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ABSTRACT
Virtual machine (VM) technology enables multiple VMs to
share resources on the same host. Resources allocated to the
VMs should be re-configured dynamically in response to the
change of application demands or resource supply. Because
VM execution involves privileged domain and VM monitor,
this causes uncertainties in VMs’ resource to performance
mapping and poses challenges in online determination of ap-
propriate VM configurations. In this paper, we propose a re-
inforcement learning (RL) based approach, namely VCONF,
to automate the VM configuration process. VCONF em-
ploys model-based RL algorithms to address the scalability
and adaptability issues in applying RL in systems manage-
ment. Experimental results on both controlled environments
and a testbed of clouds with Xen VMs and representative
server workloads demonstrate the effectiveness of VCONF.
The approach is able to find optimal (near optimal) config-
urations in small scale systems and shows good adaptability
and scalability.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements, Modeling and pre-
diction

General Terms
Management, Measurement, Performance

Keywords
Virtual machines, Reinforcement learning, Autonomic com-
puting, Cloud computing

1. INTRODUCTION
Virtual machine (VM) technology enables multiple VMs,

each running a traditional operating system (OS) and host-
ing one or more services, to share the resources on the same
physical machine. It relies on a VM monitor, residing in
between underlying hardware and guest OSes, for resource
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allocation between the VMs. The monitor facilitates on-
demand resource reconfiguration in a timely manner.

There are reasons for online VM resource reconfigura-
tion. When created from a template or arrival at a new
host through live migration [7], VMs may need to be re-
configured so as to be incorporated to the new machine for
better performance. Due to the time-varying resource de-
mand of typical network applications, it is usually necessary
to re-allocate resources to each hosted VM for overall per-
formance. In service consolidation with heterogeneous ap-
plications, it is not easy to figure out the best settings for
VMs with distinct resource demands. Modern VM monitors
provide a rich set of configurable resource parameters for
fine-grained run-time control.

Server virtualization has a key request for performance
isolation. In practice, applications sharing the physical server
still have chance to interfere with each other. In [15, 9], the
authors showed that bad behaviors of one application in a
VM could adversely affect the others’ in Xen [3] VMs. The
problem is not specific to Xen; it can also be observed on
other virtualization platforms due to the presence of cen-
tralized virtual machine scheduling. The involvement of the
virtualization layer in the execution of VMs causes uncer-
tainties in VMs’ performance. This makes the VM configu-
ration problem even harder.

In Xen, data transfer between the hosted VMs and actual
hardware devices is also handled by the VM monitor and
a privileged domain. The VM data can be cached in hy-
pervisor and the privileged domain. The effect of resource
re-allocations, especially the memory reconfigurations, may
not be immediately reflected in VMs’ performance. Thus, it
is necessary to consider delayed effects in fine-grained run-
time VM control.

Recent work in [18, 32] used domain knowledge guided re-
gression analysis to map VM configuration to performance.
However, domain knowledge is not always available to ad-
ministrators. Padala et al. employed a proportional con-
troller to allocate CPU shares to VM-based multi-tier web
applications [16]. This approach can not be easily extended
to the VM configuration problem with multiple control knobs
in terms of more than one configurable resources. The iden-
tification of system models that capture the relationship be-
tween multiple control and system outputs limits the effec-
tiveness of traditional control theory in the VM configura-
tion problem. The difficulties in determining proper VM
configurations motivated us to develop a machine learning
approach, reinforcement learning in particular, to automatic
VM configuration.



Reinforcement learning (RL) is a process of learning by in-
teractions with dynamic environment, which generates the
optimal control policy for a given set of states. It requires
no domain knowledge of the controlled system and is able
to generate policies optimizing a long-term goal. RL ap-
proaches to the design of computer systems involve several
important issues. The application of RL methods is non-
trivial due to the exponentially increased state space when
systems scale up. In online system management, interaction-
based RL policy generation suffers from slow adaptation to
new policies. Previous studies showed the feasibility of RL in
optimizing server allocation [22, 24], power management [23]
and designing self-optimizing memory scheduler [11]. There
are no reports yet, to the best of our knowledge, about the
application of RL in VM-level resource management. De-
signing a RL-enabled controller to automate VM configura-
tion process poses unique challenges. In server consolida-
tion, physical machines usually host a large number of het-
erogeneous VMs concurrently. The resource demands from
individual VMs vary over time. The applicability of the
RL approaches to large scale VM online auto-configuration
problem deserves investigation.

In this paper, we propose a RL-based virtual machine
auto-configuration agent, namely VCONF. The central de-
sign of VCONF is the use of model-based RL algorithms
for scalability and adaptability. We define the reward signal
based on summarized performance of each VM. By maxi-
mizing the long run reward, VCONF automatically directs
each virtual machine configuration to a good (if not opti-
mal) one. Experiments were conducted both in a controlled
environment and a cloud computing testbed. Both systems
running Xen virtual machines, E-commerce, OLTP and web
server workloads demonstrate the effectiveness of VCONF.
In the controlled environment, our approach was able to
find the best (optimal) configuration for single and multiple
VMs running homogeneous workloads. In the cloud com-
puting testbed, VCONF showed good adaptation of poli-
cies in online auto-configuration with heterogeneous VMs.
Although, there is no optimality guarantee for the derived
configurations, VCONF was able to direct arbitrary initial
configuration to a better one without performance penalties
in any of the VMs.

The rest of this paper is organized as follows. Section 2
reviews the challenges in VM configuration. Section 3 in-
troduces RL methods and their applicability in VM auto-
configuration. Section 4 elaborates the design and imple-
mentation of VCONF. Section 5 gives the information on
testbed settings and experimental results. Related work is
presented in Section 6. Section 7 concludes this paper.

2. CHALLENGES IN ONLINE VM RECON-
FIGURATION

In this section, we briefly review the Xen virtual machine
monitor (VMM) and the challenges in determining good con-
figurations of VMs in shared environment.

2.1 The Xen Virtual Machine Monitor
A VMM is the lowest level software abstraction running

on the actual hardware. It provides isolation between guest
OSes and manages access to hardware resources. Xen [3] is
a high performance resource-managed VMM. It consists of
two components: a hypervisor and a driver domain.

The hypervisor provides the guest OS, also called a guest
domain in Xen, the illusion of occupying the actual hardware

devices. The hypervisor performs functions such as CPU
scheduling, memory mapping and I/O handling for guest
domains. The driver domain (dom0) is a privileged VM
which manages other guest VMs and executes resource al-
location policies. Dom0 hosts unmodified device drivers for
VMs; it also has direct access to actual hardware. Xen pro-
vides a control interface in the driver domain to manage the
available resources to each VM. The following configurable
parameters have salient impacts on VM performance.

1. CPU time. The Xen VMM uses a credit scheduler
to schedule CPU on domains. Each VM is assigned a
credit number which statistically determines the por-
tion of processor time allocated to each VM.

2. Virtual CPUs. This parameter determines how many
physical CPUs can be used by a VM. The number of
virtual CPUs together with the scheduler credit deter-
mine the total CPU resource allocated to a VM.

3. Physical memory. This parameter controls the amount
of memory can be used by a VM. If not set appropri-
ately, the application within the VM may need to com-
municate with disk frequently, which degrades user-
level performance considerably.

2.2 Performance Interference between VMs
In Xen’s implementation, privileged instructions and mem-

ory writes are trapped and validated by the hypervisor; I/O
interrupts are handled by the VMM and data is transfered
to VMs in cooperation with dom0. The involvement of the
centralized virtualization layer in guest program execution
can also be found in other platforms, such as VMware [28]
and Hyper-V [10]. Thus, any bad behavior of one VM may
adversely affect the performance of other VMs by depriving
the hypervisor and driver domain resources. In [9], the au-
thors showed that for I/O intensive applications, by setting
a fixed CPU share, the credit scheduler does not account
for the work done for individual VMs in the driver domain.
Taking memory and virtual CPU into consideration, the in-
volvement of dom0 and hypervisor in VM execution aggra-
vates the uncertainties in resource to performance mapping.
For example, allocating more resource to one VM may result
in performance degradation due to the other VMs’ impedi-
ment caused by resource deallocation.

For example, on a host machine with two quad-core Intel
Xeon CPUs and 8 GB memory, we created three VMs run-
ning representative server applications: E-Commerce (TPC-
W [26]), online transaction processing (TPC-C [27]) and web
server benchmark (SPECweb [25]). Details of the testbed
and benchmark settings can be found in Section 5. Fig-
ure 1(a) shows the impact of resource configuration on ap-
plication performance. The throughput for each application
is normalized to a reference value resulted from running the
application on the host exclusively. The balanced configu-
ration in the form of (time, vcpu, mem) were set to (256,
2, 512M) in TPC-W, (256, 1, 1.5G) in TPC-C, and (512,
2, 512M) in SPECweb. The settings optimized the overall
performance for all the applications. Config-1 moves 1GB
memory from TPC-C to SPECweb; Config-2 reduces the
virtual CPU of TPC-W from 2 to 1; Config-3 moves 256
credits from SPECweb to TPC-C. Figure 1(a) suggests that
VM performance is sensitive to the process of resource allo-
cation. In certain times, unexpected degraded performance
is observed in a VM with even more resources. For example,
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Figure 1: Uncertainties in VM performance.
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Figure 2: Delayed effect in memory reconfiguration.

in Config-1, with more memory the SPECweb VM had an
unexpected worse performance. The reason is due to the
increased competition for I/O bandwidth from the TPC-C
VM which was de-allocated 1GB memory.

Figure 1(b) plots the performance with fixed VM config-
urations while changing the load level in each application.
The workload selections are defined in Table 1. By reducing
the incoming workload to TPC-W, TPC-C and SPECweb,
we got three workloads ordered from left to right in the fig-
ure. Intuitively, reduced traffic should result in better per-
formance due to alleviated resource contention. However,
the assertion does not hold in Figure 1(b). In workload-1,
reduced workload in TPC-W alleviated the CPU competi-
tion with SPECweb VM. However, with more chance to get
scheduled, the SPECweb VM reduced the I/O bandwidth
available to TPC-C which ended up with a performance loss.
Although overall resource demand decrements, unbalanced
VM configurations can still possibly lead to significant per-
formance loss.

2.3 Sequence Dependent VM Performance
Furthermore, I/O data is transferred to and from each do-

main via Xen and the driver domain, using shared-memory.
The hypervisor and driver domain may cache data to expe-
dite VM I/O accesses. VMs with fewer memory may have
more data cached by the VMM and driver domain. Thus
the way of configuring a VM to its target memory size can
potentially affect VMs’ performance. Increasing or decreas-
ing to the target memory size can have distinct effects. Due
to the caching effects, the influence of a previous configu-
ration may last several configuration steps. Figure 2 shows
the delayed effect in memory allocation. The target memory
size for TPC-C benchmark was set to 1GB, but from initial
settings of 1.5GB and 0.5GB. The memory size was adjusted
(at the 20th minute) after the initial configuration produced
stable response times. The effect of the adjustment lasted
for several minutes before the response time stabilized again.

The complicated resource to performance relationship and
possible delayed consequences of previous allocation deci-
sions pose challenges to on-the-fly VM resource manage-
ment. In server consolidation, the resource allocation may
need to be changed due to workload dynamics. The system-
wide performance (performance summarized over all hosting

applications) should be optimized. This motivated us to de-
sign a VM configuration agent to automate the management
process. The self-optimizing agent should be able to dynam-
ically alter the VM settings to a better one in consideration
of performance interference between VMs and the delayed
effects. Reinforcement learning gives a possible solution to
the problem.

3. REINFORCEMENT LEARNING FOR VM
AUTO-CONFIGURATION

3.1 Reinforcement Learning and Its Applica-
bility to VM Auto-configuration

Reinforcement learning is concerned with how an agent
ought to take actions in a dynamic environment so as to
maximize long term rewards defined on a high level goal [21].
The RL offers two advantages [24]. First, it does not require
a model of either the system in consideration or the environ-
ment dynamics. Second, RL is able to capture the delayed
effect in a decision-making task.

The outcome of RL is a policy that maps the current state
of the agent to the best action it could take. The “good-
ness” of an action in a state is measured by a value function
which estimates the future accumulated rewards by taking
this action. The RL-enabled agent performs trial-and-error
interactions with the environment, each of which returns
an instantaneous reward. The reward information is prop-
agated backward temporally in repeated interactions, even-
tually leading to an approximation of the value function.
The optimal policy is essentially choosing the action that
maximizes the value function in each state. The interac-
tions consist of exploitations and explorations. Exploitation
is to follow the optimal policy; in contrast exploration is the
selection of random actions to capture the change of the en-
vironment so as to enable the refinement of existing policy.

The VM configuration task fits within the agent environ-
ment framework. Consider the agent as a controller residing
in dom0. The states are VM resource allocations; possible
changes to the allocations form the set of actions. The envi-
ronment comprises the dynamics underlying the virtualized
platform. Each time the controller adjusts the VM config-
urations, it receives performance feedback from individual
VMs. After sufficient interactions, the controller obtains
good estimations of the “goodness” of the allocation deci-
sions given current VM configurations. Starting from an ar-
bitrary initial setting, the controller is able to lead the VMs
to optimal configurations by following the optimal policy.
Through explorations, the controller can modify its resource
allocation policy according to the dynamics of VM traffics.

A RL problem is usually modeled as a Markov Decision
Process (MDP). Formally, for a set of environment states
S and a set of actions A, the MDP is defined by the tran-
sition probability Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)
and an immediate reward function R = E[rt+1|st = s, at =
a, st+1 = s′]. At each step t, the agent perceives its current
state st ∈ S and the available action set A(st). By taking
action at ∈ A(st), the agent transits to the next state st+1

and receives an immediate reward rt+1 from the environ-
ment. The value function of taking action a in state s can
be defined as:

Q(s, a) = E{
∞X

k=0

γkrt+k+1|st = s, at = a},



where 0 ≤ γ < 1 is a discount factor helping Q(s, a)’s con-
vergence.

3.2 Formulation of VM Configuration as a RL
Task

The VM configuration task is naturally formulated as a
continuing discounted MDP. The goal is to optimize the
overall VM(s) performance. We define the reward func-
tion based on individual VM’s application level performance.
The state spaces are the hardware configuration of VMs
which are fully observable in the driver domain. Actions
are the combination of the change to the configurable pa-
rameters. The configuration task is formulated as following:

The reward function. The long-term cumulative re-
ward is the optimization target of RL. In the VM config-
uration task, the desired configurations are the ones which
optimize system-wide performance. The immediate rewards
are the summarized VM(s) performance feedbacks on the
resulted new configuration. The performance of individual
VM is measured by a score which is the ratio of current
throughput (thrpt) to a reference throughput plus possible
penalties when response time (resp) based SLAs (Service
Level Agreement) are violated:

score =
thrpt

ref thrpt
− penalty.

penalty =

j
0 if resp ≤ SLA;
resp
SLA

if resp > SLA.

The reference throughput (ref thrpt) values are the max-
imum achievable application performance under SLA con-
straints in current hardware settings. We obtained the ref-
erence for one application by dedicating the physical host
and giving more than enough resources to the corresponding
VM. A low score indicates either lack of resource or inter-
ference between VMs, both of which should be avoided in
making allocation decisions. Then, the immediate reward is
the summarized scores over all VMs. As suggested by vir-
tualization benchmarks [6, 29] for summarized performance,
we define the reward as:

reward =

j
n
pQn

i=1 wi ∗ scorei if for all scorei > 0;
−1 otherwise,

where wi is the weight for the ith VM, 1 ≤ i ≤ n. We
strictly refuse the configurations of negative scores (i.e. vi-
olation of SLA) by assigning a reward of −1. In the case
of soft SLA thresholds, the reward function can be revised
correspondingly to tolerate transient SLA violations.

The state space. In the VM configuration task, the state
space is defined to be the set of possible VM configurations.
In the driver domain, VM configurations are fully observ-
able. States defined on the configurations are deterministic
in that Pa(s, s′) = 1, which simplifies the RL problem. We
define the RL state as the global resource allocations:

(mem1, time1, vcpu1, · · · , memn, timen, vcpun).

where memi, timei and vcpui are the ith VM’s memory
size, scheduler credit and virtual CPU number, respectively.
Since the hardware resources available to VMs are limited,
constraints exist. The value of mem should not exceed the
total size of memory that can be allocated to VMs. In ad-
dition, vcpu should be a positive integer, not exceeding the
number of physical CPUs and the scheduler credit be posi-
tive, too.

The actions. For each of the three configurable parame-
ters, possible operations can be either increase, decrease or
nop. The actions for the RL task are defined as the combina-
tions of the operations on each parameter. For parameters
like time and mem that are continuous, we quantify them
by defining change steps. Memory is reconfigured in unit of
256MB; scheduler credit changes in a step of 256 credits and
virtual CPU number is incremented or decremented by one
at a time.

An action is invalid if by taking the action, the target state
violates state constraints. Another restriction for taking ac-
tion is that only one parameter is considered at a time and
only one-step reconfiguration is allowed. It follows the nat-
ural trail-and-error method that searches the configuration
state space exhaustively. More importantly, resource adjust-
ment in small steps smooths the configuration process.

3.3 Solutions to the RL Task
The solution to a RL task is an optimal policy that maxi-

mizes the cumulative rewards at each state. It is equivalent
to finding an estimation of Q(s, a) which approximates its
actual value. The experience-based solution is based on the
theory that the average of the sample Q(s, a) values col-
lected approximates the actual value of Q(s, a) given suffi-
ciently large number of samples. A sample is in the form
of (st, at, rt+1). The basic RL algorithms in experience-
based solution are called temporal-difference (TD) meth-
ods, which update Q(s, a) at each time a sample is collected:

Q(st, at) = Q(st, at)+α∗[rt+1+γ∗Q(st+1, at+1)−Q(st, at)],

where α is the learning rate and γ is the discount factor. The
Q values are usually stored in a look-up table and updated
by writing new values to the corresponding entries in the
table. In the VM configuration task, the RL-based agent
issues reconfiguration actions following an ε-greedy policy.
With a small probability ε, the agent picks a random action,
and follows the best policy it has found for most of the time.
Starting from any initial policy, the agent gradually refines
the policy based on the feedback perceived at each step.

4. THE DESIGN AND IMPLEMENTATION
OF VCONF

In this section, we introduce VCONF, a RL-based VM
auto-configuration agent. Including multiple VMs in the RL
problem poses challenges to the adaptability and scalability
of VCONF. We address the challenges by employing model-
based RL methods with two layers of approximation.

4.1 Overview
VCONF is designed as a standalone daemon residing in

the driver domain. It takes advantage of the control inter-
face provided by dom0 to control the configuration of indi-
vidual VMs. Figure 3 illustrates the organization of VCONF
and the Xen virtualization environment. VCONF manages
the VM configurations by monitoring performance feedbacks
from each VM. Reconfiguration actions take place periodi-
cally based on a predefined time interval. VCONF queries
the driver domain for current state and computes valid ac-
tions. Following the policy generated by the RL algorithm,
VCONF selects an action and sends it to dom0 for VMs re-
configuration. At the end of each step, VCONF collects the
performance feedbacks in each VM and calculates the im-
mediate reward. The new sample of the immediate reward



Xen

VM VM

a1
1

a2
23

a3
4

a4 b1b2b3b4

5678

V
in

G
N

D

V
ref

B
1

B
8

S
ign

E
N

B A/D Converter

a1
1

a2
23

a3
4

a4 b1b2b3b4

5678

V
in

G
N

D

V
ref

B
1

B
8

S
ign

E
N

B A/D Converter

reward

reward C
onfiguration

Hardware

MEMVCPUSCHED
Valid actions

Figure 3: The organization of VCONF.

is processed by the RL algorithm and VCONF updates the
configuration policy accordingly. VCONF implements a ba-
sic look-up table based Q function for small systems. In a
larger system, VCONF employs model-based RL algorithm
for adaptability and scalability.

4.2 Adaptability and Scalability
Adaptability is the ability of RL algorithms to revise the

existing policy in response to the change of the environment.
To adapt current policy to a new one, the RL agent needs to
perform a certain amount of exploration actions, which are
believed to be suboptimal actions leading to bad rewards.
In production systems, the explorations can be prohibitively
expensive due to bad client experiences. The RL algorithm
usually requires a long time for new samples collection before
a new policy can be derived. This is not acceptable for online
policy generation tasks like VM auto-configuration.

Scalability issues refer to the problem that the number
of Q values grows exponentially with the state variables.
In a look-up table-based Q implementation, the values are
stored separately without interactions. The convergence of
the optimal policy depends critically on the assumption that
each table entry be visited at least once. In practice, even
if the storage and computation complexity for a large Q
table are not a concern, the time required to collect sample
rewards to populate the Q table is prohibitively long.

Instead of updating each Q(s, a) value directly from the
immediate reward recently collected, VCONF employs envi-
ronment models to generate simulated experiences for value
function estimation. The environment models are essentially
data structures that capture the relationship between cur-
rent configuration, action and the observed reward. The
model can be trained from previous collected samples in
the form of (st, at, rt+1) using supervised learning. Once
trained, a model is able to predict the r values for unseen
state-action pairs.

The use of environment models offers two advantages for
RL tasks: First, model-based RL is more data efficient [2].
With limited samples, the model is able to shed insight on
unobserved rewards. Especially in online policy adaptation,
the model is updated every time with new collected samples.
The modified model generates simulated experiences to up-
date the value function, and hence expedites policy adapta-
tion. Second, the immediate reward models can be reused in
a similar environment. The environmental dynamics in VM
configuration task are the time-varying resource demands in
each VM. Different models can be learned for different com-
bination of demands in VMs. We call such a combination
a workload. In online adaptation, once VCONF identifies

Algorithm 1 The VCONF online algorithm

1: Initialize Qappx to trained function approximator.
2: Initialize t← 0, at ← nop.
3: repeat
4: st ← get current state()
5: re configure(at)
6: rt+1 ← observe reward()
7: at+1 ← get next action(st, Qappx)
8: worload← identify workload()
9: Rmodel ← select model(workload)
10: update Rmodel(st, at, rt+1, Rmodel)
11: update Qappx(Rmodel, Qappx)
12: t← t + 1
13: until VCONF is terminated

the resource demand is similar to a previous workload, the
corresponding model is re-used. Instead of starting from
scratch, the reuse of previous models is equivalent to start-
ing from guided domain knowledge, which again improves
online performance.

In model-based RL, the scalability problem is alleviated
by the model’s ability in coping with relatively scarcity of
data in large scale problems. The conventional table-based
Q values can be updated using the batch of experiences gen-
erated by the environment model. However, the table-based
Q representation requires a full population using the rewards
simulated by the model. This is problematic when the RL
problem scales up. In VCONF, we use another layer of ap-
proximation for the value function, which helps to reduce
the time in updating the value function in each configura-
tion step.

4.3 Model Initialization and Adaptation
We selected standard multi-layer feed-forward back prop-

agation neural network (NN) with sigmoid activations and
linear output to represent the environment model. The se-
lection was due to NN’s ability to generalise from linear
to non-linear relationship between the environment and the
real-valued immediate reward. More importantly, it is easy
to control the structure and complexity of the network by
changing the number of hidden layers and the number of
neurons in each layer. This flexibility facilitates the inte-
gration of supervised learning algorithms with RL for bet-
ter convergence. The performance of model-based RL algo-
rithms depends on the accuracy of the environment model
in generating simulated samples. Thus, the training samples
used to train the model should be representative. We gen-
erated the training samples for the model by enumerating
important configurations. In the implementation of Q func-
tion, an NN-based function approximator replaces the tab-
ular form. The NN function approximator takes the state-
action pairs as input and outputs the approximated Q value.
It directs the selection of reconfiguration actions based on
the ε-greedy policy.

Algorithm 1 shows the VCONF online algorithm. VCONF
is designed to run forever until being stopped. At each con-
figuration interval, VCONF records the previous state and
observes the actual immediate reward obtained. Next action
is selected by ε-greedy policy according to output of function
approximator Q. VCONF identifies the workload by exam-
ining system-level metrics during last interval. The function
select workload is implemented in a way similar to the one
in [17] using supervised learning except that the output is
the predicted workload type. The new sample (st, at, rt+1)
then updates the selected environmental model. The Q func-
tion approximator is batch-updated as in Algorithm 2.



Algorithm 2 Update the Q approximator

1: Initialize Qappx to the current function approximator.
2: repeat
3: sse← 0
4: for n iterations do
5: (st, at, rt)← generate sample(Rmodel)
6: target← rt + γ ∗Qappx(st+1, at+1)
7: error ← target−Qappx(st, at)
8: sse← 0.9 ∗ sse + 0.1 ∗ error ∗ error
9: train Qappx(st, at) towards target
10: end for
11: until converge(sse)
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Figure 4: The design of experiments.

5. EXPERIMENTAL RESULTS

5.1 Methodology
We designed a set of experiments to show the effective-

ness of the RL-enabled VCONF in VM auto-configuration.
Figure 4 lists four different VM settings. The experiments
are divided into two parts. In the first part, VCONF was
evaluated in controlled environments in which the number of
applications and resources were limited to a small set. The
multi-tier TPC-W benchmark was selected as the applica-
tion. As in Figure 4(a), its reference performance was ob-
tained by running TPC-W application server and database
server on two separate physical servers exclusively. Fig-
ure 4(b) shows a single instance of TPC-W with two tiers.
Since TPC-W is primary CPU-intensive, the memory pa-
rameter was fixed in this controlled environment. By adjust-
ing CPU resources allocated to each tier, VCONF is to max-
imize TPC-W’s throughput. The experiment in Figure 4(c)
augmented the single application problem by adding another
instance of TPC-W. VCONF needs to optimize system-wide
performance finding balanced CPU allocation schemes for
competing applications. In the second part, restrictions on
the number of applications and resources in consideration
were relaxed. As in Figure 4(d), three applications with
heterogeneous resource demands were consolidated in the
host. The memory parameter needs to be considered. In
the scaled-up problem, the state-action space is consider-
ably larger than the controlled experiments. VCONF’s im-
plementation of model-based RL algorithm was evaluated
and compared with basic RL methods.

5.2 Experiment Settings
The machines used in the experiments consist of virtual

servers, client and compute machines. The physical ma-
chines for virtual hosting are Dell PowerEdge1950 with two
quad-core Intel Xeon CPU and 8GB memory. In the con-
trolled experiment, all VMs were pinned to the first four
cores. We separated the RL related computation to a com-
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Figure 5: TPC-C performance in different settings.

pute node in order to avoid possible VM performance inter-
ference. All the client and compute nodes were the same
model Dell machines and were connected by Gigabyte Eth-
ernet network.

We used Xen version 3.1 as our virtualization environ-
ment. Both dom0 and the guest VMs were running Cen-
tOS Linux 5.0 with kernel 2.6.18. The VMs mounted their
file-based disk images through a NFS server. For the bench-
mark applications, MySQL, Tomcat and Apache were used
for database, application and web servers. The VM configu-
ration actions were issued through dom0’s privileged control
interface xm.

We selected the TPC-W [26], TPC-C [27] and SPECweb [25]
benchmarks as the workloads running within the VMs. They
are typical server applications in today’s data centers which
are the targets of virtualization technology.

5.3 Applicability of RL-based VM Autocon-
figuration

First, we studied the applicability of RL algorithms in the
VM configuration task. In [18], the authors assumed inde-
pendence of configuration parameters. With this assump-
tion, VM configuration task can be easily solved by greedy
search in each resource dimension. They showed database
query costs drop linearly with more CPU shares. The cost
is independent with the memory size allocated to the VM.
Thus, greedy search together with linear regression are suffi-
cient to find the optimal configuration without visiting every
possible configurations. However, the independence assump-
tion does not always hold. Due to the involvement of dom0
in VM execution, applications hungry for memory can be
affected by CPU-intensive applications. Figure 5 plots the
performance of TPC-C under different CPU settings: equal,
more and less. The VM competing for resource is an in-
stance of TPC-W. “equal”, “more” and “less” indicate 50%,
80% and 20% CPU allocations for TPC-C, respectively. The
figure suggests a strong correlation between memory and
CPU in determining application performance. That is, re-
gression based greedy search approach needs to search the
entire configuration space.

The RL algorithm does not assume any model of the sys-
tem in consideration. It derives policies from interactions
and continues to refine the policy with newly collected ex-
periences. We validated the effectiveness of RL methods
in VM auto-configuration starting from a simple problem.
As showed in Figure 4(b), a two-tier TPC-W application
was hosted by the virtual server. We assume the applica-
tion throughput as the optimization target. Requests exe-
cution in TPC-W involves processing on both tiers. Thus,
the resulted performance is affected by the processing ca-
pacity on both tiers. TPC-W defines three different traffic
mixes: shopping, browsing and ordering mix. Different traf-
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Figure 6: VCONF performance with TPC-W appli-
cation.

fic mixes put processing pressure on distinct tiers. Thus, it
is not easy to determine the CPU assignment to each tier for
balanced configuration. Moreover, due to dynamic CPU de-
mands from different traffic mixes, existing CPU allocation
needs to be frequently revised.

To limit the problem size, we restricted each tier to have
up to 3 virtual CPUs. Only three scheduler credit assign-
ments were selected: equal share, tomcat tier with 80% share
and Database tier with 80% share. The resulted state space
contains 27 configurations. VCONF was deployed with a
table-based Q function which was initialized to all zeros. We
used the Sarsa(0) algorithm [20] with α = 0.1, γ = 0.9, ε =
0.1 to drive the configuration agent, the configuration inter-
val was set to 60 seconds. If otherwise specified, the same RL
parameters and interval were used in the remaining experi-
ments. The agent exits until the Q function converges. An
optimal configuration policy can then be derived from the
Q table. The RL learning process was repeated for above
three workloads resulting in three policies.

Figure 6 shows the online performance of VCONF with
adaptive and static policies. The plots are the achieved
throughput in TPC-W. During the testing, workloads were
dynamically switched in the order of ordering, shopping and
browsing mix every 20 minutes. VCONF with adaptive
policies continuous monitored the system level performance
metrics and identified workload changes. The policies were
switched accordingly as recommended by VCONF. Config-
ured with a static initialization policy, VCONF revised the
initial policy only based on online interactions. The fig-
ure suggests that both RL agents were able to automati-
cally drive an inappropriate configuration to a better set-
ting in a small number of steps. The TPC-W throughput
was brought up and maintained at a high level. The adap-
tive agent achieved the optimal performance, which is the
best possible result for the RL approach. The one with the
static policy also showed the effectiveness of RL, but with
limited adaptability to a new policy when traffic changed.

5.4 RL-based System Wide Performance Op-
timization

In this experiment, we add one more TPC-W application
to the problem. The goal of the RL agent is to maximize the
cumulative reward which is defined as the summarized per-
formance scores over both TPC-W instances. Adding more
applications complicates the VM configuration problem. As
the state space grows, the time required for the RL agent
to obtain an optimal policy in online interaction becomes
prohibitively long. For example, in the case of two TPC-W
instances with two application server VMs and two database
VMs, the state space increases to around 400 states if the
state is defined similarly as in the first experiment. It would
take the agent more than 400 minutes to visit every state.
The convergence of the Q function usually requires multiple

visits to each entry and the RL agent following the ε−greedy
policy may not update different entries each time. Thus,
the resulted time required for online RL learning is unac-
ceptable. One possible solution is to pre-define a policy that
guides the RL agent in online learning. Upon an acceptable
good policy is derived from online guided interactions, the
RL agent is handed over to the generated policy.

We designed the initial policy to be as simple as visiting
different configurations at each step. As more states are vis-
ited, the RL agent performs sweeps of batch updates to the
Q table using the collected rewards. In this experiment, the
pre-defined policy terminates when all configurations have
been visited. Due to the presence of delayed effects, different
sequences of visiting may receive different rewards. Theo-
retically, the Q function approximates its actual value only
if the agent perceives the effect of all the state-action pairs.
Thus, the generated policy still needs online refinement be-
fore the optimal policy is achieved. In practice, near optimal
policy often satisfies users’ requirement.

The RL-based VM resource management is to optimize
both applications in operation. Because VMs with identi-
cal resource demands can be configured to have the same
resource allocation. To test VCONF, the hosted TPC-W
applications ran different traffic mixes. Randomly select-
ing two traffic mixes as the input traffic to the VMs forms
three different resource demands for the whole system. The
optimization goal for the RL agent is to maximize system
wide throughput for both applications. Figure 7 shows the
change of their throughput during RL online learning. The
incoming workload changes every 30 minutes. We randomly
selected a time period with three different workloads and
evaluated VCONF’s ability in system wide performance op-
timization. For TPC-W1, the traffic mix changes were: or-
dering, ordering and shopping. To form different resource
demands, TPC-W2 ran shopping, browsing and browsing
mixes correspondingly. From the figure, we can see that
both applications suffered performance degradation when
the workload changed at the 30th and 60th time points. This
is partially due to unbalanced VM configuration caused by
traffic dynamics. On the other hand, the RL agent was able
to correct unbalanced configurations within a few steps. For
example, TPC-W1’s throughput dropped to 2000 during the
second workload change. The RL agent brought the perfor-
mance back and maintained the throughput around 7000
within 7 steps. Note that the policy employed by the RL
agent is not guaranteed to be an optimal policy because of
the agent’s limited interactions with the environment. There
is no guarantee that the throughputs for both applications
were maximized.

From the 60th time point, the two VMs ran browsing and
shopping mixes respectively. The resource contention and
performance interference between the two VMs are more
pronounced under this workload. We examined the effec-
tiveness of RL-based approach by comparing the perfor-
mance of the derived RL policy with a general trial-and-
error method. The method fixes the value of one parame-
ter and tries different settings for another parameter. Fig-
ure 8 plots performance of the trial-and-error method. The
trend line in the figure is the linear regression of the perfor-
mance in both VMs. The figure suggests that, on average
the VMs running browsing and shopping mix can achieve a
maximum throughput of 4500 and 6500 concurrent requests.
Compared with the trial-and-error, the RL-based approach
brought the throughput of both applications to around 5000
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Figure 7: VCONF performance with two TPC-W
instances.
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Figure 8: Performance of trial-and-error.

and 7000 respectively. More importantly, the RL approach
automatically directed the resource allocation towards tar-
get configurations without any human intervention.

We define the difference between the system throughput
under current configuration and the throughput achieved in
the target configuration as the performance deviation. Fig-
ure 9 plots the performance deviation in each configuration
step with a 95% confidence interval. The figure suggests
that starting from arbitrary configurations, the RL agent
should be able to continuously improve the system through-
put at each configuration step. On average, the system wide
throughput would stabilize within 7 configuration steps.

5.5 Model-based RL in VM Auto-configuration
In previous experiments, we showed the effectiveness of

RL in small scale problems. VCONF was able to find the op-
timal configuration for a single application. In the multiple-
application problem, a policy generated by RL using pre-
vious collected traces achieved good results in optimizing
system wide performance. Statistical results showed that
the RL approach would continuously improve the configura-
tion step by step and reach the target configuration within a
small number of iterations. However, as the VM configura-
tion problem scales up, the state space grows dramatically.

Standard RL approaches depends critically on the expe-
riences with the environment to generate policies. Unfor-
tunately, the number of experiences needed for an optimal
RL policy grows with the state space. The pre-defined pol-
icy used to collect experiences is likely to converge to sub-
optimal policies due to the relatively data scarcity in the
huge state space. Model-based RL provides a solution to
the problem by providing a generalization over the collected
experiences. By training a model that captures the relation-
ship between state-action pairs and the rewards collected,
the RL agent is able to simulate experiences for unseen
state-action pairs. Then, the simulated experiences are used
to update the Q values. The performance of the model-
based RL approach relies on the accuracy of the trained
model. Policies for experience collection should be carefully
designed in order to record representative sample data.

In the last experiment, we scaled the previous controlled
VM configuration problem in two dimensions. We consol-
idated three benchmarks, TPC-W, TPC-C and SPECweb,
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Figure 9: Performance deviation during re-
configuration.

with heterogeneous resource profiles in the virtual server.
TPC-W is primary CPU-intensive while TPC-C requires
a large amount of disk I/Os. The execution of requests
in SPECweb involves processor and network I/O for dy-
namic content generation and static image serving. The
VM resources in consideration were the virtual CPU num-
ber, scheduler credit and memory size. We defined different
workloads with varying resource demands and tabularized
them in Table 1.

All VMs were initially set to an identical configuration:
1.5GB memory, 4 virtual CPUs and a credit of 256. We de-
signed the policy for experience collection as a traversal in a
pre-defined resource configuration set. The set contains rep-
resentative combinations of the allocations uniformly scat-
tered in the state space. The NN models were trained with a
learning rate of 0.0001 and a momentum of 0.1. Four models
were trained for different workloads. A second layer NN gen-
eralization was used as the Q function approximator and its
learning process is listed in Algorithm 2. The time required
to train a NN model from an arbitrary neural network is ap-
proximately 10 minutes. When updated incrementally, the
training time reduces to around 1 minute. In order to fit
the updates of the NN model and the Q approximator be-
tween each interval, we limited the update of the NN model
and the Q approximator to 50 iterations and 100 sweeps re-
spectively, which resulted in a 50-second compute time. We
compared model-based RL approach with the basic table-
base RL algorithm. To be fair comparison, the basic RL’s
Q tables for different workloads were initialized by the NN-
based Q approximators. During online learning, VCONF
identifies workload changes and recommends corresponding
models and Q tables to model-based RL agent and basic RL
agent. Both the model-based RL agent and the basic RL
agent were started with the same VM initial configuration.

We randomly selected a time period with four different
workloads. Figure 10 shows the performance of VCONF
with respect to response time and throughput. The “Max”
plot is the reference throughput for each application. The
reference value was obtained when each application ran alone
on the virtual server with sufficient resources. Due to VM
interferences and possible inappropriate configurations, the
throughput for each application is less than the reference
value. Model-based RL approach outperforms basic RL in
that it achieved a higher throughput and lower response time
during online learning. The model-based RL was able to
adapt to workload changes well. It improved the applica-
tion throughput by 20%-100% over the basic RL approach
in different applications. In addition, model-based approach
was more stable sticking with the“best”configuration during
the same workload. The basic RL agent wagered between
several configurations some of which incurs considerable per-
formance penalty.



Table 1: Workload settings.
TPC-W TPC-C SPECweb

workload-0 600 browsing clients 50 warehouses, 10 terminals 800 banking clients
workload-1 600 ordering clients 50 warehouses, 10 terminals 800 banking clients
workload-2 600 browsing clients 50 warehouses, 1 terminal 800 banking clients
workload-3 600 browsing clients 50 warehouses, 10 terminals 200 banking clients
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Figure 10: Performance of VCONF with heterogeneous applications.

The advantage of model-based RL approach over basic RL
is due to the model’s ability generalizing the environmen-
tal changes. In another word, the model-based approach
is more data efficient [2] that a change in the environment
can spread to other state-action pairs because they are co-
related within the model. The basic RL approach stores Q
values separately without interactions, then an environmen-
tal change can only influence the agent’s decision when the
affected Q value entry is visited next time.

6. RELATED WORK
Early work in autonomic computing [1] aimed to develop

computer systems of self-management to overcome the rapidly
growing complexity of system management. Recent work of-
ten focuses on the design and implementation of self-healing,
self-optimization and self-configuration systems.

Self-healing systems automatically discover and correct
faults. In [8, 33], Cohen, et al. suggested to use a ma-
chine learning model to generate system signatures for the
purpose of performance problem diagnosis. They correlated
system low-level metrics to high-level performance states.
By monitoring sensor readings, the statistical approach was
able to narrow down possible faults. In [17], we defined a
performance index to measure the system health based on
hardware performance counters. A bayesian network model
was assumed to automatically map hardware events to sys-
tem overload state. Studies in [5] reduced downtime of J2EE
applications by rapidly and automatically recovering from
transient and intermittent software failures, without requir-
ing application modifications.

Self-optimization systems automatically monitor and con-
trol resources to ensure optimal performance with respect
to defined requirements. Control theory has recently been
applied in computer systems for performance optimization.
Similar self-tuning adaptive controller were designed in [12,
13] for multi-tier web sites and storage systems. There are
other efforts towards automatically allocating resources in a
fine grain to individual requests using fuzzy control [30, 14].

Self-configuration systems automatically adapt software
parameters, hardware resources for the purpose of correct
function or better performance. In [19], AutoBash lever-
aged causal tracking support in Linux to automate tedious
parts of fixing a mis-configuration. Chronus in [31] used
checkpoint and rollback for configuration management to
diagnose kernel bugs. Other work focused on automatically
configuring a software of a physical system to a better con-
figuration for performance. Our work addresses the problem
in the granularity of VMs with actual hardware resources.

Different from the above approaches in designing self-
managed system, RL offers tremendous potential benefits in
autonomic computing. Although practical issues exist using
RL in real-world applications, efforts has been made to apply
RL in computer systems. In [22, 24], the authors used hy-
brid RL algorithms to optimize server allocation in a server
farm. RL was also applied to balance power-performance of
computing systems [23] and automate application parame-
ter tuning [4]. Above works defined state spaces on the dis-
cretization of a single metric, which is not easily extended to
a higher dimension. The state space in our work was defined
on three dimensions. Ipek et al. designed a self-optimizing
memory controller [11] and implemented the RL in a sim-



ulator. Our deployment of RL algorithms in web hosting
VMs poses more challenges in efficient design.

The emergence of virtual machines provides an alternate
approach to provision and managing resources . VMs be-
come the target for resources allocation and configuration.
In [18], an VM advisor automatically configured VMs for
database workloads. The advisor required domain knowl-
edge. Padala et al. applied classical control theory to ad-
just a single resource each VM [16]. This work is closely
related to ours in that it employed a black-box approach
which requires not no domain knowledge. However, the au-
thors’ approach was limited to one configurable resource and
non-work-conserving sharing of the resource. This assump-
tion does not hold for heterogeneous VMs competing for
multiple resources. Without the assumption, their single-
input single-output classical control theory is not applicable
to a more complex domain. To the best of our knowledge,
our work is the first to use RL-based methods in VM auto-
configuration with multiple resources. Our approach has
two major benefits: First, we do not assume any domain
knowledge as in [18] and applies to a wider range of VM
applications. Second, our model-based approach generates
reasonable good policies with limited interactions even in a
scaled up problem.

7. CONCLUSIONS AND DISCUSSIONS
In this work, we presented VCONF, a RL-based agent for

virtual machine auto-configuration. VCONF automates the
VM reconfiguration process by generating policies learned
from iterations with the environment. Experiments on Xen
VMs with typical server applications showed VCONF’s op-
timality in controlled problems and good adaptability and
scalability in a cloud computing testbed. In the presence
of workload dynamics, VCONF was able to adapt to a good
configuration within 7 steps and showed 20% to 100% through-
put improvement over basic RL methods.

Nevertheless, there are several limitations this work. First,
the quality of the samples used in model training affects the
quality of the policies. We consider a uniform distribution
of the samples over the state space as representative. In a
system with different VM behaviors, the strategy for sam-
ple collection may need specific design for the environment
in consideration. Second, in hosted environment, VMs usu-
ally share network interfaces and the access to centralized
storage service. Network and disk bandwidth should also
be considered. Another important resource is the shared L2
cache space in modern chip-multiprocessors. In a system
with hundreds of CPU cores, L2 cache may be the first-class
resource to be considered in VM configuration.
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