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Exploiting	Parallelism

• The	rise	of	multicore	architectures and	other	forms	of	
hardware	parallelism	

o Multi-core processors, accelerators, multi-queue devices,	co-
processors, etc.

• Exploiting parallelism in multicore systems
o Application runtimes à meet app-specific needs

o Operating systems à balance load, preserve locality, save energy

o Synchronization primitives à minimize overhead

• Interplays among runtime, OS, and synchronization not
well understood

o Runtime assumes guaranteed thread-level parallelism

o OS schedules threads based on their CPU demands

Semantic gap



Intricate	Program-OS	Interaction

• Hardware & OS: 4-socket	12-core	Intel	Xeon	E5-4640,	512GB	memory, Linux 4.14

• App: Linux perf	benchmark (configured	with	48	threads)
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Reasons	of	Imperfect	Balancing

• Only runnable/ready threads are eligible for load balancing

• OS may choose not to migrate threads

Data	locality Cache	hotness Energy saving	

Harmful interactions between parallel programs and the OS scheduler
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Assigning Tasks to GC Threads
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Native mutex Lock in HotSpot
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CPU Stacking and Unfair Locking

cxq EntryList OnDeck

Lock 
owner

Fast path

Wakes up, competes for
lock, sleeps if failed

Other waiters cannot proceed
until OnDeck wins

task->do_it

If both OnDeck and previous 
owner reside on the same CPU, 
OnDeck (almost) never wins 

void GCTaskThread::run()
{
    for (;/* ever */;){
         GCTask* task = manager()->get_task();
         task->do_it(); 
    }
}

GC threads sleeping
on the condition variable



Loss of Concurrency
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Loss of Concurrency

(b) GC thread distribution

’data.txt’ matrix
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Inefficient Work Stealing
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Why Work Stealing fails to Address the
Imbalance?

• HotSpot work stealing
o Randomly pick up two GC threads and steal from the one with a
longer queue

o A GC thread enters a distributed termination protocol after 2*N
failed steal attempts

Two random choices stealing not effective if there is
significant task imbalance among GC threads



Our Approaches

• GC thread affinity
o Dynamically bind GC threads to separate cores,
considering load

• Optimized work stealing
o Semi-random stealing

o Only steal from live threads, 2*N attempts
2*Nlive



(a) GC thread distribution
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Improvement	on	Overall	Performance
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Improvement on GC time
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Application Results
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Application Results
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More Results in the Paper

• Scalability

• Different heap sizes

• Multiple Java programs

• Comparison with NUMA-aware GC thread
placement and work stealing [Gidra-ASPLOS’13]



Insights & Takeaways

• Thread stacking can be mitigated through more
frequent OS load balancing, but not eliminated

o Enable SMT, disable power saving, ignore NUMA

• Possibly a bigger problem than inefficient GC
o Inherent tradeoff between sync and OS scheduling

• Sync -- limit concurrent lock contenders
• OS -- most effective if all threads are active

o Up to 68% perf. difference in PARSEC benchmarks

• More general solution in OS scheduling
• Rethinking sync optimization: OS friendly vs. unfriendly



Thank  you !

Questions?


