
Characterizing	and	Optimizing Hotspot	Parallel	
Garbage Collection	on	Multicore	Systems

Kun	Suo^, Jia	Rao^, Hong	Jiang^ and Witawas Srisa-an*

^ The	University	of	Texas	at Arlington

*	The	University	of	Nebraska at Lincoln

Exploiting	Parallelism

• The	rise	of	multicore	architectures and	other	forms	of	
hardware	parallelism	

o Multi-core processors, accelerators, multi-queue devices,	co-
processors, etc.

• Exploiting parallelism in multicore systems
o Application runtimes à meet app-specific needs

o Operating systems à balance load, preserve locality, save energy

o Synchronization primitives à minimize overhead

• Interplays among runtime, OS, and synchronization not
well understood

o Runtime assumes guaranteed thread-level parallelism

o OS schedules threads based on their CPU demands

Semantic gap

Intricate	Program-OS	Interaction

• Hardware & OS: 4-socket	12-core	Intel	Xeon	E5-4640,	512GB	memory, Linux 4.14

• App: Linux perf	benchmark (configured	with	48	threads)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

wake wake-parallel requeue hash lock-pi

Futex benchmarks

CPU	pin

Linux	LB

Ineffective Linux load balancing
incurs more than 80% degradation

Perfect LB not always leads
to better performance

CPU	pinning	overwrites
Linux LB and

guarantees 1-to-1
thread-to-core mapping

Hi
gh
er

is
be

tt
er

Reasons	of	Imperfect	Balancing

• Only runnable/ready threads are eligible for load balancing

• OS may choose not to migrate threads

Data	locality Cache	hotness Energy saving	

Harmful interactions between parallel programs and the OS scheduler

Application
(Mutator)
execution

time

①
Init

Phase

②
Parallel
Phase

③
Final
Phase

Parallel GC
(default in JDK 1.8)

Stop-the-world (STW)
pause

Parallel GC in HotSpot JVM

Application
(Mutator)
execution

time

Root
Task

Steal
Task

Final
Task

GC
begins

GC
ends

Assigning Tasks to GC Threads

GCTaskQueue

GCTask GCTask GCTask
_newer _older _newer _older _newer _older

GCTaskThread

GCTaskManager
get_task

steal

dequeue enqueue

GenericTaskQueue GenericTaskQueue GenericTaskQueue
steal

Monitor

Core

GC thread

GC task

Native mutex Lock in HotSpot

cxq EntryList

WaitSet

OnDeck

Lock
owner

GC
thread

Mutex is uncontended,
fast path

co
nte

nd
ed

,

slo
w pa

th

Heir

Compete for
lock byte

GCTaskQueue
is empty

Mutex_unlock:
release lock byte,

assign heir,
promote acquirers,

wake heir

Acquirer queueWaiter queue

Mutex_lock Next GC starts,
notify all GC threads

Transfer waiters from
WaitSet to cxq

GC ends

GC starts

1

2

3 Competitive
handoff

CPU Stacking and Unfair Locking

cxq EntryList OnDeck

Lock
owner

Fast path

Wakes up, competes for
lock, sleeps if failed

Other waiters cannot proceed
until OnDeck wins

task->do_it

If both OnDeck and previous
owner reside on the same CPU,
OnDeck (almost) never wins

void GCTaskThread::run()
{
 for (;/* ever */;){
 GCTask* task = manager()->get_task();
 task->do_it();
 }
}

GC threads sleeping
on the condition variable

Loss of Concurrency

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GC
ta
sk

nu
m
be

r

GCTaskThread ID

GC task distribution among GC threads

OldToYoungRootsTask ScavengeRootsTask

ThreadRootsTask StealTask

Loss of Concurrency

(b) GC thread distribution

’data.txt’ matrix

 0 2 4 6 8 10 12 14 16 18
Core ID

 0
 2
 4
 6
 8

 10
 12
 14

G
C

 th
re

ad
 ID

 0

 2

 4

 6

 8

 10

N
um

be
r o

f g
et

_t
as

k(
) c

al
le

d

Inefficient Work Stealing

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

The	breakdown of GC	time

Final	Synchronisation

All	Other	Tasks

Steal	Task(termination)

Steal	Task(steal)

Initialisation

Why Work Stealing fails to Address the
Imbalance?

• HotSpot work stealing
o Randomly pick up two GC threads and steal from the one with a
longer queue

o A GC thread enters a distributed termination protocol after 2*N
failed steal attempts

Two random choices stealing not effective if there is
significant task imbalance among GC threads

Our Approaches

• GC thread affinity
o Dynamically bind GC threads to separate cores,
considering load

• Optimized work stealing
o Semi-random stealing

o Only steal from live threads, 2*N attempts
2*Nlive

(a) GC thread distribution

’data.txt’ matrix

 0 2 4 6 8 10 12 14 16 18
Core ID

 0
 2
 4
 6
 8

 10
 12
 14

G
C

 ta
sk

 ID

 0

 2

 4

 6

 8

 10

N
um

be
r o

f g
et

_t
as

k(
) c

al
le

d

 0

 2

 4

 6

 8

 10

 12

0 2 4 6 8 10 12 14
G

C
 ta

sk
 n

um
be

r

GC thread ID

(b) GC task distribution

OldtoYoungRootsTask
ScavengeRootsTask

ThreadRootsTask
StealTask

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
GC

ta
sk

nu
m
be

r

GCTaskThread ID

GC task distribution among GC threads

OldToYoungRootsTask ScavengeRootsTask

ThreadRootsTask StealTask

Mitigating the GC Imbalance

Improvement	on	Overall	Performance

0

0.2

0.4

0.6

0.8

1

1.2

h2 jython luserach sunflow xalan

Re
la
tiv
e	
to
	th

e	
de
fa
ul
t	J
VM

DaCapo	execution	time	

Vanilla-JVM w/	GC-affinity w/	steal Together

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Re
la
tiv
e	
to
	th

e	
de
fa
ul
t	J
VM

SPECjvm2008	throughput

Vanilla-JVM w/	GC-affinity w/	steal Together30.4% 17.5%

thread
affinity

optimized
stealing

42.5%

combined

Hi
gh
er

is
be

tt
er

Lo
w
er

is
be

tt
er

Improvement on GC time

0

0.2

0.4

0.6

0.8

1

1.2

Vanilla-JVM Optimized-JVM

Lower is better

N
or
m
al
ize

d
GC

tim
e

More than 80%

Application Results

0.8

0.85

0.9

0.95

1

1.05

Spark execution	time

Vanilla-JVM Optimized-JVM

Lower is better

Up to 13%

Application Results

0

1

2

3

4

5

6

7

median mean 95% 99%

La
te
nc
y
(m

s)

Cassandra read latency

Vanilla-JVM Optimized-JVM

Lower is better

Improved tail
latency

More Results in the Paper

• Scalability

• Different heap sizes

• Multiple Java programs

• Comparison with NUMA-aware GC thread
placement and work stealing [Gidra-ASPLOS’13]

Insights & Takeaways

• Thread stacking can be mitigated through more
frequent OS load balancing, but not eliminated

o Enable SMT, disable power saving, ignore NUMA

• Possibly a bigger problem than inefficient GC
o Inherent tradeoff between sync and OS scheduling

• Sync -- limit concurrent lock contenders
• OS -- most effective if all threads are active

o Up to 68% perf. difference in PARSEC benchmarks

• More general solution in OS scheduling
• Rethinking sync optimization: OS friendly vs. unfriendly

Thank you !

Questions?

