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Abstract
CPU time-multiplexing is a common practice in multi-
tenant systems to improve system utilization. However,
the sharing of CPU and a single system clock makes it
difficult for programs to accurately measure the length
of an operation. Since a program is not always running
in a time-sharing system but the system clock always ad-
vances, time perceived by one program could be dilated
as it may include the run time of another program. Ap-
plications employing time-based resource management
face a potential security threat of time manipulation.

HotSpot, a widely used Java virtual machine (JVM),
relies on timing garbage collections to infer an appro-
priate heap size. In this paper, we present a new active
side-channel attack that exploits time dilation to break
the heap sizing algorithm in parallel scavenge, the de-
fault garbage collector in JDK 8. We demonstrate that
a deliberate attack targeting a specific type of GC is
able to crash a Java program with out-of-memory errors,
cause excessive garbage collection, and leads to signifi-
cant memory waste due to a bloated heap.

1 Introduction
For over two decades, Java has retained its popularity
and been widely adopted to build various computer sys-
tems, including Big Data systems [2, 23], machine learn-
ing frameworks [4], search engines [3, 5], and NoSQL
databases [1]. Among the many nice features, such
as cross-platform portability, Java’s automatic mem-
ory management releases users from the burden of ex-
plicit memory allocation and deallocation. The built-in
garbage collector (GC) in the Java runtime environment,
i.e., the Java Virtual Machine (JVM), automatically re-
claims heap memory for reuse when memory allocation
fails due to insufficient heap space.

Modern JVMs, such as the HotSpot JVM [16], de-
vise sophisticated heap management schemes to im-
prove memory efficiency and guarantee quality-of-
service (QoS) as well as avoiding out-of-memory (OOM)

errors. The JVM grows or shrinks the heap size accord-
ing to the memory demand of the Java application. For
example, the HotSpot JVM uses command line options
-Xms and -Xmx to specify the initial and the maximum
heap sizes of a Java application at its launch time. Dur-
ing run time, the JVM adjusts the heap size based on the
statistics of garbage collection. In general, the heap is
shrunk if each individual GC takes too long and violates
a user-defined pause-time target; the heap is expanded if
GC is frequently performed and the total GC time con-
stitutes a significant portion of the total application exe-
cution time, i.e., violating the throughput target; if both
targets are met, the JVM gradually shrinks the heap to
save memory.

The heap sizing policy is critical to the user-perceived
QoS and memory efficiency. However, it is vulnera-
ble to a deliberate side-channel attack in a multi-tenant
system, where resources are often over-subscribed and
shared among users. In our previous work [21], we found
that time measurement in a time-sharing system can be
inaccurate. Since there is only one system clock shared
among multiple users, the time (i.e., the length of pro-
gram execution) measured by one program using the dif-
ference of two consecutive calls of gettimeofday may
include the period in which another program is running.
Although this issue has been found to cause premature
TCP timeouts [10] and erroneous program behaviors on
mobile devices [14], it is believed that the effect of in-
accurate timing is random and universally distributed to
all programs, thereby unclear how it affects program cor-
rectness or performance.

In this paper, we demonstrate that a deliberate attacker
can exploit the timing channel to break the heap man-
agement of a Java program. Most Java heap manage-
ment schemes use measured GC time, which is based on
wall-clock time, to determine an appropriate heap size.
The attack interferes with GC timing to deceive the heap
sizing algorithm such that the JVM mistakenly config-
ures an insufficient or excessive heap. We empirically



validate that even the most sophisticated sizing policy in
HotSpot, i.e., the parallel scavenge (PS) collector, is not
immune to the side-channel attack. We design micro-
benchmarks to exercise the PS collector and develop a
proof-of-concept attack by directly tampering the source
code of the PS collector. Results show that attacking
the pause time target causes a benchmark to spend as
much as 60% more time in GC; attacking the through-
put target leads to a bloated JVM which uses up to four
times more memory. Furthermore, we are able to create
an attack that consistently causes a benchmark, which
never fails when not attacked, to crash due to OOM er-
rors. Finally, we demonstrate the feasibility of launch-
ing a realistic attack on heap management. We leverage
eBPF to trace JVM execution and deliberately affect GC
timing by slowing down GC threads. All attacks except
the one crashes the JVM can be reproduced on real Java
programs from the SPECjvm2008 [7] and DaCapo [9]
benchmarks.

Our findings raise a question: Are all programs relying
on time-based resource management vulnerable to such
an attack in a multi-tenant environment? The ultimate
countermeasure to the timing side-channel attack is to
use virtual time, which only advances when a program is
running, in resource management.

2 Background
In this section, we describe the adaptive heap sizing al-
gorithm in the parallel scavenge (PS) collector and ana-
lyze its vulnerabilities to the side-channel attack. Then,
we explain how time measurement can be inaccurate in
a time-sharing system.

2.1 Adaptive Heap Sizing in PS
Parallel scavenge is a throughput-oriented collector and
it pauses application threads, i.e., mutators, during GC.
This GC period is called a stop-the-world (STW) pause.
PS employs multiple GC threads to concurrently scan
the heap and frees objects with unreachable references.
It monitors the length of each GC and the mutators run
time before being interrupted by GC. Based on GC and
mutator time, PS dynamically adjusts the JVM heap size
to meet two goals: 1) pause time – the STW pause
time should not exceed a user-defined upper bound; 2)
throughput – the portion of mutator time in the total
program execution time (i.e., mutator time + GC time)
should not be less than a desired ratio (the default target
is 99%). If both goals are met, PS shrinks the heap to
save memory.

PS divides the heap space into multiple generations:
young, old, and permanent. The young generation is fur-
ther divided into one eden space and two survivor spaces,
i.e., from-space and to-space. New objects are always
first allocated into the eden space. When the eden space

Major GCmutator Minor GCmutator mutator

T1

T3

T2

Major GC

T4

Minor GC cost = T2 / ( T1+T2 )

Major GC cost = T4 / ( T3+T4 )

Minor mutator time Minor GC time

Major mutator time Major GC time

Minor GC

Figure 1: The calculation of GC costs in PS.

is filled up, a minor GC is performed. Referenced ob-
jects in eden and from-space are moved to the to-space,
and unreferenced objects are discarded. After a minor
GC, the eden and the from-space are cleared, and objects
survived in the to space have their age incremented. Af-
ter surviving a predefined number of minor GCs, objects
are promoted to the old generation. Similarly, as the old
generation is filled up, a major GC is triggered to free
space in the old generation. The adaptive sizing algo-
rithm adjusts the sizes of the young generation and the
old generation separately based on the measurement of
minor GC and major GC, respectively.
Out-of-Memory failure A memory allocation failure
occurs if the JVM heap does not have enough free space
to accommodate new objects. With parallel scavenge’s
generational garbage collection, the HotSpot JVM per-
forms five allocation attempts before throwing an OOM
error and terminating the program: 1) PS first performs a
minor GC to clear the young generation, where the new
objects are being allocated; 2) PS performs a major GC
to clear the old generation and frees space in the young
generation by promoting mature objects to the old gener-
ation. PS still tries to allocate objects in the young gen-
eration; 3) if both attempts fail, the JVM tries to allo-
cate the new objects directly to the old generation; 4) if
this attempt fails, PS performs a more aggressive major
GC by clearing objects with soft references and tries to
allocate the objects in the young generation; 5) the last
attempt tries to allocate objects directly to the old gen-
eration. After each failed GC, PS invokes the adaptive
sizing algorithm to expand the heap. As will be shown,
an attack on the sizing algorithm could impede the heap
expansion and thus cause OOM errors.
GC cost is the key metric used in the adaptive sizing al-
gorithm to determine an appropriate heap size. Figure 1
shows the calculation of the minor GC cost and the ma-
jor GC cost. GC time is the length of a single GC of a
particular type; mutator time is the length of the period
between two adjacent GC of a particular type. For exam-
ple, T1 and T3 refer to the minor mutator time and major
mutator time, respectively, and they are the intervals be-
tween two adjacent minor and major GCs. Note that the
mutator time may also include the time spent in the other
type of GC. The major mutator time T3 includes a minor
GC time T2. GC cost is defined as the ratio of the time
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spent in the most recent GC to the period since the last
time the same type of GC occurred. GC cost is a robust
metric to measure the overhead of different types of GC
even they interleave with each other and the mutators.
This helps the JVM deal with the timing issue as inaccu-
rate time measurement is likely to affect both minor and
major GC costs. However, a deliberate attacker focus-
ing on manipulating time measurement on a particular
GC type can easily deceive the heap sizing algorithm. To
avoid abrupt changes in the heap size, PS calculates the
GC costs based on the moving average of a few recent
GCs. All GC and mutator time measurements are based
on wall-clock time, i.e., using gettimeofday.

2.1.1 Adjusting young generation

The most important adjustment to the young generation
is to change the size of the eden space, where most new
objects are allocated.
Pause time-oriented adjustment shrinks the eden space
if the minor GC time exceeds a user-defined threshold.
PS iteratively reduces the eden size at a fixed rate until
reaching the minimum eden size.
Throughput-oriented adjustment expands the eden
space if the minor mutator time falls below (by default)
99% of the total execution time, i.e., T1

T1+T2
< 99% as

shown in Figure 1, to reduce the frequency and thus the
overhead of minor GC. PS increases the eden size at an
adaptive rate:

Ei = Ei−1×
(

1+ scaleminor× INC STEP
)
, (1)

where Ei is the desired eden size in the next round and
Ei−1 is current eden size. scaleminor controls how fast the
eden space is expanded and is defined as:

scaleminor =
Cminor

Cminor +Cma jor
, (2)

where Cminor and Cma jor are the minor and major GC
costs, respectively. PS expands the eden space at a faster
rate if the minor GC cost contributes to a greater portion
of the total GC cost.
Survivor space adjustment is based on the moving av-
erage of historical survivor sizes. In addition, PS sets the
survivor space to its maximum size if the young gener-
ation is full. Therefore, the survivor spaces reach their
maximum size upon a young generation overflow, then
gradually fall back until stabilizing at a smaller size.
Footprint adjustment gradually reduces the eden size
if both the pause time and throughput goals are met.
The size decrement is at an adaptive rate controlled by
scale f oot print minor =

E
E+P , where E is the eden size and P

is the desired promoted size in the old generation, which
will be determined by the major GC (see Section 2.1.2).
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Figure 2: Dilation of GC time due to CPU multiplexing.

2.1.2 Adjusting old generation

Old generation adjustment aims to provide sufficient
headroom for objects allocation while preserving mem-
ory as much as possible. It calculates a target size of
headroom, i.e., free space, and adjusts the current free
space in the old generation accordingly. The target free
space is calculated as the sum of two parts: 1) the size of
objects recently promoted from the young generation to
the old generation and 2) the desired promoted size. The
promoted size (part 1) guarantees a lower bound on the
free space and the desired promoted size (part 2, denoted
as P) is determined based on the statistics of GCs.

The sizing of the desired promoted size P is similar
to that in the young generation sizing algorithm, which
goes through the pause time- and throughput-oriented,
and footprint adjustments. The sizing process is iter-
ative and based on the desired promoted size in the
previous round. Different from the young generation
adjustment, the throughput-oriented expansion is con-
trolled by scalema jor =

Cma jor
Cminor+Cma jor

and footprint adjust-

ment shrinks P at a rate of scale f oot print ma jor =
P

E+P
An important difference in old generation sizing is that

the violation of pause time target of a major GC also trig-
gers the shrinking of the eden space.

2.2 Time Dilation in Multi-tenant Systems
Time stamp counter (TSC) is a commonly used clock
source in modern operating systems for timekeeping. It
is an auto-incremented register on CPU at the clock rate.
Timing utilities, such as gettimeofday, read TSC val-
ues to track time passage. Figure 2 shows how the mea-
surement of GC time can be dilated in a multi-tenant
system. Due to CPU time-sharing, the GC time mea-
surement based on wall-clock time can include other pro-
gram’s run time. As a result, the GC appears to be much
longer than it actually was. This opens up opportunities
for an attacker to manipulate the heap sizing algorithm.

3 A Side-channel Attack
In this section, we exploit GC time dilation to attack the
heap sizing algorithm in PS. The attacks aim to 1) crash a
Java program by causing OOM errors, 2) degrade perfor-
mance by incurring excessive GCs, and 3) waste memory
by causing a heap bloat. All experiments were conducted
on a 64-core machine using OpenJDK 1.8 and Linux
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Baseline Attacked Degradation
# minor GC 1187 1971 66.05%
# major GC 30 49 63.33%
# total GC 1217 2020 65.98%

GC CPU time (sec) 146.59 240.03 63.74%

Table 1: Performance degradation of h2 caused by an attack
on pause time-based heap sizing.

4.15.0. The JVM was configured with 15 GC threads.

3.1 A Proof-of-Concept Attack
We begin with a proof-of-concept attack, in which we
modify the code of the sizing algorithm to emulate an
attack. We enlarged the actual measurements of GC time
in the sizing algorithm and used the modified GC time
to calculate the GC costs. This allows us to tamper the
timing of any GC of our choice.

First, we demonstrate how to crash a Java program and
cause OOM errors. We created a micro-benchmark that
continuously inserts small fixed-size (50-byte) objects
into an array. This allows the heap sizing algorithm to
slowly ramp up the heap. Finally, the benchmark inserts
a much larger object (20 MB), which inevitably causes
an allocation failure. The sizing algorithm is expected to
expand the heap to resolve the failure, when we launch
the attack. We dilated the major GC time to violate the
pause time target. Recall that this will cause both the old
and young generations to be shrunk. As the attack per-
sisted, the sizing algorithm failed to expand the heap and
thus threw an OOM error. We confirmed that the bench-
mark never crashed and had sufficient memory without
the attack.

Second, we attack to degrade performance. Specif-
ically, we created an attack on the pause time-oriented
sizing. Similarly, we dilated the major GC time to vi-
olate a user-defined pause time target of 100ms. The
program under attack was h2 from the Dacapo bench-
marks [9]. h2 is a transaction-based benchmark and has
a strict response time requirement. As shown in Table 1,
the attack deceived the JVM to shrink the heap and thus
incurred excessive GCs. Not only the number of minor
and major GCs was increased, but also did the total GC
time. Intuitively, a small heap size triggers more frequent
GCs but each GC takes less time. If the total number of
objects to clear remains unchanged, the GC time should
remain the same. The results show that the attack in-
curred much wasteful work, which was mostly due to the
repeated scan of live objects. The overall degradation on
GC performance was around 65%.

Third, we attack throughput-oriented heap sizing and
footprint adjustment. We created a micro-benchmark
with fluctuating memory demand. It inserts objects into
an array and later removes all the objects. As shown
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Figure 3: Heap size of a micro-benchmark before and after
attack.

in Figure 3 (a), without the attack, the sizing algorithm
effectively expanded and shrank the heap, matching the
memory demand. Figure 3 also plots the used heap be-
fore and after each GC. At around the 13th second and af-
ter the objects were removed from the array, GC cleared
unreferenced objects and allowed the sizing algorithm to
free the unused space. In contrast, as shown in Figure 3
(b), under an attack, the sizing algorithm failed to shrink
the heap after the memory demand dropped. The at-
tack targeted only minor GCs and aimed at violating the
throughput goal. The effect is that, under the attack, the
sizing algorithm kept expanding the heap than it needed
to and never shrank the heap. As a result, the micro-
benchmark used about 61% more memory under attack
compared to that without the attack.

4 A Realistic Attack
This section validates the feasibility of the side-channel
attacks on Java heap management in real systems.
According to our experiments with the proof-of-concept
attacks, we found that these attacks are only effective
and able to break the sizing algorithm when particular
types of GCs are targeted. The pause-time and OOM
attacks need to temper the timing of the major GC
while the throughput and footprint attack targets the
minor GC. To this end, we leverage the extended
Berkeley Packet Filter (eBPF) [6], an in-kernel virtual
machine, to trace the execution of GCs and launch
a targeted attack. We assume that the attacker has
gained the root privilege of the machine. We moni-
tored the libjvm.so library of the JVM and dilated
GC time by slowing down the threads that perform
GC. Specifically, we traced GCTaskThread::run to
obtain the PID of a GC thread and attack this thread
whenever it starts a GC. For example, we used symbol
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Figure 4: Heap size of mpegaudio before and after attack.

ZN18AdaptiveSizePolicy22minor collection beginEv

to identify the start of a minor GC. We slow down GC
threads using Linux cgroups to limit the amount of
CPU the JVM is able to use during GC. The CPU limit
was lifted when a GC completed.

We were able to reproduce the pause-time attack and
the throughput attack. We had a similar result when at-
tacking the pause time target of h2 from Dacapo. Under
attack, h2 spent 88% more time on GC. The throughput
attack even caused higher damage to a realistic bench-
mark, mpegaudio from SPECjvm2008 [7]. As shown in
Figure 4 (a) and (b), mpegaudio used up to four times
of memory under attack. From Figure 4 (b), we can see
that there is a large gap between heap usage before and
after GC, indicating that the GC was effective. How-
ever, the sizing algorithm was deceived by the dilated
minor GC time and unable to shrink the heap, leaving
a large amount of memory wasted. Unfortunately, we
were unable to reproduce the crash attack on Dacapo
or SPECjvm2008 benchmarks because they do not have
sudden spikes in memory demand as we did in our micro-
benchmark. Nevertheless, we believe that the crash at-
tack is still possible for some realistic workloads, which
poses a great security threat.

5 Discussion
Vulnerable Java programs In general, all Java pro-
grams could be vulnerable to the side-channel attack
since HotSpot uses wall-clock time to manage the heap.
However, we found that Java programs with fluctuating
memory demands are most vulnerable to the through-
put attack because the sizing algorithm is frequently trig-
gered to expand or shrink the heap, allowing the attack
to deceive the algorithm. On the other hand, programs
with stable heap usage are most vulnerable to the pause
time attack, which forces the JVM to reduce the heap

size and incurs more GCs. Finally, programs with high
heap utilizations are more prone to crash under attack.
Countermeasures A straightforward defence against the
side-channel attack is to fix the heap size at program
launch, which disables the sizing algorithm. However,
it is difficult to predict how much memory a program
needs. Under-provisioning leads to OOM errors while
over-provisioning wastes precious memory. An ultimate
countermeasure is to use virtual time, which only ad-
vances when the JVM is running, in the sizing algorithm.
While it is easy to maintain virtual time on a per thread
basis, there lacks a definition of virtual time for a JVM
with group of threads, which are often inter-dependent.

6 Related Work
Side-channel Attack Most cache-based side-channel at-
tacks [18, 8] rely on prime-and-probe [17] and Flush-
Reload techniques [12] to exploit timing information of
memory accesses so that it can infer secrets from vic-
tim applications. Xu et al., [22] took advantage of an
untrusted operating system [19] to construct page-fault
channel, and Marcus et al., [13] transcended tempo-
ral and spatial limitations of the page-fault channel to
launch high resolution attack by utilizing the single step-
ping features of the hardware. Ristenpart et al., [20]
showed that multi-tenancy in public clouds makes cross-
VM side-channel attacks feasible. Yinqian et al. [24] fur-
ther demonstrated a cross-tenant side-channel attack on
commercial Platform-as-a-Service (PaaS) clouds. In this
paper, we discovered a new type of active side-channel
attack on the timing of victims.
Time manipulation has been used in computer sys-
tems to accelerate simulation and expose performance
bottlenecks. Timekeeper [15] made time in a VM ad-
vances slower or faster than wall-clock time to artificially
scale simulations which interact with external devices.
Curtsinger et al., [11] proposed COZ, a causal profil-
ing tool that uses virtual speedups to pinpoint the per-
formance bottlenecks. COZ virtually speeds up a code
segment in order to quantify the impact of a potential
optimization by slowing down all other threads. Abhi-
lash et al., [14] discovered that sleep-induced time bugs
(SITB), a similar timing issues as discussed in this work,
can cause erroneous behaviors on Android devices. In
this work, we interfere with the timing of GC to launch
three types of attacks on Java heap management.

7 Conclusion
We present a new active side-channel attack on Java heap
management. The attack exploits potential time dilation
in multi-tenant systems to break the heap sizing algo-
rithm in the parallel scavenge collector. We demonstrate
the feasibility to the attack to crash a Java program, cause
excessive garbage collection and memory waste.
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