xen/Linux -- w/ pvlock

100
N
N ZN| ZN ZN

N N N e <z

80

60 -

40

20

Reduction of waiting time (%)

bt cg dc ep ft is Ilu mg sp ua

Figure 9: With vScale, VM’s waiting time is significantly
reduced, no matter pv-spinlock is enabled or not. The results
are obtained via an extra command implemented in 1ibx1.

patterns, we evaluate vScale with all the aforementioned
values for GOMP_SPINCOUNT: 30 billion, 300K and 0.

Figure 6 reports the normalized execution time with a 4-
vCPU VM, while Figure 7 reports similar results with an
8-vCPU VM, out of three runs (error bars are not shown as
the variance is small). Take the cases of 4-vCPU VM for
example: when the spinning is very heavy, pv-spinlock has
little effect, as shown in Figure 6(a), because the spinning
happens in the user space rather than the kernel space; in
contrast, vScale significantly reduces the execution time for
many applications, e.g., 39% for bt, 51% for cg, 73% for
lu, 59% for sp and 78% for ua. When the spin threshold
decreases to 300K as in Figure 6(b), although pv-spinlock
shows some benefit, e.g., in bt and cg, vScale still appar-
ently outperforms it. When the wait policy is PASSIVE, as in
Figure 6(c), vScale performs closely but still slightly better
than pv-spinlock in most applications. The most interesting
results are in the lu tests: vScale’s performance improve-
ment is constantly over 60%, regardless of OpenMP’s wait-
ing policy. We check the source code and find that 1u imple-
ments its own synchronization primitives via busy-waiting,
beyond the control of OpenMP.

Figure 8 presents a trace we capture of the number of
active vCPUs when running bt in the 4-vCPU VM and the
8-vCPU VM respectively. By default, OpenMP starts a num-
ber of worker threads based on the number of online vCPUs
(Linux provides this information via cpu-online_mask).

1080

300

gomp_spincount = 30B Y
> 250 -gomp_spincount = 300K pzzz22
% gomp_spincount = 0 R
= 200
& 150
(7]

» 100
o
0

bt cg dc ep ft is Ilu mg sp ua

Figure 10: The average IPIs each vCPU received per second
under different spinning policies in NPB-OMP experiments.
The results correspond to Figure 6’s “Xen/Linux” tests.

With vScale, the SMP-VM is bestowed the ability to adap-
tively change the number of its vCPUs according to the
underlying pCPU availability. The benefit of such vCPU-
level scaling can be clearly seen from Figure 9: regardless of
whether pv-spinlock is used or not, in all applications, vC-
PUs’ waiting time (i.e., delay) in their pCPUs’ scheduling
queues is reduced by over 90%. This means that all delay-
sensitive components in the VM can directly enjoy this ben-
efit without being modified.

In order to clearly identify the source of performance
degradation under different spinning policies, in the hyper-
visor, we profile virtual IPIs for different applications. Fig-
ure 10 shows that virtual IPI’s intensity is highly related to
the spinning degree. When spinning is very heavy, very few
virtual IPIs are triggered because it does not require thread
wakeup operations. This implies that IPI-driven schedul-
ing [27] could not be effective to deal with user-level LHP.
Figure 10 also explains why vScale’s benefit is limited in
ep, ft and is, because they require little synchronization
and therefore are insensitive to scheduling delays. For ap-
plications like mg, sp and ua, the less they spin, the more
they rely on futex for thread synchronization. This explains
why when GOMP_SPINCOUNT is O in Figure 6(c), vScale can
also reduce the execution time for them, even without the
integration of pv-spinlock. In the face of scheduling delays,
the efficiency of both active spinning and asynchronous IPIs
are largely degraded. With vScale, no matter what policy is
adopted in the guest and where the spinning happens, the
guest OS always tries to avoid delays as much as possible by
keeping a reasonable number of vCPUs.

5.2.3 PARSEC Results

The PARSEC suite contains 13 applications from differ-
ent areas including computer vision, video encoding, im-
age processing, data mining and animation physics. Except
fregmine which is written with OpenMP, the others are all
compiled with Pthread. In this model, thread synchroniza-
tion is implemented in sleep-then-wakeup style. Commonly
used primitives are mutex (pthread mutex_lock/unlock)
and conditional variable (pthread_cond wait/signal). In
Linux, these calls are eventually translated into kernel func-
tions futex_wait and futex_wake. When waking up a

Xen/Linux mmmm Xen/Linux + pvlock ===
vScale vScale + pvlock

1 e 5

F bi

Normalized execution time
o I3
o ©
. .
"
(2)

RN =
y

0.4
P Ph
6{904 60%0‘9/2,) o, Qoo@ &”b, /O’Oé %9/;) %, * N &"’% % +96‘7
. A :
% '3’04 > ° 0’0;@//”@ G /bo/%’}oo&
% ® .

Figure 11: Performance results in PARSEC experiments with
a 4-vCPU VM.

thread, if the wakee thread resides on a different core from
the signalling thread, which is quite possible in parallel ap-
plications, the kernel must notify the remote core by means
of reschedule IPI. In virtualized environments, IPI latency
heavily depends on the hypervisor’s scheduling policy. For
example, in Xen’s credit scheduler, an IPI will be delayed if
the target vCPU is already waiting or its credit level is very
low, leading to tens of millisecond synchronization latency.

Figure 11 and Figure 12 report the results with a 4-vCPU
VM and an 8-vCPU VM respectively, averaged out of 3 runs.
In general, more than half of applications can benefit from
vScale, but the gains are quite diversified. Take Figure 11
for example, the most obvious improvement is observed in
dedup application: over 20%. In other 3 cases (bodytrack,
streamcluster and vips), vScale reduces their execu-
tion time by over 10%. However, in ferret, freqmine,
raytrace and swaptiouns, the benefit is marginal. Regard-
ing pv-spinlock, it also has certain effect because it avoids
kernel-level LHP, but the gap with vScale is still visible in a
few cases: e.g., in dedup, such a gap is 11%.

In Figure 13, we take a closer look at the performance
by profiling virtual IPIs in the hypervisor. We find that
these applications exhibit very diverse characteristics. In
dedup, a significant amount of reschedule IPIs are observed:
940/vCPU/second. Further investigation indicates dedup
imposes heavy pressure on memory operations; in Linux
kernel, mm_struct’s shared address space is protected by a
semaphore, so it is unsurprising to see so many virtual IPIs.
In streamcluster, we observe 183 IPIs/vCPU/second; we
find the application implements its own barrier above mu-
tex and conditional variable, where each thread waits for the
next stage until all threads have arrived at a synchroniza-
tion point. In blackscholes, freqmine and raytrace,
few virtual IPIs are observed, probably because their well-
partitioned data seldom need to be synchronized during ex-
ecution. For swaptions, it does not include any synchro-
nization primitive. It can be concluded that communication-
driven applications are very susceptible to scheduling de-
lays. With vScale, since the VM can adaptively freeze vC-

[0} . .
£ Xen/Linux mmmm Xen/Linux + pvlock ==
= vScale vScale + pvlock
S 1 rgEEn R TR .
2 [T - HL H I - H
3 L
<
s 08+ H N
e
[0}
N
T 06 r i
E
2
0.4
4, 46 % B B Y K S Sk S, b *
%o, s M Y R, T s, Dy L, R, %0, P By
S, 2% Ry B S . Ty T W, Ry
s X, 2 T e @ %y 0
%, 4 S o@/ s
iy © (N

Figure 12: Performance results in PARSEC experiments with
an 8-vCPU VM..

300 940
o 250
o
< 200 -
& 150
(7]
@ 100 -
o
0 L o L - L I:I
b b Q5 % S B N Py S Su S, L+
‘904 o% G,)/) @O(,/ 90@ 4@,;0 0’0’ % ‘&,ﬁ //‘E,e 11«% 2 96’7
@OZ}G,O*S’//@)»/)?/‘?O/);//“
% % K Dy % ® %y 9,
o, H o, S
% % %,
N

Figure 13: The average IPIs each vCPU received per second
in PARSEC experiments, corresponding to Figure 11’s tests.

PUs when pCPU competition is heavy, the delays to vir-
tual IPIs are largely avoided. Meanwhile, part of inter-vCPU
communication is converted into intra-vCPU communica-
tion which is much cheaper in virtualized environments.

5.2.4 Apache Web Server Results

We use two machines to evaluate Apache web server’s
performance: one machine hosts the SMP-VM under test
running Apache httpd, while the second machine runs
httperf [1] to request for a 16KB file at a constant rate. We
vary the request sending rate and run for 1 minute to obtain
the average result. Performance is measured in reply rate,
connection time and response time. Figure 14 depicts the re-
sults with a 4-vCPU VM (error bars are not shown because
the deviation is small). We did not test with an 8-vCPU VM
because we find 4 vCPUs are already enough to fully utilize
the 1Gbps network link.

With Xen/Linux, in Figure 14 (a), the VM can only sus-
tain low request rate: when there are less than 4K requests
per second, the reply rate increases linearly along with it;
however, after the requesting rate exceeds 6K/s, the reply
rate gradually drops. Meanwhile, in Figure 14(b) and (c),
the connection time which reflects the delay of I/O interrupt
and the response time which reflects the VM’s processing
capability also significantly increase. When pv-spinlock is
enabled, though performance break is avoided, its peak rate

10 Xen/Linux —&— 400 Xen/Linux —=&— 120 Xen/Linux —&—
i) vScale m vScale & vScale
S 8 | Xen/Linux w/ pvlock @ E Xen/Linux w/ pvlock @ £ Xen/Linux w/ pvlock @
9 vScale w/ pvlock ~-© o e 300 - vScale w/pvlock @ pr <o 90 vScale w/ pvlock
w
— = £
< 6 :]k
o % 200 P 2 60
[2 L 2
> c 7]
© Q © o
= S 100 o 30
o 2 [3 > :
= = <
< < .
0 0 P @ 0 A o)
0 2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10

Requesting rate (K / second)

(a) Average reply rate (higher is better).

(b) Average connection time (lower is better).

Requesting rate (K / second)

Requesting rate (K / second)

(c) Average response time (lower is better).

Figure 14: Performance results in Apache Web Server, with a 4-vCPU VM. The client constantly requests for a 16KB file from
the SMP-VM via a 1GbE link with different requesting rates..

(5.3K/s) is still much lower than the rate that can saturate the
network link (which is around 7K/s).

There are two major reasons for the performance prob-
lem: 1) when every vCPU is active, each vCPU can only get
a portion of pCPU, so I/O processing is inevitably delayed
on the interrupt-receiving vCPU; ii) inter-vCPU interrupts
can also be delayed, preventing threads on different vCPUs
from communicating with each other in a timely manner. In
our experiments, when the requesting rate is 6K/s, the VM
observes 11.8K network receive interrupts per second and
1.7K TPIs/vCPU/second (not shown in the figure). With vS-
cale (w/o pv-spinlock), the VM achieves 6.6K/s at the peak,
3.2 times higher than the baseline. While when vScale is
integrated with pv-spinlock, the peak throughput is 6.9K/s
which is very close to the optimal performance (i.e., the rate
to saturate the link). At the same time, vScale achieves the
lowest connection time and response time in all group tests.

6. Related Work

It is meaningful to revisit Linux’s CPU hotplug [33], which
has been in the kernel for over a decade. It was first de-
signed to allow failing hardware to be removed from a
running kernel (which should happen infrequently), but
nowadays people use it for energy management and even
to achieve real-time response [23]. Linux implements CPU
hotplug using notifiers: each subsystem registers their own
callbacks that will be executed in a certain order when
a CPU comes and goes. What is most troublesome is to
safely remove per-CPU kthreads, which requires global
operations [31]. To synchronize all online CPUs, Linux
kernel calls __stop_machine() to halt an application’s
execution for an extended period of time with interrupts
disabled, and then runs take_cpu_down() to execute the
CPU_DYING class of notifiers under this special context.
However, stop_machine() has very heavy and disruptive
atomicity (hundreds of milliseconds), which is equiva-
lent to grabbing every spinlock in the kernel. Bhat [11]
made an effort to remove CPU hotplug’s dependence on
stop_-machine(), by introducing per-CPU rwlocks. Unfor-

tunately, the design brings with it many subtle lock depen-
dency problems and also performance regression [12]. Actu-
ally, in virtualized environments, even if the guest OS evicts
everything from a vCPU, the hypervisor never tears it down
by only putting it in the offline state. In our scenario, we only
expect the target vCPU to not participate in pCPU competi-
tion, without caring whether it has been destroyed or not.

In physical environments, the OS can also reconfigure the
processors via power management, e.g., low-power mode
(P-states) and sleep mode (C-states). However, in virtualized
systems, power management is actually an onus on the hy-
pervisor which dictates the hardware (e.g., xenpm module
in Xen), out of any VM'’s concern. In fact, a vCPU that has
no active workload consumes no power at all because it is
essentially a software entity residing in physical memory.

Chameleon [36] is a close relative to what we want to
achieve. It embraces the idea of processor proxy: when a
CPU intends to go offline, another CPU will immediately
take over so that the costly global operations are smartly
avoided. Efficient as it may be, the technique complicates the
kernel’s scheduling management. First, all per-CPU struc-
tures must be augmented to track the proxying dependence.
Second, a new context abstraction called proxy context is
introduced. As a result, the proxying CPU has to frequently
switch between its own context and the proxy context, thus
having to deal with two different scheduling queues. This
also complicates SMP load balancing as the scheduling
groups/domains need to be aware of such proxy. Further-
more, if the proxying CPU also goes offline, a third CPU
has to act as the proxy of the above two CPUs, possibly
leading to nested proxy context which is a complex situation
for the kernel to manage. In contrast, vScale only adds a sin-
gle variable (cpu_freeze_mask) to the kernel and is tightly
coupled with the existing scheduler’s framework. Another
difference is in handling I/O interrupts: Chameleon lever-
ages IOAPIC’s broadcast mode to enforce logical address
renaming, but this method is not applicable to VMs because
Xen does not support interrupt broadcasting. Fortunately,
modifying event channel’s vCPU affinity is very fast in Xen,

as it is just a software entity rather than a separate hard-
ware component on the motherboard. Overall, we believe
Chameleon is more suited for physical environments while
vScale by its design serve virtualized environments better.
Bolt [37] also aims to provide rapid CPU reconfiguration.
Different from vScale that stays away from Linux’s CPU
hotplug, Bolt chooses to refactor it. Basically, Bolt classi-
fies operations carried out during hotplug as critical and
non-critical: only critical operations are performed imme-
diately, while non-critical ones are done lazily hoping that
they would be reused later on. Like Chameleon [36], Bolt is
also designed to reconfigure physical CPUs, so it has to han-
dle many hardware dependencies, such as CPU microcode
and MTRR registers. In contrast, the hypervisor provides a
much neater environment for vScale to reconfigure its virtual
CPUs. As such, vScale incurs much lower overhead (i.e.,
microseconds latency) compared with the millisecond-level
overhead of Bolt. Further, we show that vScale is effective
in improving the performance of synchronization- and I/O-
intensive workloads. Bolt was evaluated with a mostly idle
system and it is unclear how application performance would
benefit from the proposed new CPU hotplug mechanism.
Gleaner [17] studies the “blocked-waiter wakeup” prob-
lem, which focuses on the cost from the hypervisor’s inter-
vention into synchronization-induced vCPU idling. It also
introduces a technique to migrate tasks among a varying
number of vCPUs, by manipulating tasks’ processor affin-
ity in the user space. However, this is not easy to maintain at
runtime because application threads are often dynamically
launched and terminated which must be accurately tracked.
Besides, once a new vCPU is activated or deactivated, all
tasks’ masks need to be modified accordingly, which could
be very costly when there are too many threads. Our ap-
proach is transparent to applications and is much more light-
weight as it does not need to tamper with any thread’s affin-
ity but just modifies a single kernel variable. We believe our
mechanism can assist Gleaner to work more efficiently.

7. Conclusions and Future work

Although virtualization has been in development for years,
many of its performance problems are still short of a satis-
factory solution. In terms of latency, the abstraction of vCPU
does not always match well with pCPUs for which applica-
tions and OSes are originally designed. Dynamic vCPUs is
a promising approach for SMP-VMs, but this idea is unreal-
istic in current platforms due to the scheduling semantic gap
between the guest OS and the hypervisor, as well as the lack
of enough efficient knobs. In this paper, we propose vScale,
a design using super light-weight mechanisms to help SMP
guests adaptively scale their vCPUs in real time. In our fu-
ture work, we look for a broader usage of vScale. Intuitively,
it should be beneficial if applications can be made aware of
the VM’s real computing power. Therefore, it would be in-

teresting to explore how vScale’s interface can directly assist
applications to optimize their policy-specific decisions.

8. Acknowledgments

We thank the anonymous reviewers and our shepherd, Prof.
Edouard Bugnion, for comments that improved this paper.
This work was supported in part by a Hong Kong RGC
CRF grant (No. C7036-15G) and a U.S. National Science
Foundation grant (No. CNS-1320122).

References
[1] Httperf.
httperf/.

[2] Libxenlight (libxl).
Choice_of_Toolstacks.

http://www.hpl.hp.com/research/linux/
http://wiki.xen.org/wiki/

[3] Netperf. http://wuw.netperf.org/.

[4] Xen Credit Scheduler.
Credit_Scheduler.

[5] Xen PCI Passthrough. http://wiki.xen.org/wiki/Xen_
PCI_Passthrough.

[6] XenBus. http://wiki.xen.org/wiki/XenBus.

http://wiki.xen.org/wiki/

[7] Xen’s x86 paravirtualised memory management. http://
wiki.xenproject.org/wiki/X86_Paravirtualised_
Memory_Management.

[8] The CPU scheduler in VMware vSphere 5.1. VMware Tech-
nical White Paper, 2013.

[9] VMware Horizon View Architecture Planning 6.0. VMware
Technical White Paper, 2014.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proc. SOSP, 2003.

[11] S. S. Bhat. CPU hotplug: stop-machine()-free CPU hotplug.
https://1kml.org/1kml/2013/1/22/44.

[12] S. S. Bhat. percpu_rwlock: Implement the core design of per-
CPU reader-writer locks. https://1kml.org/1kml/2013/
3/5/329.

[13] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng.
Group ratio round-robin: O(1) proportional share schedul-

ing for uniprocessor and multiprocessor systems. In Proc.
USENIX ATC, 2005.

[14] L. Cheng and C.-L. Wang. vBalance: using interrupt load bal-
ance to improve I/O performance for SMP virtual machines.
In Proc. ACM SoCC, 2012.

[15] L. Cheng, C.-L. Wang, and F. C. M. Lau. PVTCP: Towards
practical and effective congestion control in virtualized data-
centers. In Proc. IEEE ICNP, 2013.

[16] J. Corbet. CFS group scheduling.
Articles/240474/,2007.

[17] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner:
Mitigating the blocked-waiter wakeup problem for virtualized
multicore applications. In Proc. USENIX ATC, 2014.

[18] Y. Dong, X. Zheng, X. Zhang, J. Dai, J. Li, X. Li, G. Zhai,
and H. Guan. Improving virtualization performance and scal-

http://lwn.net/

ability with advanced hardware accelerations. In Proc. IEEE
1ISWC, 2010.

[19] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: Supporting latency-sensitive threads in a general-
purpose scheduler. In Proc. SOSP, 1999.

[20] T. Friebel and S. Biemueller. How to deal with lock holder
preemption. In Xen Developer Summit, 2008.

[21] S. Gamage, A. Kangarlou, R. R. Kompella, and D. Xu. Op-
portunistic flooding to improve TCP transmit performance in
virtualized clouds. In Proc. ACM SoCC, 2011.

[22] S. Gamage, C. Xu, R. R. Kompella, and D. Xu. vPipe:
Piped I/O offloading for efficient data movement in virtualized
clouds. In Proc. ACM SoCC, 2014.

[23] T. Gleixner, P. E. McKenney, and V. Guittot. Cleaning up
linux’s CPU hotplug for real time and energy management.
SIGBED Rev., 9(4):49-52, Nov 2012.

[24] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O scheduling
model of virtual machine based on multi-core dynamic parti-
tioning. In Proc. HPDC, 2010.

[25] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu. vS-
noop: Improving TCP throughput in virtualized environments
via acknowledgement offload. In Proc. SC, 2010.

[26] H. Kim, S. Kim, J. Jeong, and J. Lee. Virtual asymmetric
multiprocessor for interactive performance of consolidated
desktops. In Proc. VEE, 2014.

[27] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-
based coordinated scheduling for SMP VMs. In Proc. ASP-
LOS, 2013.

[28] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti,
and V. Zolotarov. OSv — optimizing the operating system for
virtual machines. In Proc. USENIX ATC, 2014.

[29] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Ya-
jnik. Supporting soft real-time tasks in the Xen hypervisor. In
Proc. VEE, 2010.

[30] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Proc. ASP-
LOS, 2013.

[31] P. McKenney. The linaro connect scheduler minisummit.
https://lwn.net/Articles/482344/, 2012.

[32] P. McKenney. The new visibility of RCU processing. https:
//lwn.net/Articles/518953/, 2012.

[33] Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vadda-
giri. Linux kernel hotplug CPU support. In Proc. Linux Sym-
posium, 2004.

[34] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. In Proc. VEE, 2008.

[35] J. Ouyang and J. R. Lange. Preemptable ticket spinlocks:
improving consolidated performance in the cloud. In Proc.
VEE, 2013.

[36] S. Panneerselvam and M. M. Swift. Chameleon: Operating
system support for dynamic processors. In Proc. ASPLOS,
2012.

[37] S. Panneerselvam, M. M. Swift, and N. S. Kim. Bolt: Faster
reconfiguration in operating systems. In Proc. USENIX ATC,
2015.

[38] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending networking into the virtualization layer.
In Proc. HotNets, 2009.

[39] R. Rivas, A. Arefin, and K. Nahrstedt. Janus: a cross-layer

soft real-time architecture for virtualization. In Proc. HPDC,
2012.

[40] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes,
not VCPUs. In Proc. APSys, 2013.

[41] O. Sukwong and H. S. Kim. Is co-scheduling too expensive
for SMP VMs? In Proc. EuroSys, 2011.

[42] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards scalable multiprocessor virtual machines. In Virtual
Machine Research and Technology Symposium, 2004.

[43] C. A. Waldspurger. Lottery and stride scheduling: Flexible
proportional-share resource management. Technical report,
Massachusetts Institute of Technology, 1995.

[44] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware sup-
port for spin management in overcommitted virtual machines.
In Proc. PACT, 2006.

[45] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive schedul-
ing for virtual machines. In Proc. HPDC, 2011.

[46] C. Weng, Z. Wang, M. Li, and X. Lu. The hybrid scheduling
framework for virtual machine systems. In Proc. VEE, 2009.

[47] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: towards real-
time hypervisor scheduling in Xen. In Proc. EMSOFT, 2011.

[48] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc
synchronization considered harmful. In Proc. OSDI, 2010.

[49] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vTurbo:
Accelerating virtual machine I/O processing using designated
turbo-sliced core. In Proc. USENIX ATC, 2013.

[50] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu. vSlicer: latency-aware virtual machine scheduling
via differentiated-frequency CPU slicing. In Proc. HPDC,
2012.

[51] L. Zhang, Y. Chen, Y. Dong, and C. Liu. Lock-Visor: An

efficient transitory co-scheduling for MP guest. In Proc.
ICPP, 2012.

