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Abstract
An increasing number of new multicore systems use the

Non-Uniform Memory Access architecture due to its scalable
memory performance. However, the complex interplay among
data locality, contention on shared on-chip memory resources,
and cross-node data sharing overhead, makes the delivery of
an optimal and predictable program performance difficult. Vir-
tualization further complicates the scheduling problem. Due
to abstract and inaccurate mappings from virtual hardware to
machine hardware, program and system-level optimizations
are often not effective within virtual machines.

We find that the penalty to access the “uncore” memory
subsystem is an effective metric to predict program perfor-
mance in NUMA multicore systems. Based on this metric, we
add NUMA awareness to the virtual machine scheduling. We
propose a Bias Random vCPU Migration (BRM) algorithm
that dynamically migrates vCPUs to minimize the system-wide
uncore penalty. We have implemented the scheme in the Xen
virtual machine monitor. Experiment results on a two-way
Intel NUMA multicore system with various workloads show
that BRM is able to improve application performance by up to
31.7% compared with the default Xen credit scheduler. More-
over, BRM achieves predictable performance with, on average,
no more than 2% runtime variations.

1. Introduction
Multicore systems have become the fundamental platforms
for many real-world systems, including scientific computing
clusters, modern data centers, and cloud computing infrastruc-
tures. While enjoying the advantage of simultaneous thread
execution, programmers have to deal with the problems mul-
ticore systems give rise to. Sub-optimal and unpredictable
program performance due to shared on-chip resources remains
top concern as it seriously compromises the efficiency, fair-
ness, and Quality-of-Service (QoS) that the platform is capable
to provide [41]. There are existing work focusing on hardware
techniques [32] and program transformations [28, 39, 40] to
mitigate the problem. Thread scheduling, a more flexible ap-
proach, has been also studied to avoid the destructive use of
shared resources [7, 8, 11, 14, 30] or to use them construc-
tively [5, 35, 38].

Non-Uniform Memory Access (NUMA) design, the emerg-
ing architecture in new multicore processors, further compli-
cates the problem by adding one more factor to be considered:
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Figure 1: Worst case runtime degradations of parallel and mul-

tiprogrammed workloads in a NUMA system.

memory locality. The complex interplay among these fac-
tors makes the determination of the optimal thread-to-core
assignment difficult. We ran the NAS parallel benchmarks and
the SPEC CPU2006 benchmarks on an Intel NUMA machine
(see Section 2.2 for the hardware configuration) with differ-
ent thread-to-core mappings. Each parallel benchmark was
configured with four threads and each multiprogrammed work-
load ran four identical copies of the corresponding CPU2006
benchmark. The memory of the benchmarks was allocated on
node 0 of the two memory nodes.

Figure 1 shows the worst-case performance of these work-
loads relative to their best-case performance (termed as op-
timal) that is obtained by enumerating CPU bindings. We
make two observations. First, not all the benchmarks are
sensitive to the scheduling on NUMA systems (e.g., ep and
mg), but when they are, the degradation can be significant
(e.g., a 106% degradation for lu). Second, although differ in
nature, both parallel and multiprogrammed workloads may
suffer performance degradations on NUMA systems. Previous
work used last-level cache miss rate [7, 8, 14] and inter-cache
access rate [35] to quantify the contention and sharing on
shared resources, respectively. However, no existing work has
combined these two factors together to predict the optimal
schedule for unknown workloads [42]. Given the factor of
memory locality, performance optimization on NUMA mul-
ticore systems becomes even harder. This motivated us to
develop a unified and automated approach to optimizing the
NUMA performance for an arbitrary program.

Virtualization poses additional challenges to performance
optimization on NUMA systems. First, programs running
inside a virtual machine (VM) have little or inaccurate knowl-
edge about the underlying NUMA topology, preventing pro-
gram and guest operating system (OS) level optimizations
from working effectively. Second, user-level schedulers often



apply strict CPU affinities to the virtual CPUs (vCPUs) [42].
This creates some isolated resource islands on the physical
machine, making it difficult to enforce fairness and priorities
among VMs [13]. These challenges call for an approach that
integrates NUMA awareness into the VMM-level scheduling.
As such, optimizations can be made transparent to users and
do not affect the in place VM management.

In this work, we propose a NUMA-aware vCPU scheduling
scheme based on a novel hardware-based metric for perfor-
mance optimization in virtualized environments. We conduct
a comprehensive measurement of a carefully-designed micro-
benchmark and real-world workloads using hardware perfor-
mance monitoring units (PMU). Measurement results show
that the penalty to access the “uncore” memory subsystem is
a good runtime index of program performance. The metric
is synthesized from a number of hardware events, including
last-level cache (LLC) accesses, memory accesses, and inter-
socket communications. Based on this observation, we design
a Bias Random vCPU Migration (BRM) algorithm that auto-
matically optimizes vCPU-to-core assignment by minimizing
system-wide uncore penalty.

We have implemented BRM in Xen and made a few changes
to the Linux kernel running inside a VM to support BRM, and
performed extensive experiments with our micro-benchmark
and real workloads. Experiment results show that, compared
with Xen’s default credit scheduler, BRM improves program
performance by up to 31.7% and performs closely to an offline
determined optimal strategy. Moreover, on average, BRM
achieves a performance variation of no more than 2% for all
workloads, which is a significant reduction from the credit
scheduler.

The rest of the paper is organized as follows. Section 2
presents the background of the NUMA architecture, gives
motivating examples, and discusses challenges in a virtual-
ized environment. Section 3 introduces the metric of uncore
penalty. Section 4 and Section 5 describe the design and
implementation of BRM, respectively. Section 6 provides
the experiment results. Section 7 discusses related work and
Section 8 presents our conclusions and discusses future work.

2. Background and Motivation
In this section, we first describe the NUMA multicore archi-
tecture and discuss its implications on program performance.
Then, we further show that virtualization introduces difficul-
ties in attaining optimal and predictable program performance
in such systems.

2.1. The NUMA Multicore Architecture

As the number of cores per chip1 increases, traditional mul-
ticore systems with off-chip shared memory controller (i.e.,
Uniform Memory Access) are likely bottlenecked by the mem-
ory bandwidth. To alleviate memory bandwidth competition,
new processors integrate a memory controller on-chip. In such
multicore multiprocessor systems, a processor can access phys-

1We use chip, socket, and processor interchangeably to indicate an inte-
grated circuit die.
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Figure 2: The architecture of a two-socket Intel Nehalem-

based NUMA machine.

ical memory either via its own memory controller or via other
processors’ memory controllers connected by the cross-chip
interconnect. Accessing local memory gives higher throughput
and lower latency compared with accessing remote memory.
This Non-Uniform Memory Access (NUMA) architecture ef-
fectively removes the central shared memory controller and
significantly increases per core memory bandwidth.

Figure 2 shows a schematic view of a NUMA multicore
system based on dual Intel Nehalem processors. Although
other NUMA multicore processors (e.g., AMD Opteron) may
differ in the configuration of on-chip caches and the cross-
chip interconnect technology, they bear much similarity in
the architectural design. Therefore, most our discussions are
also applicable to them. As shown in Figure 2, each socket
has four cores, which share a last-level cache (L3 cache), an
integrated memory controller (IMC), and an Intel R� QuickPath
Interconnect (QPI). The cores including their private L1 and
L2 caches are called the “core” memory subsystem. The
shared L3 cache, the IMC, and the QPI together form the
“uncore” memory subsystem (the shaded area). Cache line
requests from the cores are queued in the Global Queue (GQ)
and are serviced by the uncore. Physical memory is divided
into two memory nodes, each of which is directly connected
to a processor.

2.2. Complications in Achieving Optimal Performance

For a parallel or multiprogrammed workload, its optimal
thread-to-core assignment on a NUMA multicore system de-
pends on the workload’s memory intensity and access pattern.
To avoid contention on shared resources, threads with high
memory footprints may be better distributed onto different
chips. In contrast, communicating threads should be grouped
onto the same chip as cross-chip communication is expen-
sive. Asymmetric memory performance further complicates
the scheduling problem and requires that thread computation
matches its data as much as possible. When all the three fac-
tors come into play, it is the dominant factor that determines
the best schedule. In the next, we show that the dominant
factor switches as the characteristics of the workload changes.

Inspired by [10], we design a micro-benchmark that exer-
cises different components of a NUMA multicore system. The
program can run with a single or multiple threads. Figure 3



thread_main(...)
{
    struct payload_t{
        struct payload_t *next;
        long pad[NPAD];
    };
    struct payload_t *ptr_private;
    /* Bind data to thread or to a specific node */ 
    set_mempolicy(...); 
    ptr_private = create_random_list(...);
    for (n = 0; n < LOOP; n++){
        /* access private data */
        for (i = 0; i < WORKING_SET_SIZE; i++){
            for (j = 0; j < NPAD; j++)
                tmp = ptr_private->pad[j];
            ptr_private = ptr_private->next;
        }
        /* access shared data */
        for (i = 0; i < SHARING_SIZE; i++)
            __sync_add_and_fetch(th->ptr_share+i, 1);
    }
}

Figure 3: The main function of a thread in the micro-

benchmark.

Intel Xeon E5620
Number of cores 4 cores (2 sockets)
Clock frequency 2.40 GHz

L1 cache 32KB ICache, 32KB DCache
L2 cache 256KB unified
L3 cache 12MB unified, inclusive,

shared by 4 cores
IMC 32 GB/s bandwidth,

2 memory nodes, each with 8GB
QPI 5.86 GT/s, 2 links

Table 1: Configuration of the Intel NUMA machine.

shows the main function of a thread. The data accessed by a
thread is divided into two parts. One part is the private data
that can only be used by one thread. It forms the primary
working set of the thread. The private data is allocated inside
the thread’s own stack and created as a randomly-linked list.
We set the payload of each entry in the list to 64 bytes (i.e.,
NPAD=7) matching the size of a cache line in Nehalem. We
control each thread’s working set size by altering the length of
the linked list. As all the entries are randomly linked, hardware
prefetching of adjacent cache lines can hardly help. It is the
capacity of the LLC and the locality of memory that determine
the performance.

The second part is a data area shared by all threads. It is
allocated in the main thread and is set to be multiple of the
long integer type (i.e., 8 byte, a word in Linux X86_64). We
configure the threads to sequentially access the shared space
and modify the value of each word by adding 1 to it. This effec-
tively exercises the cache coherence mechanism. To guarantee
the correctness under concurrent operations, we use the atomic
add instruction __sync_add_and_fetch to serialize writes
to the same memory location. By controlling SHARING_SIZE,
we determine the amount of inter-thread traffic generated by
the cache coherence protocol. We also specify the memory
allocation policy (using set_mempolicy) for each thread to
study how data locality affects the performance.

We measure the performance of the benchmark in terms of
thread runtime. In the case of multiple threads, performance

is measured as the average of individual threads’ execution
times. We ran the benchmark on a Dell PowerEdge T410
machine with two quad-core Intel Xeon E5620 processors.
Table 1 lists the details of the hardware. If not otherwise
stated, a thread accesses its private and shared data for 1000
times and 4 threads are used for the multithreaded version of
the benchmark. Figure 4 shows how individual factors affect
program performance. Figure 5 shows that the combination
of these factors makes the determination of the optimal sched-
ule difficult. For each test, we draw the performance of two
scheduling schemes with the second scheme normalized to the
first one.
2.2.1. Studying Individual Factors . To study the factor of
data locality, we used a single thread with its data allocated
on node 0 (i.e., the memory domain attached to processor 0).
In the scenario of Local, we set the affinity of the thread to
node 0 as well, guaranteeing all local memory access. Remote
refers to the run that the thread was pinned to node 1 and
accessed its memory remotely. In Figure 4(a), we can see that
on-chip LLC can hide the penalty to access remote memory
when the working set size is smaller than the LLC capacity
(i.e., 12MB) and accessing memory remotely will not hurt
program performance. However, as the working set size of the
thread increases beyond the LLC capacity, data locality plays
an important role in performance. The larger the working set
size, the larger impact remote penalty hits performance. For
example, remotely accessing a working set of 256MB causes
a 44% slowdown compared with a 26% slowdown in the case
of a 16MB working set.

Figure 4(b) shows the factor of LLC contention on per-
formance. We draw the performance of two thread-to-node
assignments. In this test, data sharing among threads was
disabled and data was bound to each thread avoiding remote
accesses. As indicated by its name, assignment sharing LLC
places all 4 threads on a single socket sharing the 12MB LLC.
Assignment separate LLC places 2 threads on each of the two
sockets. The X axis lists the aggregate working set size of
all threads. Similar to the data locality factor study, thread
affinity does not affect performance significantly as long as
the working sets of the threads can fit in a single LLC. As the
aggregate working set size goes beyond the capacity of one
LLC, distributing threads across sockets clearly outperforms
grouping threads, by as much as 33%. Unlike data locality,
whose impact grows as the working set increases, the impact
of the LLC contention diminishes as the working set size of a
single thread surpasses the LLC capacity.

To isolate the data sharing factor, we set the size of the
private area to zero and the size of the shared area to one
cache line. Figure 4(c) shows the performance of sharing
within a socket and sharing across socket (same number of
threads per socket) with different number of threads. As shown
in Figure 4(c), scheme across socket always incurs higher
overhead than within socket. Scheme across socket’s relative
degradation increases initially until reaching its peak at 4
threads and then decreases as more threads are used.

We make three important observations in Figure 4. First, the
LLC contention factor and the sharing factor are contradictory.
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While distributing threads on separate sockets avoids LLC
contention, grouping threads onto a single socket reduces
sharing overhead. Second, depending on a program’s memory
allocation, one may need to switch between distributing or
grouping threads to favor data locality. Finally, a program’s
memory footprint, thread-level parallelism, or inter-thread data
sharing affect how much each factor influences performance.
2.2.2. Combining Multiple Factors . To study the influence
of performance factors in more complex scenarios, we config-
ured the benchmark program to include two or more factors
in a single run. Figure 5 presents the performance compari-
son of two thread assignments in three different settings. The
bars shown are the program runtime normalized to assignment
Intra-S. Assignment Intra-S places all 4 threads on a single
socket (always node 0) and Inter-S distributes threads on sepa-
rate sockets, with 2 threads per socket. We focus on a simple
memory management policy allocating a program’s data to a
specific node (i.e., node 0). Thus, Intra-S always preserves
data locality while Inter-S has half of the threads accessing
memory remotely. Besides data locality, Intra-S and Inter-S
favor sharing and non-sharing the LLC, respectively.

Figure 5(a) shows the interplay between data locality and
LLC contention with inter-thread data sharing disabled. Sim-
ilar to Figure 4(a) and Figure 4(b), Figure 5(a) suggests that
thread assignment show insignificant influence on program
performance as long as the aggregate thread working set fits
in one LLC. As thread working sets increase, Inter-S gives
better performance as the effect of increased per thread LLC
capacity outweighs data locality. Finally, when the working
set size of a single thread passes the capacity of the LLC, data
locality becomes dominant on program performance.

The second test considers two contradicting factors: LLC
contention and data sharing. Since 4 threads with 16MB data

benefit most from separate LLCs in Figure 5(a), we fixed the
aggregate thread working set size to this value and altered the
size of the shared area. The larger the shared area, the more
inter-thread communication generated by the cache coherence
mechanism, thus the bigger impact the sharing factor places on
performance. Figure 5(b) shows that sharing LLC is destruc-
tive on performance as the sharing ratio (i.e., the ratio of the
size of shared area to the size of private area) remains small.
Before reaching a sharing size of 32KB, assignment Inter-S is
more preferable. After that, the overhead on inter-socket data
sharing outweighs the contention on LLC, and sharing LLC
(i.e., Intra-S) becomes constructive on performance.

Figure 5(c) shows the results of the test run that combined
all the three factors. The size of the sharing area is fixed
at 128KB. The trend in this figure can be summarized as
grouping threads in one socket being constructive initially,
then destructive as contention on LLC dominates, and at last,
constructive again as locality and sharing overhead together
decide performance.

2.3. Obstacles due to Virtualization

To seamlessly share hardware resources among multiple vir-
tual machines, the virtualization layer (usually the VMM)
presents each guest OS a virtual abstraction of the machine
hardware. A guest OS relies on the virtual to machine transla-
tion to access the actual hardware. For memory accesses, the
physical addresses used by the guest OS need to be translated
to machine addresses. The virtual CPU(s), on which applica-
tion threads execute, need to be mapped onto physical cores.
The mapping from virtual to machine resources has to reflect
the NUMA topology for the optimizations in the guest OSes
to be effective.

Current VMMs present a flat CPU and memory hierarchy
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sults in sub-optimal and varying performance.

to VMs and rely on the VMM for NUMA optimizations. A
common approach, which has been used by Xen 4.0, VMware
ESXi, and Hyper-V, is to allocate all the memory of a VM
to one NUMA node and schedule the VM’s vCPUs only on
this node. As such, the guest OS does not need to be NUMA-
aware because all memory accesses are guaranteed to be local.
Recent advances [2, 33] in VMM development allow the vir-
tual NUMA topology to be exported to VMs for guest-level
NUMA optimizations.

There are several scenarios that the virtual NUMA topology
perceived by a guest OS, including the flat and the exported
topologies, may become inaccurate. First, VMs with a memory
size larger than the available memory in a node, or with a total
amount of vCPUs exceeding the number of cores in a node,
have to be split across multiple nodes. In such cases, the
flat topology does not always preserve data locality. Second,
VMs may be migrated to a different host due to inter-machine
load balancing. Since not all guest OSes support dynamic
changes to the NUMA topology without a reboot, the virtual
NUMA topology of the migrated VM may not reflect its actual
memory layout on the new host.

Figure 6 shows the performance of the micro-benchmark in
a virtualized environment. We used the 4-thread benchmark
program with a 128MB working set and a 128KB shared
space in Xen VMs. We first ran the benchmark in a VM with
4GB memory and 8 vCPUs. Note that our testbed has 8GB
memory and 8 cores on each node. This VM can fit in one
node and the flat topology it observes is accurate. To create an
inaccurate NUMA topology, we used a different “wide” VM
that has 12GB memory and 8 vCPUs. Thus, the flat topology
does not reflect the split memory used by this VM. We ran
the benchmark 10 times for each setting with the Xen default
scheduler and draw the average runtime (normalized to the first
setting) and the relative standard deviation. Figure 6 shows
that the inaccurate NUMA topology incurred a performance
degradation of 26% and a variation of 8% compared with the
runs with accurate topology.
[Short summary] In this section, we have shown that the
NUMA architecture poses significant challenges in determin-
ing the optimal performance for parallel or multiprogrammed
workload. Existing VMMs assume a simple and static NUMA
topology for VMs. When this assumption does not hold, the
NUMA-agnostic VMM-level scheduler is incompetent to pro-
vide optimized and predictable performance.

In the following sections, we identify a hardware-level met-
ric that accurately reflects the high-level performance and use
the metric to help VM scheduling.

3. Uncore Penalty as a Performance Index
In NUMA multicore systems, three factors: remote access
penalty, shared resource contention, and cross-chip data shar-
ing overhead jointly determine program performance. Last-
level cache miss rate has been found quite effective quantifying
the shared resource contention [7]. The authors in [40] used
the sharing ratio between threads to infer the effect of thread-
to-core mapping on performance. As shown in Section 2.2, the
dominant factor can change depending on the interplay among
the three factors. Therefore, neither of the metrics alone can
reflect overall program performance. In this section, we show
that the penalty to access the uncore memory subsystem sheds
insight on the complex interplay.

Any data access that misses the private mid-level cache (i.e.,
L2 cache) and the multicore cache coherence traffic are ser-
viced by the uncore. For homogeneous NUMA multicore sys-
tems, each core has the same configuration of the out-of-order
pipeline and the core memory subsystem (i.e., the private L1
and L2 caches). Therefore, the performance discrepancy due
to different thread-to-core assignments only comes from stall
cycles from the uncore. The number of memory stall cycles
depends on the number of misses and the miss penalty [15]:

Uncore stall cycles=Number of L2 misses⇥L2 miss penalty

Since each core has a L2 cache with the same size, the number
of L2 misses is independent of the thread-to-core assignment.
Thus, it is the L2 miss penalty, which we call the uncore
penalty, that makes a difference on program performance. The
larger the uncore penalty, the more stall cycles a program
experiences.

There are a variety of data sources that may respond to
a L2 miss. Table 2 lists the possible uncore responses on
Intel Nehalem-based systems [16]. The number of responses
LOCAL_DRAM and REMOTE_DRAM reflects the memory-intensity
of a program while their ratio show how well thread scheduling
preserves data locality. The rest of the responses characterize
the communication patterns between threads. The overall
uncore penalty of a program is the summarized penalty of these
response types. Therefore, the value of the uncore penalty
sheds insight on the complex interplay among the three factors
and one can use it to quantitatively compare different thread-
to-core assignments, the smaller the uncore penalty, the better
the scheduling decision.

3.1. Calculation of the Uncore Penalty

A straightforward way to calculate the uncore penalty is to
average over the service times (i.e., latency) of individual
responses. However, modern processors are able to service
multiple outstanding cache misses in parallel using techniques
such as non-blocking caches [21], out-of-order execution with
wide instruction windows, and hardware prefetching. As such,
memory stalls due to individual L2 misses can overlap with
each other. Averaging over the latencies over-counts the stall
cycles experienced by a program. As shown in Figure 2, un-
core requests wait in the Global Queue before being serviced.
In addition to the per socket GQ structure, Intel Nehalem pro-



Uncore response Description
UNCORE_HIT LLC hit, unshared

OTHER_CORE_HIT_SNP LLC hit, shared by another core, same socket
OTHER_CORE_HITM LLC hit, modified by another core, same socket

REMOTE_CACHE_FWD LLC miss, shared by another core, different socket
REMOTE_HITM LLC miss, modified by another core, different socket
LOCAL_DRAM LLC miss, read from local DRAM

REMOTE_DRAM LLC miss, read from remote DRAM

Table 2: Uncore response types on Intel Westmere processors.

cessors also provide a per core super queue (SQ) structure to
track all accesses that miss the L1 caches, which is a super set
of the uncore requests.

From the occupancy statistics of the SQ, the uncore penalty
experienced by each core can be estimated. According to
Little’s law, for a time period of t cycles, the average time W
(i.e., latency in cycles) that an uncore request stays in the SQ
can be calculated as:

W =
L
l
,

where L is the number of uncore requests in the SQ during this
period and l is the uncore request arrival rate. As discussed
in [23, 32], the penalty P associated with each uncore request
can be approximated as the ratio of average uncore latency
W and the average number of outstanding parallel uncore
requests q 2. Therefore, uncore penalty P can be expressed as:

P =
W
q

=
L/l
L/t 0

=
t 0

l
,

where t 0 is the number of cycles that there is at least one un-
core request in the SQ and we use L/t 0 to estimate its queue
depth. Based on this formula, one is able to measure the un-
core penalty online by monitoring the occupancy and request
insertion of the SQ.

3.2. The Effectiveness of the Metric

In this subsection, we show that uncore penalty is a more
reliable architectural metric than conventional metrics in the
prediction of program performance. A metric, whose value
change agrees with the change in program performance, is
considered effective in performance prediction. Figure 7 draws
the relationship between the measured uncore penalty and the
runtime of our benchmark program, under different thread-
to-core assignments. For comparison, we also measured the
last-level cache miss rate. Note that a reduction in the LLC
miss rate indicates mitigated shared cache contention for any
workload, but it is almost impossible to find a unified threshold
of data sharing ratio to quantify sharing overhead. Thus, we
only compare uncore penalty with LLC miss rate in the figure
and expect that the sharing factor alone can not accurately
reflect performance.

We collected the architectural metrics using Intel
VTune [17], a tool that has access to hardware performance

2We use the average queue depth of the SQ as an approximation of the
number of concurrent uncore requests.

counters. More specifically, for the calculation of uncore
penalty, we measured the number of cycles that have at least
one demand data/instruction load or RFO request outstanding
and the number of these requests. Data store and prefetching
requests were excluded from the calculation either because
their stall cycles can be hidden by the out-of-order execution
or because they are not on the critical path of program exe-
cution. For cache miss rate, we counted the number of LLC
misses per thousand instructions. The configuration of the
benchmark programs is identical to those in Figure 5.

The metric value V is normalized to its corresponding mea-
surements in Intra-S using VInter�S�VIntra�S

VIntra�S
. For example, a

runtime bar with a value of �0.5 indicates that the program
runtime under Inter-S is 50% less than the runtime under Intra-
S. From Figure 7, we can see that uncore penalty not only
reflects program runtime qualitatively but also quantitatively.
To characterize the relationship between uncore penalty and
program performance, we calculate the linear correlation coef-
ficient r between these two metrics. The closer r approaches to
1 (or �1), the stronger a linear relationship exists between the
two. As shown in Figure 7, the runtime metric is proportional
to the uncore penalty with r = 0.91 suggesting a strong posi-
tive linear relationship. In comparison, Figure 7 also shows
that LLC miss rate only agrees with runtime in a subset of
runs, in which the LLC contention was the dominant factor.
Overall, LLC miss rate is less accurate in predicting program
performance with r = 0.61 across all benchmark runs.

In summary, uncore penalty is a more reliable metric for
performance prediction than LLC miss rate. By sampling
penalties in different thread-to-core assignments, the optimal
schedule can be determined as the one with minimum penalty.

4. A NUMA-aware Scheduling Algorithm for
Virtual Machines

Our measurement found that data stalls from the uncore are the
sources of performance degradation and variation in NUMA
systems. Application-level stall optimizations are ineffective
in a virtualized environment due to the layer of virtualization
between programs and the actual hardware. We therefore
strive to add NUMA awareness to the more general virtual
machine scheduling at the VMM level. To this end, we propose
a Bias Random vCPU Migration (BRM) algorithm on top of
the existing scheduler to dynamically adjust the vCPU-to-
core assignment. Guided by uncore penalty on each vCPU,
the migration algorithm automatically identifies the optimal
assignment by minimizing system-wide uncore stalls.
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Figure 7: The relationship between architectural metrics and program performance.

4.1. Overview

Our dynamic vCPU migration approach consists of three
phases.
1. Monitoring Uncore Penalty: The scheduler continuously

monitors the uncore penalty of each vCPU by querying
the PMUs on the core where the vCPU is running. The
measured uncore penalty is saved in the data structure
representing the vCPU and is later used by the scheduler to
make migration decisions.

2. Identifying NUMA Migration Candidate: We rely on
the guest OS to identify some vCPUs that run NUMA
sensitive threads and then treat these vCPUs differently in
making migration decisions.

3. vCPU Migration: The scheduler tries to migrate candidate
vCPUs to minimize the system-wide uncore penalty. To
avoid frequent migrations, a vCPU stays in its current node
until there is a high possibility that it will experience less
uncore stalls in another node.

In the following subsections, we present details of each phase.

4.2. Monitoring Uncore Penalty

We collect PMU data for each vCPU and calculate its uncore
penalty every time the scheduler performs periodic bookkeep-
ing. Each vCPU’s uncore penalty is then used to update the
system-wide penalty. After that each vCPU saves the latest
value of the global penalty into a private array. The array,
which is indexed by node IDs, stores the global penalties when
the vCPU runs on different nodes. If the migration of the
vCPU causes an increment in its own or other vCPUs’ uncore
penalties, the global penalty increases. Otherwise, the global
penalty decreases. As such, we monitor how individual vCPU
migrations affect overall uncore penalty perceived by the pro-
gram. To reduce the influence of measurement noises (e.g.,
sudden spikes), we use a moving average of penalties over a
sliding measurement window. This approach produces fairly
stable measurements avoiding premature migrations and is
able to adapt to phase changes.

Note that a vCPU’s uncore penalty for a node can only
be updated when it is running on this node. When program
phase changes, the penalties for the nodes, on which the vCPU
has not executed recently, are inaccurate. This can negatively
affect migration decisions. To address this issue, we reset
the uncore penalty for each node after a period of time. This
will force the migration algorithm to explore on each node for
updated penalties.

4.3. Identifying Migration Candidate

As discussed in Section 2.2, application threads whose ex-
ecution is dominated by uncore stalls are likely affected by
scheduling. Thus, only the vCPUs that carry these scheduling-
sensitive threads need to be migrated for better performance.
Considering only a subset of the vCPUs for migration also
avoids significant changes to the existing vCPU migration
algorithm. It is a common practice to consolidate heteroge-
neous applications onto one virtualized server. Our approach
only applies to the application that are sensitive to the NUMA
architecture. The rest of co-running applications can still be
governed by the original vCPU migration algorithm for load
balancing.

We rely on a guest OS to pass the candidate information to
the VMM. We observe that NUMA optimizations in modern
OSes and runtime libraries usually couple memory allocation
policies with CPU affinity. Users may enforce CPU affinity
by either launching programs using the numactl utility or
explicitly specifying affinity with the sched_setaffinity
system call. We consider the vCPUs, which have application
threads affiliated with, to be likely NUMA sensitive, thus
identify them as NUMA migration candidates. Modifications
to the guest kernel are necessary. Whenever a thread with
a non-empty CPU mask is executed on a vCPU, the thread
initiates a call down to the VMM with the vCPU ID as the
argument. Once receiving the call, the VMM tags the vCPU
as a candidate in its scheduler. When the thread exits, it makes
another call to clear the tag on the vCPU.

4.4. Bias Random Migration

In multiprocessor scheduling, there are two general approaches
to load balancing: push migration and pull migration. In push
migration, the scheduler periodically checks load balance and
migrates (or pushes) threads from busy to less-busy cores if
an imbalance is found. The key function in push migration
is to pick the core where the migrated thread will run next.
Pull migration occurs when a core becomes idle and steals (or
pulls) a waiting thread from a busy core. Our vCPU migration
approach works closely with push migration.

Algorithm 1 shows the BRM algorithm. Whenever the
scheduler periodically checks a vCPU for migration (function
Migrate), it updates the system-wide uncore penalty with
new PMU readings (function Update) and saves the value in
a per-vCPU data structure v.unc. If current penalty is larger
than the recorded penalty on any other node, the probability



of migrating this vCPU increases. The node bias, which aids
the selection of the migration destination, is then modified
to point to the node with the minimum penalty. Otherwise,
current node has the least uncore stalls and the migration
probability decreases, favoring staying with current node. We
bound the probability with values of 0 and 100 indicating a
“must” migrate and stay situation, respectively.

When selecting a migration destination, the scheduler treats
a NUMA migration candidate differently. A NUMA candidate
vCPU uses our designed BiasRandomPick to select a core
with the minimum uncore stalls while a NUMA insensitive
vCPU uses the original DefaultPick to select a less-busy
core. As indicated by its name, BiasRandomPick adds some
randomness when making a migration decision. A random
number is checked against the migration probability to decide
whether to migrate or not. The higher the migration probabil-
ity, the larger chance a vCPU will be migrated. Once deciding
to migrate, the destination will be a core in the vCPU’s biased
node and its migration probability will be reset to zero. A
timer is used to generate a random period, after which the
uncore penalty of this vCPU is reset for new explorations.

The randomness serves two purposes. First, randomness
helps produce more predictable system performance for dy-
namic workloads [6]. Second, more importantly, randomness
avoids expensive synchronization on multiple independent
cores. Without the random component, two competing or com-
municating vCPUs can be migrated at the same time resulting
in new competitions on another node or unresolved cross-node
communications. A possible solution is to have vCPU mi-
grations synchronized on multiple cores, allowing only one
migration at a time. However, such synchronizations limit the
scalability of scheduling on many cores. With randomness,
migrations are spread over multiple decision windows. As
such, vCPUs involved in the competition or communication
can be migrated sequentially, approximating the existence of
synchronization. If migrations indeed resolve the performance
issues, the uncore penalties of the not-yet migrated vCPUs will
decrease. Further migrations of these vCPUs can be avoided.

To preserve the fairness and priorities of VMs, we allow
the migration decisions made by BRM to be overridden by
the default load balancing. More specifically, when a NUMA
candidate vCPU is selected by a stealing core, the stealing is
temporarily suspended. Only if the stealing core can not find
another non-NUMA vCPU to steal, the NUMA vCPU is sent
to the stealing core. As such, we preserve BRM decisions as
much as possible without affecting the original load balancing.

5. Implementation
We implemented the support for monitoring uncore penalty,
identifying migration candidate, and our proposed BRM algo-
rithm in Xen (version 4.0.2). When modifications were needed
in the guest OS, we used the Linux kernel 2.6.32.

We patched Xen with Perfctr-Xen [31] to access low-level
hardware performance counters. Perfctr-Xen maintains a per-
vCPU data structure to store the values of hardware counters.
To count events on a per-thread basis, Perfctr-Xen updates
counter values at both intra-VM and inter-VM (i.e., thread and

Algorithm 1 Bias Random Migration Algorithm
1: Variables: Virtual CPU v; Current physical core c and node

n; Node migration bias; Probability to migrate prob; Uncore
penalty unc.

2:
3: /* Periodic push migration*/
4: procedure MIGRATE(v)
5: UPDATE(v)
6: if v is a migration candidate then
7: new_core = BIASRANDOMPICK(v)
8: else
9: new_core = DEFAULTPICK(v)

10: end if
11: migrate v to new_core
12: end procedure
13:
14: procedure UPDATE(v)
15: n = NUMA_CPU_TO_NODE(v.c)
16: Update global penalty and save it in v.unc[n]
17: for all nodes i except n do
18: if v.unc[n]> v.vnc[i] then
19: v.prob =++ v.prob > 100 ? 100 : v.prob
20: if v.vnc[v.bias]> v.vnc[i] then
21: v.bias = i
22: end if
23: else
24: v.prob =�� v.prob < 0 ? 0 : v.prob
25: end if
26: end for
27: end procedure
28:
29: procedure BIASRANDOMPICK(v)
30: rand = random() mod 100
31: if rand < v.prob then
32: Select a core in node v.bias
33: Reset v.prob
34: else
35: Select current core
36: end if
37: end procedure

vCPU) context switches. Since our objective is to optimize
scheduling at the VMM level, we disabled counter updates in
the guest OS. Besides vCPU context switches, we also updated
the counters every time (every 10ms) the credit scheduler in
Xen burns a running vCPU’s credits. The number of events
occurred between two adjacent updates were used to derive
a sample of the uncore penalty. We recursively calculated an
exponential weighted moving average (EWMA) of the new
sample and the last EWMA:

EWMAt+1 = (EWMAt ⇥7+Sample)/8.

We empirically set EWMA’s alpha parameter to 0.125 for a
good balance of stability and responsiveness.

We added two new hypercalls tag and clear to the guest
Linux kernel. When a thread is scheduled, we examine its
CPU mask (i.e., cpus_allowed). If the weight of the mask is



smaller than the number of online CPUs, the tag hypercall is
triggered with the current running CPU ID as the parameter.
Once Xen receives this call, it tags the corresponding vCPU as
a NUMA migration candidate. Note that some kernel threads
have CPU masks preset by the boot process. The hypercall
skips any thread with a PID smaller than 1000 to avoid tagging
such kernel threads. We detected program exit by tracking the
exit_group system call in the guest kernel, and triggered the
clear hypercall to clear the tag on the vCPU.

Other than using /dev/random as the interface for ran-
dom number generation in the kernel space, we implemented
a lightweight random number generator based on the Time
Stamp Counter (TSC) register. The TSC register counts the
number of cycles since reset. We sampled the values of TSC
between updates and counted the number of cycles elapsed
since the last update. The last two digits of the elapsed cy-
cles were then used as a random number in the range of [0,
99]. Accordingly, we set the migration probability in the
same range. The rationale behind this design is that modern
hardware timer’s resolution is typically in the granularity of
micro-second (approximately 2430 cycles on our platform).
Thus, the last two digits are likely device noises and are a good
source of randomness.

6. Evaluation
In this section, we present an experimental evaluation of
the proposed BRM algorithm using our synthetic micro-
benchmark and real-world parallel and multiprogrammed
workloads. We compare the performance of BRM with Xen’s
default credit scheduler and a hand-optimized vCPU binding
strategy (Section 6.1). Then we study the stability of BRM in
terms of runtime variations (Section 6.2). Finally, we charac-
terize BRM’s runtime overhead (Section 6.3).

We ran the experiments on the Intel NUMA machine de-
scribed in Table 1. Hyperthreading was enabled and therefore
the testbed was configured with 16 logical processors. To
isolate the NUMA effect from other factors affecting perfor-
mance, such as power management, we disabled Intel Turbo
Boost in BIOS and set the processors to the maximum fre-
quency. We implemented BRM in Xen 4.0.2 and modified
Linux guest kernel 2.6.32 for vCPU tagging. The benchmark
programs were ran in a VM with 16 vCPUs and 12GB memory.
Since the capacity of one memory node is 8GB, the memory
of the VM is split onto two nodes.

We selected the following benchmarks and measured their
execution times and variations.
• Micro-benchmark. As discussed in Section 2.2, the micro-

benchmark has multiple configurable parameters. Similar
to Figure 5(c), we configured the benchmark with 4 threads
and a sharing size of 128KB, and then changed the aggre-
gate working set size from 4MB to 128MB. The execution
time of the benchmark is calculated as the average runtime
of individual threads.

• Parallel workload. We selected the NAS parallel bench-
mark suite [3] for the parallel workload. The NPB bench-
mark suite includes 9 parallel benchmarks derived from
computational fluid dynamics applications. We excluded

the benchmark is from the experiments as its execution
time is less than 10 seconds. We used the OpenMP imple-
mentation of the benchmarks and set the problem size to
class C. Four threads were used for each benchmark.

• Multiprogrammed workload. We constructed the multi-
programmed workload from the SPEC CPU2006 bench-
marks [37]. Since the benchmarks in the suite are indepen-
dent of each other (no data sharing), only the memory-
bound benchmarks are sensitive to the scheduling on
NUMA systems. We selected four memory-bound bench-
marks (mcf, milc, soplex, sphinx3) and formed five
workloads. For instance, workload mcf consisted of four
identical copies of the mcf benchmark. The fifth workload
mixed also had four threads, but each thread ran a different
benchmark. The execution time of a workload is the average
of runtimes of individual benchmarks. For the mixed work-
load, individual runtimes are first normalized to runtimes of
the corresponding benchmarks when running solo.
We evaluated three scheduling strategies: default Xen, hand-

optimized, and BRM. The default Xen scheduling strategy
performs both pull and push vCPU migrations in order to
place the vCPU on the least loaded core. For hand-optimized
scheduling, we ran the workloads with different vCPU-to-core
bindings offline and selected the binding with the best perfor-
mance for individual workloads. The hand-optimized strategy
keeps the best binding during the execution of workloads.
BRM places (pushes) vCPUs on cores with the lowest uncore
penalty. BRM allows a NUMA migration vCPU to be stolen
(pulled) by an idle core only if there are no other migratable
vCPUs and otherwise the system becomes imbalanced.

6.1. Improvement on Program Performance

Figure 8 shows the runtimes of workloads under different
scheduling strategies. Each runtime is the average of ten
program runs under the same strategy and is normalized to
the runtime under default Xen scheduler. For the micro-
benchmark (Figure 8(a)), BRM outperformed Xen by at least
3.1% (WSS=32M) and by as much as 19.8% (WSS=4M).
Since vCPU migrations are not free, it is expected that BRM
incurred performance degradations compared with the hand-
optimized strategy. However, BRM had performance close to
the hand-optimized strategy with no more than 3.4% degrada-
tion. Surprisingly, BRM even achieved a better performance in
some tests (WSS=8M, 16M) than the hand-optimized strategy.
We profiled the benchmark execution and found that there was
a varying number of threads competing for a shared cache line
at different iterations, leading to switching dominant factors.
Different from the hand-optimized strategy, which had fixed
vCPU bindings, BRM was able to find a better vCPU-to-core
assignments for different iterations.

Figure 8(b) shows the results of the parallel workload. We
arrange the NPB benchmarks according to their orders in
Figure 1 with benchmarks on the left more sensitive to the
scheduling on NUMA systems. From the figure, we can see
that BRM is more effective for benchmarks that are more
sensitive to the NUMA architecture. For example, BRM im-
proved the performance of lu significantly by 31.7% while
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Figure 8: BRM improves program performance.
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Figure 9: BRM reduces runtime variations.

only improved cg’s performance moderately by 7.8%. For
benchmarks ep and mg, which are not sensitive to the NUMA
architecture according to Figure 1, vCPU migrations in BRM
failed to find sufficient room for performance optimization
but added some overhead. Compared with the Xen default
scheduler, BRM incurred performance degradations of 5.8%
and 21.9% on ep and mg, respectively.

For multiprogrammed workloads (Figure 8(c)), BRM out-
performed both the hand-optimized strategy and Xen default
scheduler in all workloads. Particularly, for the mixed work-
load, the improvements are 15.1% and 29.7%, respectively.
The reasons for such great performance improvements are
twofold. First, as shown in Figure 1, the benchmarks we se-
lected to construct the workloads are NUMA sensitive and
there is sufficient room for optimization via scheduling. We ex-
pect that BRM causes degradations on compute-bound SPEC
CPU2006 benchmarks and do not show it here due to the space
limit. Second, during the execution of the benchmarks, there
were significant variations in memory access frequency. Thus,
at different time points in the execution, the workload may
have different preference in scheduling affinity. Fixed (hand-
optimized) or NUMA-unaware (Xen default) scheduling strat-
egy was unable to adapt to the workload changes. In contrast,
by sampling uncore penalties, BRM successfully identified
the changes and found the optimal scheduling affinity.

6.2. Reduction in Runtime Variation

In Figure 9, we compare BRM with the other two schedul-
ing strategies in terms of runtime variations. We calculated
the relative standard deviations (RSD) for a set of 10 runs
of individual workloads under different strategies. RSD mea-
sures the extent of variability across program executions. The
smaller the RSD value, the more consistent and predictable

program performance. Since the hand-optimized strategy had
fixed vCPU-to-core bindings, as expected, it achieved small
RSD values in all workloads. Except for lu (RSD=6.76%),
the hand-optimized strategy was able to provide predictable
performance of workloads with no more than 2% variations.
The default Xen scheduler, which only takes into account the
business of cores in scheduling, caused considerable varia-
tions. For NUMA sensitive workloads, the default scheduler
had variations as large as 19.8% (benchmark ft). In compar-
ison, BRM achieved a close level of variations to the hand-
optimized strategy. On average, BRM also had no more than
2% variations. Note that BRM even outperformed the hand-
optimized strategy in lu. A possible explanation is that, for
long-lived workloads, vCPU migrations in BRM converge to
similar trajectories across different runs, resulting in stable
program runtimes. Although with a fixed scheduling affinity,
thread progresses vary in different runs contributing to the
variations of the hand-optimized strategy.

6.3. Overhead and Scalability

The main runtime overhead of BRM is due to updating the
system-wide uncore penalty. As the number of vCPUs man-
aged by BRM increases, there could be scalability issues when
multiple vCPUs attempt to acquire a lock and perform an
update. To quantify the overhead, we disabled the vCPU mi-
gration in BRM and the Xen default scheduler. As such, BRM
still maintained the information about uncore penalties for
each tagged vCPU, but without using it in scheduling. We ran
the parallel workload with a varying number of threads.

Figure 10 draws the overhead of BRM normalized to the
default scheduler. Note that the number of threads is equivalent
to the number of tagged vCPUs in BRM as we assume a one-
to-one mapping from user-level threads to vCPUs in VMs. As
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shown in Figure 10, BRM incurred, on average, less than 2%
overhead for 2-thread and 4-thread workloads. For 8-thread
workloads, the overhead is more apparent but still acceptable.
For example, BRM caused a overhead of 6.14% on ua, the
largest overhead among all 8-thread workloads. Given the
overhead, ua can still benefit from BRM scheduling as it may
have a worst case degradation of 18.8% according to Figure 1.

Running 16-thread workloads is more problematic. BRM
caused more than 10% overhead to lu and sp. Since a 16-
thread workload has only one thread-to-core mapping on our
testbed, there is no room for optimization via scheduling. It is
unclear whether BRM’s optimization outweighs its overhead
on a larger testbed where multiple scheduling affinities exist.
We plan to investigate this issue once we are given access to
such systems. Although BRM may have scalability issues
when its managed workload has more than 16 threads, we
argue that it is still an attractive approach to optimizing pro-
gram performance in existing cloud platforms. In Amazon
EC2, the largest instance (i.e., the High-CPU Extra Large
Instance) has up to 8 vCPUs, inferring a maximum concur-
rency of 8 for most single-instance cloud workloads. For such
workloads, BRM is able to provide optimized and predictable
performance.

7. Related Work
There has been significant interest in the research community
in improving program throughput, fairness, and predictabil-
ity on multicore systems. Existing work has addressed these
issues via thread scheduling or program and system-level opti-
mizations.

7.1. Optimization via Scheduling

The contention on the shared LLC has been long accused
for severe performance degradation and unfairness [7, 9, 14,
18, 22]. Recent work shows that contentions on the hardware
prefetcher [25], the memory controller [27, 30] and the DRAM
bus [11] can also cause significant performance slowdown in
both UMA and NUMA systems. Last-level cache miss rate
has been widely used as a proxy for the contention on shared
resources [7, 8, 9, 14, 26] and the similarity in thread address
spaces has been used to quantify the inter-thread sharing activ-
ity [5, 35, 38].

However, on NUMA multicore systems, data locality,
shared resource contention, and cross-node communication
overhead interact in complex ways that the stated metrics can
not accurately predict program performance. The statistics on

the offcore requests shed some insight on the complex factors
interplay. The metric of offcore request has been used for
selecting appropriate core types in heterogeneous multcore
systems [20] and for analysing cloud workloads [12]. In this
work, we use the penalty of offcore requests as a runtime per-
formance index of high-level performance and use it to guide
vCPU migration in a virtualized environment.

Based on the performance metrics, scheduling decisions are
made either distributing threads across different sockets for
contention mitigation, or grouping them onto one socket for
efficient communication. Finding the optimal thread-to-core
assignment is not trivial. Some work uses offline profiling and
derives models to predict the optimal mapping [26, 27, 34];
other work derives the mapping by monitoring hardware per-
formance counters online [4, 7, 8]. Once the optimal mapping
is determined, the decision is applied to the system either by
user-level schedulers [36, 41] or by modified kernel sched-
ulers [19, 29]. In a cloud environment, CPU masks enforced
by user-level schedulers create isolated resource islands among
co-running programs. The partition of resources breaks the
enforcement of fairness and proportional sharing. We imple-
mented BRM at the VMM level and allowed the decision made
by BRM to be overwritten for load balancing.

7.2. Program and System-Level Optimization

Program-level transformations are widely used methods in
performance optimization. Zhang et al. [40] transform pro-
grams in a cache-sharing-aware manner and Majo et al. [28]
aim to preserve program data locality on NUMA systems.
Such transformations can be further made transparent to users
and automated at compiler level [39]. Modern OSes, such
as Linux and Solaris also provide system support for NUMA
optimizations. Memory allocations are delayed until a thread
first accesses the memory address in order to guarantee local
memory access. Runtime libraries, such as libnuma, provide
system APIs to explicitly specify the location of memory al-
location and CPU affinity. Modern VMMs allow a guest OS
to discover its virtual NUMA topology either by reading the
emulated ACPI Static Resource Affinity Table (SRAT) [2], or
by querying the VMM via para-virtualized hypercalls [33].

However, program and guest system-level optimizations
depend critically on how accurately the virtual architecture
reflects the machine architecture. Due to dynamic load balanc-
ing in the virtualization layer, the virtual topology observed by
the guest OS may become inaccurate [2], which significantly
affects the effectiveness of stated optimizations. In contrast,
our approach does not assume any program or system-level
optimizations and directly works in the virtualization layer.

8. Conclusions and Future Work
Non-Uniform Memory Access multicore architectures im-
pose significant challenges to the delivery of optimal and
predictable program performance. The introduction of virtual-
ization further complicates the problem by limiting the visibil-
ity of the hardware hierarchy to programs. To address these
issues, we identified a hardware metric, the uncore penalty,
to measure the high-level program performance online. We



then proposed Bias Random vCPU Migration, a load balanc-
ing algorithm that uses the metric to determine the optimal
vCPU-to-core assignment. We implemented BRM on top of
Xen’s credit scheduler. For parallel and multiprogrammed
workloads, BRM improved performance by up to 31.7% com-
pared with Xen’s default scheduler and provided predictable
performance with, on average, no more than 2% variations.

We currently employ an intrusive approach to identifying
NUMA candidate vCPUs. Non-intrusive approaches are some-
times more desirable as no changes need to be made to the
guest OS. An alternative approach is to infer the NUMA sen-
sitivity at the VMM level. If a vCPU issues uncore requests
frequently, it can be considered as NUMA sensitive. Similarly,
a vCPU is removed from the candidates if the change in its
uncore penalty is less than a predefined threshold when mi-
grated. However, work should be done to study the trade-off
of intrusiveness and inference accuracy.

Another extension of our current work is to improve BRM’s
scalability. The centralized update of the system-wide uncore
penalty is inevitably a bottleneck. As in [24], we could allow
unprotected access to the global penalty trading accuracy for
scalability. Another possible solution is to equip multiple
schedulers, each of which runs a copy of BRM. As such, the
lock contention is mitigated by using multiple locks. The new
feature of cpupools [1] in Xen version 4.2 could be a good
starting point of multiple schedulers.
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