iShuffle: Improving Hadoop Performance with Shuffle-on-Write

Yanfei Guo, Jia Rao, and Xiaobo Zhou
Department of Computer Science
University of Colorado, Colorado Springs, USA
{yguo,jrao,xzhou} @uccs.edu

Abstract

Hadoop is a popular implementation of the MapReduce
framework for running data-intensive jobs on clusters
of commodity servers. Although Hadoop automatically
parallelizes job execution with concurrent map and re-
duce tasks, we find that, shuffle, the all-to-all input data
fetching phase in a reduce task can significantly affect
job performance. We attribute the delay in job comple-
tion to the coupling of the shuffle phase and reduce tasks,
which leaves the potential parallelism between multiple
waves of map and reduce unexploited, fails to address
data distribution skew among reduce tasks, and makes
task scheduling inefficient. In this work, we propose to
decouple shuffle from reduce tasks and convert it into a
platform service provided by Hadoop. We present iShuf-
fle, a user-transparent shuffle service that pro-actively
pushes map output data to nodes via a novel shuffle-on-
write operation and flexibly schedules reduce tasks con-
sidering workload balance. Experimental results with
representative workloads show that iShuffle reduces job
completion time by as much as 30.2%.

1 Introduction

Hadoop is a popular open-source implementation of the
MapReduce programming model for processing large
volumes of data in parallel [7]. Each job in Hadoop con-
sists of two dependent phases, each of which contains
multiple user-defined map or reduce tasks. These tasks
are distributed independently onto multiple nodes for
parallel execution. The decentralized execution model
is essential to Hadoop’s scalability to a large number of
nodes as map computations can be placed near their input
data stored on individual nodes and there is no commu-
nication between map tasks.

There are many existing studies focusing on improv-
ing the performance of map tasks. Because data lo-
cality is critical to map performance, work has been

done to preserve locality via map scheduling [21] or in-
put replication[4]. Others also designed interference [5]
and topology [14] aware scheduling algorithms for map
tasks. While there is extensive work exploiting the paral-
lelism and improving the efficiency in map tasks, only a
few studies have been devoted to expedite reduce tasks.

The all-to-all input data fetching phase in a reduce
task, known as shuffle, involves intensive communica-
tions between nodes and can significantly delay job com-
pletion. Because the shuffle phase usually needs to copy
intermediate output generated by almost all map tasks,
techniques developed for improving map data locality
are not applicable to reduce tasks [16, 21]. Hadoop
strives to hide the latency incurred by the shuffle phase
by starting reduce tasks as soon as map output files are
available. There is existing work that tries to overlap
shuffle with map by proactively sending map output [6]
or fetching map output in a globally sorted order [19].

Unfortunately, the coupling of shuffle and reduce
phases in a reduce task presents challenges to attaining
high performance in Hadoop clusters and makes exist-
ing approaches [6, 19] less effective in production sys-
tems. First, in production systems with limited num-
ber of reduce slots, a job often executes multiple waves
of reduce tasks. Because the shuffle phase starts when
the corresponding reduce task is scheduled to run, only
the first wave of reduce can be overlapped with map,
leaving the potential parallelism unexploited. Second,
tasks scheduling in Hadoop is oblivious of the data dis-
tribution skew among reduce tasks [8, 11, 12], machines
running shuffle-heavy reduce tasks become bottlenecks.
Finally, in a multi-user environment, one user’s long-
running shuffle may occupy the reduce slots that would
otherwise be used more efficiently by other users, lower-
ing the utilization and throughput of the cluster.

In this paper, we propose to decouple the shuffle phase
from reduce tasks and convert it into a platform ser-
vice provided by Hadoop. We present iShuffle, a user-
transparent shuffle service that overlaps the data shuf-

USENIX Association

10th International Conference on Autonomic Computing (ICAC "13) 107

Map Task Reduce Task

B (RS

Split

Input H

Split
Input H
Split

’ Map Stage ‘ ’

Partition |
Combine

Reduce Task

Map Task

Map Task Reduce Task

)
)
J\

Reduce Stage

Figure 1: An overview of data processing in Hadoop
MapReduce framework.

fling of any reduce task with the map phase, addresses
the input data skew in reduce tasks, and enables efficient
reduce scheduling. iShuffle features a number of key de-
signs: (1) proactive and deterministic pushing shuffled
data from map to Hadoop nodes when map output files
are materialized to local file systems, a.k.a, shuffle-on-
write. (2) automatic predicting reduce execution time
based on the input partition size and placing the shuffled
data to mitigate the partition skew and to avoid hotspots.
(3) binding reduce tasks with data partitions only when
reduce is scheduled to realize the load balancing enabled
by the partition placement.

We implemented iShuffle on a 32-node Hadoop cluster
and evaluated its benefits using the Purdue MapReduce
Benchmark Suite (PUMA) [2] with datasets collected
from real applications. We compared the performance
of iShuffle running both shuffle-heavy and shuffle-light
workloads with that of the stock Hadoop and a recently
proposed approach (i.e., Hadoop-A in [19]). Experi-
mental results show that iShuffle reduces job completion
time by 30% and 22% compared with stock Hadoop and
Hadoop-A, respectively. iShuffle also achieves signifi-
cant performance gain in a multi-user environment with
heterogeneous workloads.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of Hadoop, discusses
existing issues, and presents a motivating example. Sec-
tion 3 elaborates iShuffle’s key designs. Section 4 gives
the testbed setup, experimental results and analysis. Re-
lated work is presented in Section 5. We conclude this
paper in Section 6.

2 Background and Motivation

2.1 Hadoop MapReduce Framework

The data processing in MapReduce [7] model is ex-
pressed as two functions: map and reduce. The map
function takes an input pair and produces a list of inter-
mediate key/value pairs. The intermediate values asso-

ciated with the same key are grouped together and then
passed to the same reduce function via shuffle, an all-
map-to-all-reduce communication. The reduce function
processes the intermediate key with the list of its values
and generate the final results.

Hadoop’s implementation of the MapReduce pro-
gramming model pipelines the data processing and pro-
vides fault tolerance. Figure 1 shows an overview of
job execution in Hadoop. The Hadoop runtime partitions
the input data and distributes map tasks onto individual
cluster nodes for parallel execution. Each map task pro-
cesses a logical split of the input data that resides on the
Hadoop Distributed File System (HDFS) and applies the
user-defined map function on each input record. The map
outputs are partitioned according to the number of reduce
tasks and combined into keys with associated lists of val-
ues. A map task temporarily stores its output in a circular
buffer and writes the output files to local disk every time
the buffer becomes full (i.e., buffer spill).

A reduce task consists of two phases: shuffle and re-
duce. The shuffle phase fetches the map outputs as-
sociated with a reduce task from multiple nodes and
merges them into one reduce input. An external merge
sort algorithm is used when the intermediate data is too
large to fit in memory. Finally, a reduce task applies
the user-defined reduce function on the reduce input and
writes the final result to HDFS. The reduce phase can
not start until all the map phases have finished as the
reduce function depends on the output generated by all
the map tasks. To overlap the execution of map and re-
duce, Hadoop allows an early start of the shuffle phase
(by scheduling the corresponding reduce task) as soon as
5% of the map tasks have finished.

In the next, we discuss several issues related to shuffle
and reduce in the existing Hadoop framework, and give a
motivating example showing how these issues affect the
performance and efficiency of a Hadoop cluster.

2.2 Input Data Skew among Reduce Tasks

The output of a map task is a collection of intermediate
keys and their associated value lists. Hadoop organizes
each output file into partitions, one per reduce task and
each containing a different subset of the intermediate key
space. By default, Hadoop determines which partition
a key/value pair will go to by computing a hash value.
Since the intermediate output of the same key are always
assigned to the same partition, skew in the input data set
will result in disparity in the partition sizes. Such a parti-
tioning skew is observed in many applications running in
Hadoop [8, 11, 12]. Some user-defined partitioner may
mitigate the skew but does not guarantee an even data
distribution among reduce tasks. As a result, some re-
duce tasks take significant longer time to complete, slow-

108 10th International Conference on Autonomic Computing (ICAC "13)

USENIX Association

60 =
2 a0t = Reduce Tasks -
]
=

Map Tasks
20 +
. Shuffle) Reduce
50 100 150 200
Time (s)

Figure 2: tera-sort job execution.

ing down the entire job.

2.3 Inflexible Scheduling of Reduce Tasks

Reduce tasks are created and assigned a task ID by
Hadoop during the initialization of a job. The task ID is
then used to identify the associated partition in each map
output file. For example, shuffle fetches the partition that
matches the reduce ID from all map tasks. When there
are reduce slots available, reduce tasks are scheduled in
the ascending order of their task IDs. Although such a
design simplifies task management, it may lead to long
job completion time and low cluster throughput. Due to
the strict scheduling order, it is difficult to prioritize re-
duce tasks that are predicted to run longer than others.
Further, partitions required by a reduce task may not be
generated at the time it is scheduled, occupying the re-
duce slot and wasting cluster cycles which would other-
wise be used by another reduce with all partitions ready.

2.4 Tight Coupling of Shuffle and Reduce

As part of a reduce task, shuffle can not start until the cor-
responding reduce is scheduled. Besides the inefficiency
of job execution, the coupling of shuffle and reduce also
leaves the potential parallelism between within and be-
tween jobs unexploited. In a production environment, a
MapReduce cluster is shared by many users and multiple
jobs [21]. Each job only gets a portion of the execution
slots and often requires multiple execution waves, each
of which consists of one round of map or reduce tasks.
Because of the coupling, data shuffling in later reduce
waves can not be overlapped with map waves.

Figure 2 shows the execution of one tera-sort job
with 4GB dataset in a 10-node Hadoop cluster. Each
node was configured with 1 map slot and 1 reduce slot.
The job was divided into 32 map tasks and 32 reduce
tasks [7, 17], resulting in 4 map and reduce waves. We
use the duration of the shuffle phase between last execu-
tion wave and next reduce phase, termed as shuffle delay,
to quantify how data shuffling affects the completion of

reduce tasks. Due to the overlapped execution, the first
reduce wave experienced a shuffle delay of 11 seconds.
Unfortunately, remaining reduce waves had on average a
delay of 23 seconds before the reduce phase could start.
Given that the average length of the reduce phase was 25
seconds, the reduce waves would have been completed
in less than half the time if the shuffle delay can be com-
pletely overlapped with map.

Figure 2 also suggests that although the overlapping
of reduce and map reduced the shuffle delay from 23 to
11 seconds, the first reduce wave occupied the slots three
times longer than the following waves. Most time was
spent in the shuffle phase waiting for the completion of
map tasks. In production systems, allowing other jobs to
use these slots may outweigh the benefits brought by the
overlapped execution.

These observations revealed the negative impacts of
coupling shuffle and reduce on job execution and moti-
vated us to explore a new shuffling design for Hadoop.
We found that decoupling shuffle from reduce provides
a number of benefits. It enables skew-aware placement
of shuffled data, flexible scheduling of reduce tasks, and
complete overlapping the shuffle phase with map tasks.
In Section 3, we present iShuffle, a decoupled shuffle ser-
vice for Hadoop.

3 iShuffle Design

We propose iShuffle, a job-independent shuffle service
that pushes the map output to its designated reduce node.
It decouples shuffle and reduce, and allows shuffle to be
performed independently from reduce. It predicts the
map output partition sizes and automatically balances the
placement of map output partitions across nodes. iShuf-
fle binds reduce IDs with partition IDs lazily at the time
reduce tasks are scheduled, allowing flexible scheduling
of reduce tasks.

3.1 Overview

Figure 3 shows the architecture of iShuffle. iShuffle con-
sists of three components: shuffler, shuffle manager, and
task scheduler. The shuffler is a background thread that
collects intermediate data generated by map tasks and
predicts the size of individual partitions to guide the par-
tition placement. The shuffle manager analyses the par-
tition sizes reported by all shufflers and decides the des-
tination of each partition. The shuffle manager and shuf-
flers are organized in a layered structure which is similar
to Hadoop’s JobTracker and TaskTrackers. The task
scheduler extends existing Hadoop schedulers to support
flexible scheduling of reduce tasks. We briefly describe
some major features of iShuffle.

USENIX Association

10th International Conference on Autonomic Computing (ICAC “13) 109

Master Node

%[JobTrackerJ (Shuffle HScheduler
: Manager :

Slave Node

TaskTracker Slave

Figure 3: The architecture of iShuffle.

User-Transparent Shuffle Service - A major require-
ment of iShuffle design is the compatibility to existing
Hadoop jobs. To this end, we design shufflers and the
shuffle manager as job-independent components, which
are responsible for collecting and distributing map out-
put data. This design allows the cluster administrator to
enable or disable iShuffle through the options in the con-
figuration files. Any user job can use iShuffle service
without modifications.

Shuffle-on-Write - The shuffler implements a shuffle-
on-write operation that proactively pushes the map out-
put data to different nodes for future reduce tasks every
time such data is written to local disks. The shuffling of
all map output data can be performed before the execu-
tion of reduce tasks.

Automated Map Output Placement - The shuffle
manager maintains a global view of partition sizes across
all slave nodes. An automated partition placement algo-
rithm is used to determine the destination for each map
output partition. The objective is to balance the global
data distribution and mitigate the non-uniformity reduce
execution time.

Flexible Scheduling of Reduce Tasks - The task
scheduler in iShuffle assigns a partition of a reduce task
only when the task is dispatched to a node with avail-
able slots. To minimize reduce execution time, iShuffle
always associates partitions that are already resident on
the reduce node to the scheduled reduce.

3.2 Shuffle-on-Write

iShuffle decouples shuffle from a reduce task and imple-
ments data shuffling as a platform service. This allows
the shuffle phase to be performed independently from
map and reduce tasks. The introduction of iShuffle to
the Hadoop environment presents two challenges: user
transparency and fault tolerance.

Besides user-defined map and reduce functions,
Hadoop allows customized partitioner and combiner. To
ensure that iShuffle is user-transparent and does not re-

Shuffle Shuffler
(SchedulerH Manager (Remote)

Shuffler!
(Local) 3

| DataSize Data
D

‘ Predictor ispatcher
| ®L7
Map ' [DataSpill
Task i Handler
3 ® DataSpill
o} Queue @

Figure 4: Workflow of Shuffle-on-Write.

quire any change to the existing MapReduce jobs, we
design the Shuffler as an independent component in the
TaskTracker. It takes input from the combiner, the
last user-defined component in map tasks, performs data
shuffling and provides input data for reduce tasks. The
shuffler performs data shuffling every time the output
data is written to local disks by map tasks, thus we name
the operation shuffle-on-write.

Figure 4 shows the workflow of the Shuffler. It has
three stages: (1) map output collection (step (DQ); (2)
data shuffling (step @@ B ®); (3) map output merging
(step D®).

Map output collection - The shuffler contains mul-
tiple DataSpillHandler, one per map task, to col-
lect map output that has been written to local disks.
Map tasks write the stored partitions to the local file
system when a spill of the in-memory buffer occurs.
We intercept the writer class IFile.Writer in the
combiner and add a DataSpillHandler class to it.
While the default writer writing a spill to local disk,
the DataSpillHandler copies the spill to a circu-
lar buffer, DataSpillQueue, from where data is shuf-
fled/dispatched to different nodes in Hadoop. During
output collection, the DataSizePredictor monitors in-
put data sizes and resulted partition sizes, and reports
these statistics to the shuffle manager.

Data shuffling - The shuffler proactively pushes data
partitions to nodes where reduce tasks will be launched.
Specifically, a DataDispatcher reads a partition from
the DataSpillQueue and queries the shuffle manager
for its destination. Based on the placement decision, a
partition could be dispatched to the shuffler on a different
node or to the local merger in the same shuffler.

Map output merging - The map output data shuffled
at different times needs to be merged to a single reduce
input file and sorted by key before a reduce task can
use it. The local merger receives remotely and lo-
cally shuffled data and merges the partitions belonging
to the same reduce task into one reduce input. To ensure
correctness, the merger only merges partitions from suc-

110 10th International Conference on Autonomic Computing (ICAC "13)

USENIX Association

cessfully finished map tasks.

3.2.1 Fault Tolerance

iShuffle is robust to the failure of map and reduce tasks.
Similar to [6], iShuffle maintains a bookkeeping of spill
files from all map tasks. If a map task fails, its data
spills in the DataSpillQueue and merger will be dis-
carded. The merger merges partitions only when the
corresponding map tasks commit their execution to the
JobTracker. This prevents reduce tasks from using in-
complete data. We also keep the merged reduce inputs in
the merger until reduce tasks finish. In case of a failed
reduce task, a new reduce can be started locally without
fetching all the needed map output.

3.3 Automated Map Output Placement

The shuffle-on-write workflow relies on key information
about the partition placement for each running job. The
objective of partition placement is to balance the distri-
bution of map output data across different nodes, so that
the reduce workloads on different nodes are even. The
optimal partition placement can be determined when the
sizes of all partitions are known. However, this requires
that all map tasks are finished when making the place-
ment decisions, which effectively enforce a serialization
between map tasks and the shuffle phase. iShuffle es-
timates the final partition sizes based on the amount of
processed input data and current partition size, and uses
the estimation to guide partition placement.

3.3.1 Prediction of Partition Sizes

The size of a map output partition depends on the size
of its input dataset, the map function, and the partitioner.
Verma et al. [18], found that the ratio of map output size
and input size, also known as map selectivity, is invariant
given the same job configuration. As such, the partition
size can be determined using the metric of map selectiv-
ity and input data size. The shuffle manager monitors the
execution of individual map tasks and estimates the map
selectivity of a job by building a mathematical model be-
tween input and output sizes.

For a given job, the input dataset is divided into a num-
ber of logical splits, one per map task. Since individ-
ual map tasks run the same map function, each map task
shares the same map selectivity with the overall job exe-
cution. By observing the execution of map tasks, where
a number of input/output size pairs are collected, shuf-
fle manager builds a model estimating the map selectiv-
ity metric. Shuffle manager makes k observations of the
size of each map output partition. As suggested in [18],
it derives a linear model between partition size and input

data size:
pij=aj+bj-Di ey

where p; ; is the jth partition size in the ith observation
and D; is the corresponding input size. We use linear
regression to obtain the parameters for m partitions, one
per reduce task. Since MapReduce jobs contain many
more map tasks than reduce tasks (as shown in Table 1),
we are able to collect sufficient samples for building the
model. Once a model is obtained, the final size of a map
output partition can be calculated by replacing D; with
the actual input size of the map task.

3.3.2 Partition Placement

With predicted partition sizes, the shuffle manager de-
termines the optimal partition placement that balances
reduce workload on different nodes. Because the exe-
cution time of a reduce task is linear to its input size,
evenly placing the partitions leads to balanced work-
load. Formally, the partition placement problem can
be formulated as: given m map output partitions with

sizes of p1,p2,...,Pm, find the placement on n nodes,
S1,82,...,8y, that minimizes the placement difference:
l n
c=\-X(e-Yril ()
nis =

where U is the average data size on one node.

Data: p: list of partition
Data: S: list of nodes, has the size of all allocated
partitions

Result: Balanced partition placement
sort list p in descending order of partition sizes;
for i< 1tomdo
min_node < S[1];
for j < 1tondo

if S[j].size < min_node.size then

| min_node + S[j];

end
end
min_node.place(pli]);

end

Algorithm 1: Partition placement.

Partition placement problem can be viewed as the load
balancing problem in multiprocessor systems [9] and is
thus NP-hard. While the optimal solution can be pro-
hibitively expensive to attain, we propose a heuristic-
based approach to approximate an optimal placement.
The detail of this approach is presented in Algorithm 1.
This algorithm is based on two heuristics, the largest
partition first for picking partitions and the less

USENIX Association

10th International Conference on Autonomic Computing (ICAC"13) 111

Table 1: Benchmark details.

Benchmark Input Input Data # of | # of | Shuffle Vol-
Size (GB) Maps Reduce | ume (GB)
self-join 250 synthetic 4000 180 246
tera-sort 300 synthetic, random 4800 180 300
ranked-inverted-index || 220 multi-word-count 3520 180 235
output
k-means 30 Netflix data, k =6 480 6 32
inverted-index 250 Wikipedia 4000 180 57
term-vector 250 Wikipedia 4000 180 59
wordcount 250 Wikipedia 4000 180 49
histogram-movies 200 Netflix data 3200 180 0.002
histogram-ratings 200 Netflix data 3200 180 0.0012
grep 250 Wikipedia 4000 180 0.0013

workload first for picking destination nodes. It sorts
the partitions in the descending order of size and assigns
the largest partition to the nodes with the least aggregate
data size. It repeats until all the partitions are assigned.

3.4 Flexible Reduce Scheduling

In Hadoop, reduce tasks are assigned map output parti-
tions statically during job initialization. When there are
reduce slots available on idle nodes, reduce tasks are dis-
patched according to the ascending order of their task
IDs. This restriction on reduce scheduling leads to inef-
ficient execution where reduces that are waiting for map
tasks to finish occupy the slots for a long time. Because
iShuffle proactively pushes output partitions to nodes, it
requires that reduce tasks are launched on nodes that hold
the corresponding shuffled partitions. To this end, iShuf-
fle breaks the binding of reduce tasks and map output
partitions and provides flexible reduce scheduling.

An intuitive approach for flexible reduce scheduling
is to traverse the task queue and find a reduce that has
shuffled data on the requesting node. However, this ap-
proach does not guarantee that there is always a “local”
reduce available for dispatching. iShuffle employs a dif-
ferent approach that assigns partitions to reduce tasks
at the time of dispatching. For single-user clusters, we
modified Hadoop’s FIFO scheduler to support the run-
time task-partition binding. When a node with avail-
able reduce slots requests for new reduce tasks, the task
scheduler first check with the shuffle manager to obtain
the list of partitions that reside on this node. The sched-
uler picks the first partition in the list and associates its
ID with the first reduce task in the waiting queue. The
selected reduce task is then launched on the node. As
such, all reduce tasks are guaranteed to have local access
to their input data.

For multi-user clusters with heterogeneous workloads,
we add the support for runtime task-partition association

to the Hadoop Fair Scheduler (HFS). The minimum fair
share allocated to individual users can negatively affect
the efficiency of iShuffle as reduce tasks may be launched
on remote nodes to enforce fairness. We disable such
fairness enforcement for reduce tasks to support more
flexible scheduling. This allows some users to temporar-
ily run more reduce tasks than others. We rely on the
following designs to preserve fairness among users and
avoid starvation. First, the fair share of map tasks is still
in effect, guaranteeing fair chances for users to generate
map output partitions. Second, while records are sorted
by key within each partition after shuffling, partitions be-
longing to different users are randomly placed in the list,
giving each user an equal opportunity to launch reduce
tasks. Finally and most importantly, reduce tasks are
started only when all their input data is available. This
may temporarily violates fairness, but prevents wasted
cluster cycles spent in waiting for unfinished maps and
results in more efficient job execution.

4 Evaluation

4.1 Testbed Setup

Our testbed was a 32-node Hadoop cluster. Each node
had one 2.4 GHz 4-core Intel Xeon E5530 processor and
4 GB memory. All nodes were interconnected by a Gi-
gabit Ethernet. The operating system uses Linux ker-
nel 2.6.24. We deployed Hadoop stable release version
1.1.1 and each machine ran Ubuntu Linux with kernel
2.6.24. Two nodes were configured as the JobTracker
and NameNode, respectively. The rest 30 nodes were con-
figured as slave nodes for HDFS storage and MapReduce
task execution. We set the HDFES block size to its default
value 64 MB. Each slave node was configured with 4
map slots and 2 reduce slots, resulting in a total capacity
of running 120 map and 60 reduce tasks simultaneously

112 10th International Conference on Autonomic Computing (ICAC "13)

USENIX Association

in the cluster.

For comparison, we also implemented Hadoop-A pro-
posed in [19]. It enables reduce tasks to access map out-
put files on remote disks through the network. By using
a priority queue-based merge sort algorithm, Hadoop-A
eliminates repetitive merge and disk accesses, and re-
moves the serialization between the shuffle and reduce
phases. However, Hadoop-A requires the remote di-
rect memory access (RDMA) feature on Infiniband in-
terconnections for fast remote disk access. We imple-
mented Hadoop-A using remote procedure calls on our
testbed with Gigabit Ethernet and compared its perfor-
mance with iShuffle on commodity hardware.

4.2 Workloads

We used the Purdue MapReduce Benchmark Suite
(PUMA) [2] to compose workloads for evaluation.
PUMA contains various MapReduce benchmarks and
real-world test inputs. Table 1 shows the benchmarks
and their configurations used in our experiments. For
most of the benchmarks, the number of reduce tasks was
set to 180 to allow multiple reduce waves. The only ex-
ception was k-means, which ran on a 30 GB dataset with
6 reduce tasks.

These benchmarks can be divided into two categories:
shuffle-heavy and shuffle-light. Shuffle-heavy bench-
marks have high map selectivity and generate a large vol-
ume of data to be exchanged between map and reduce.
Thus, such benchmarks are sensitive to optimizations on
the shuffle phase. For shuffle-light benchmarks, there is
little data that needs to be shuffled. We used both bench-
mark types to evaluate the effectiveness of iShuffle and
its overhead on workloads with little communications.

4.3 Reducing Shuffle Delay

Recall that we defined shuffle delay as the duration be-
tween the last wave of execution and the next reduce
wave. Shuffle delay measures the shuffle period that can
not be overlapped with the previous wave. The smaller
the shuffle delay, the more efficient the shuffling scheme.
We ran tera-sort on stock Hadoop, Hadoop-A and iShuf-
fle, and recorded the start and completion times of each
map, shuffle and reduce phase.

Figure 5 shows the trace of the tera-sort job execution
under different approaches. The X-axis is the time span
of job execution and Y-axis represents the map and re-
duce slots. The results show that iShuffle had the best
performance with 30.2% and 21.9% shorter job execu-
tion time than stock Hadoop and Hadoop-A, respectively.
As shown in Figure 5(a), there is a significant delay of the
reduce phase for every reduce task in stock Hadoop. Due

200 /Shuffle ~N—]
S IO, R E iﬂeduceTasks
@ 100 Map Tasks
50 Reduce T
0 : ‘ ‘
700, 7500 2009
Time (s)
(a) Hadoop.
a0 /Shuffle \\> i
e 15 ‘“ ______ Reduce Tass |
S oo [l Map Tasks
50 Reduce T
0 ‘ ‘ ‘
0 500 700 1500 2000
Time (s)
(b) Hadoop-A.
200 /Shuffle 4
% Reduce Tasks
g Map Tasks
Reduce)
7000 7500 2009
Time (s)
(c) iShuffle.
Figure 5: Execution trace of fera-sort using stock

Hadoop, Hadoop-A, and iShuffle approaches.

to proactive placement of map output partitions, iShuf-
fle had almost no shuffle delays. Note that Hadoop-A
also significantly reduced shuffle delay because it oper-
ates on globally sorted partitions and can greatly overlap
the shuffle and reduce phase.

iShuffle outperformed Hadoop-A on our testbed for
two reasons. First, the building of the priority queue
poses extra delay, e.g., the shuffle delay before the sec-
ond and third reduce waves in Hadoop-A, to each reduce
task. Second, the remote disk access in an Ethernet en-
vironment is significant slower than that in an Infiniband
network, which leads to much longer reduce phases in
Hadoop-A.

4.4 Reducing Job Completion Time

We study the effectiveness of iShuffle in reducing over-
all job completion time with more comprehensive bench-
marks. We use the job completion time in stock Hadoop
implementation as the baseline and compare the nor-
malized performance of iShuffle and Hadoop-A. Fig-
ure 6 shows the normalized job completion time of all
benchmarks listed in Table 1. The results show that
for shuffle-heavy benchmarks such as self-join, tera-
sort, and ranked-inverted-index, iShuffle outperformed
the stock Hadoop by 29.1%, 30.1%, and 27.5%, respec-

USENIX Association

10th International Conference on Autonomic Computing (ICAC "13) 113

13 T T T
Hadoop ==

1.2
Stock Hadoop =—=1

1.2 Hadoop-A s

11 Placement o

ishuffle

141 ishuffle

1 .
0.9 Pl ki Eln i
0.8 Fo |l {f-1 B o
07 1 1 1 1
06
05 |
04 :

Normalized Shuffle Delay

Normalized Job Execution Time

L . }. L P.

Normalized Job Execution Time

Self.j {6ra. kKM MV
Joip SorpReq.0ans Srteg M-Veor0-Co, Ogray0rs;
nye,[e%hdmde)(to, ung! m""OZ,’-é’gflhgs
lox

Figure 6: Job completion time using Figure 7: Shuffle delay due to three
different approaches.

three different approaches.

tively. iShuffle also outperformed Hadoop-A by 22.7%,
21.9%, and 21.1% in these benchmarks. The result
with k-means benchmark does not show significant job
execution time reduction between iShuffle and original
Hadoop. This is because k-means only has 6 reduce
tasks. With only one wave of reduce tasks, stock Hadoop
was able to overlap the shuffle phase with map tasks and
had similar performance as iShuffle. However, due to the
additional delay of remote disk access, Hadoop-A had
longer reduces, thus longer overall completion time.

Benchmarks like inverted-index, term-vector, and
wordcount also fit in the shuffle-heavy category, but
the shuffle volumes are smaller than other shuffle-heavy
benchmarks. These benchmarks had less shuffle de-
lay than other shuffle-heavy benchmarks simply because
there was less data to be copied during the shuffle phase.
Therefore, the performance improvement due to iShuf-
fle was less. Figure 6 shows that iShuffle achieved
20.3%, 19.7%, and 15.6% better performance than stock
Hadoop with these benchmarks, respectively. For these
benchmarks, Hadoop-A still gained some performance
improvement over stock Hadoop as the reduction on
shuffle delay outweighed the prolonged reduce phase.
However, the performance gain was marginal with 7.5%,
8.6%, and 5.5% improvement, respectively.

For the shuffle-light benchmarks, because the shuf-
fle delay is negligible. Both iShuffle and Hadoop-
A achieves almost no performance improvement. The
performance degradation due to remote disk access in
Hadoop-A is more obvious in this scenario.

We also compare the shuffle delay between the stock
Hadoop, iShuffle, and Hadoop-A. Figure 7 shows the
comparison of normalized shuffle delay. We used the
shuffle delay of iShuffle as the based line. The results
agree with the observation we made in previous experi-
ments. iShuffle was able to reduce the shuffle delay sig-
nificantly if the job had large volumes of shuffled data
and multiple reduce waves. For benchmarks that have
the largest shuffle-volume, the reductions in shuffle delay
were more than 10x compared with stock Hadoop. For
benchmarks with medium shuffle volume, the improve-

i i Se ke re ky ir le
torm Wory Pisto Disto Irep oy, s, anke% V"""ans Merge, d‘l_:gh.,/ec:;l)rd
6 oy Clor

his,o his,o 9repy

Self.j {8ra.ankeKme Ve, erm Wor
Oy il i TS
0y

oy
t i, pram,,

leq., ey OF Moy, 'atjy
"Nl ndley Vies"'Ngs

Figure 8: Performance with auto-
mated map output placement.

14 —————
°E> GREEDY(2) ===
g 13 LPF-GREEDY(2) s]
- 12 iShuffle mwms |
o
5 1. m fi
(5]

Q
>
w
Qo
[s]
S
el
(7]
N
g
S
=z
Seyg, lorg. fank Kome Nve,term Wory Nisty Nisty O
ol scrphed. oangrieq, "ec;dcol/;;}g’ ancdrar
I/e,,e o llo'ek or "’Ov/‘e’a’/hgs
il S
X

Figure 9: Performance with different placement balanc-
ing algorithms.

ment on shuffle delay was from 4.5x to 5.5x. Figure 7
also suggests that iShuffle was on average 2x more ef-
fective in reducing shuffie delay than Hadoop-A.

4.5 Balanced Partition Placement

We have shown that iShuffle effectively hides shuffle la-
tency by overlapping map tasks and data shuffling. In
this subsection, we study how the balanced partition
placement affects job performance. To isolate the effect
of partition placement, we first ran benchmarks under
stock Hadoop and recorded dispatching history of reduce
tasks. Then, we configured iShuffle to place partitions
on nodes in a way that leads to the same reduce execu-
tion sequence. As such, job execution enjoys overlapped
shuffle provided by iShuffle, but bears the same partition-
ing skew in stock Hadoop. We compare the performance
with balanced partition placement and stock Hadoop.
Figure 8 shows the performance improvement due
to balanced partition placement. The results show that
iShuffle achieved 8-12% performance improvement over
stock Hadoop. We attribute the performance gain to the
prediction-based partition placement that mitigates the
partitioning skew. It prevents straggler tasks from pro-
longing job execution time. The partition placement in
iShuffle relies on accurate predictions of the individual

114 10th International Conference on Autonomic Computing (ICAC "13)

USENIX Association

N

Actual Size =SSN

% Standard Deviation +—— 2500 |-

A

2000

Separate'iShuffle ===
iShuffle w/ HFS smmmm |
iShuffle w/ HFS_mod e

Separate iShuffle =——=1
2500 |- iShuffle w/ HFS oo _|
S iShuffle w/ HFS_mod memm:

1500

2000

Partition Size (GB)

Job Execution Time (s)

o
2

| NI T

1500

Job Execution Time (s)

1000
500 -
0

Selto, erag, Tankg, Kmeg ey, lem. Worg
Join Sorp em,,we”eins ,fed"’?de), Yooty C0up, tera-sort
"N,
x

Figure 10: Accuracy of iShuffle par-
tition size prediction.

partition sizes. Figure 10 shows the differences between
measured partition sizes and the predicted ones. The re-
sults suggest that for all the shuffle-heavy benchmarks,
iShuffle was able to estimate the final partition size with
no more than 2% prediction errors.

4.6 Different Balancing Algorithms

In this subsection, we study how different partition bal-
ancing algorithms affect job performance. We compare
our heuristic based partition balancing algorithm with
two representative randomized balancing approaches.

GREEDY(2) implements the two-choice randomized
load balancing algorithm proposed in [15]. It randomly
picks up a map task for output placement and makes
decision on which slave node to place the output using
the two-choice greedy algorithm (i.e., GREEDY (2)). The
node with less aggregated partition size (breaking ties ar-
bitrarily) in the two randomly picked nodes is selected as
the destination for the output placement. Different from
GREEDY (2) which selects tasks randomly for placement,
LPF-GREEDY (2) sorts tasks according to the descending
order of their predicted partition sizes and always places
tasks with larger partitions first (i.e., largest partition first
(LPF)). Node selection is based on the two-choice ran-
domized strategy.

Figure 9 compares the performance of different bal-
ancing algorithms. The results show that the simple
heuristics used in iShuffle achieved 8 — 12% shorter job
completion time than GREEDY (2) in shuffle-heavy work-
loads (e.g., inverted-index). Since balanced partition
placement is critical to job performance, GREEDY (2)’s
randomization in task selection made it difficult to evenly
distribute computation across nodes and contributed to
the prolonged execution times. To confirm this, we
ran LPF-GREEDY (2) with the same set of workloads.
With the largest partition first heuristic in task selection,
LPF-GREEDY (2) achieved close performance (on aver-
age only 2.5% longer runtimes) to iShuffle. In summary,
although randomized balancing algorithms are easy to
implement, the heuristics use in iShuffle is key to achiev-

Figure 11: Performance of job mix
of tera-sort and histogram-movies.

histogram-index tera-sort inverted-index

Figure 12: Performance of job mix
of tera-sort and inverted-index.

ing balanced output placement.

4.7 Running Multiple Jobs

We further evaluate iShuffle in a multi-user Hadoop envi-
ronment. We created multiple workload mixes, each con-
tained two different MapReduce jobs. We ran one work-
load at a time with two jobs sharing the Hadoop clus-
ter. We modified the Hadoop Fair Scheduler (HFS) (i.e.,
iShuffle w/ HFS_mod) to support runtime task-partition
binding. For comparison, we also study the performance
of iShuffle with the original HFS that enforces a mini-
mum fair share on reduce tasks (i.e., iShuffle w/ HFS)
and iShuffle running a single job on a dedicated cluster
(i.e., Separate iShuffle).

The first experiment used the combination of a shuffle-
heavy job and a shuffle-light job. Figure 11 shows the re-
sult of workload mix of fera-sort and histogram-movies.
The results suggest that the modified HES outperformed
the original HFS by 16% and 25% for tera-sort and
histogram-movies, respectively. Unlike the original HFS,
which guarantees max-min fairness to jobs, iShuffle al-
lows the reduce of one job to use more reduce slots.
iShuffle prioritizes shuffle-light jobs because the execu-
tion time of their reduce tasks is short. Allowing shuffle-
light jobs to run with more slots boosted their perfor-
mance significantly. Although shuffle-heavy jobs suf-
fered unfairness to a certain degree, their overall perfor-
mance under the modified HFS was still better than that
under the original HFS.

Next, we perform the experiment with two shuffle-
heavy jobs. Figure 12 shows the performance of tera-sort
and inverted-index. It shows that iShuffle improved job
execution times by 8% and 23% over the original HFS
in these two benchmarks. Although the size of input
datasets of these two benchmarks are similar, inverted-
index has a smaller shuffle volume. Therefore, its reduce
tasks can be started earlier as their partitions required less
time to shuffle. fera-sort had less improvement in this
scenario because some of its reduce tasks are delayed
by inverted-index. Table 2 shows more results of iShuf-

USENIX Association

10th International Conference on Autonomic Computing (ICAC "13) 115

Table 2: Job completion time of co-running jobs.

Workload Mix Stock Hadoop iShuffle

A+ B A B A B
tera-sort+ grep 2210 | 1247 | 2144 | 1038
tera-sort+ h‘i:t’lgnrga‘:l 2308 | 653 | 1976 | 530
tera-sort+term-vector | 2576 | 2183 | 2349 | 1845
tera-sort+ wordcount | 2341 | 1433 | 2126 | 1197

tera-sort+ k-means 1723 | 3764 | 3685 | 3748

fle with heterogeneous workloads compared with stock
Hadoop. For most workload mixes with two jobs, iShuf-
fle w/ modified HFS was able to reduce the job comple-
tion time for both jobs. The performance gain depends
on the amount of shuffled data in these co-running jobs.

However, iShuffle had poor performance with work-
load mix fera-sort + k-means. We ran tera-sort with a
300GB dataset and k-means with a 15GB dataset. The
result of k-means does not agree with previous observa-
tions for shuffle-light workloads. The co-running of tera-
sort and k-means significantly degraded the performance
of tera-sort. An examination of the execution trace re-
vealed that although k-means has little data to exchange
between map and reduce, it is compute intensive. iShuf-
fle started k-means earlier than tera-sort and k-means oc-
cupied the reduce slots for a long time delaying the ex-
ecution of fera-sort. The culprit was that for k-means,
the partition size is not a good indicator of the execution
time of its reduce tasks. Thus, iShuffle failed to balance
the reduce workload on multiple nodes. A possible so-
lution is to detect such outliers earlier and restart them
on different nodes. Since such outliers often have small
shuffle volume, the migration is not expensive.

5 Related Work

MapReduce is a programming model for large-scale data
processing [7]. Hadoop, the open-source implementa-
tion of MapReduce, provides a software framework to
support the distributed processing of large datasets [1].
There is great research interest in improving Hadoop
from different perspectives. A rich set of research fo-
cused on the performance and efficiency of Hadoop clus-
ter. Jiang et al. [10], conducted a comprehensive perfor-
mance study of Hadoop, summarized the factors that can
significantly improve the Hadoop performance. Verma
et al. [17, 18], proposed cluster resource allocation ap-
proach for Hadoop. They focused on improving the clus-
ter efficiency by minimizing resource allocations to jobs
while maintaining their service level objectives. They es-
timated the execution time of a job based on its resource
allocation and input dataset, and determined the mini-

mum resource allocation for the job. Lama and Zhou [13]
proposed and developed AROMA, a system that auto-
mates the allocation of Cloud resources and configura-
tion of Hadoop parameters for achieving quality of ser-
vice goals while minimizing the incurred cost. It uses a
SVM-based approach to obtain the optimal job configu-
ration. It adapts to ad-hoc jobs by robustly matching their
resource utilization signature with previously executed
jobs and making provisioning decisions accordingly.

A number of studies proposed different task schedul-
ing algorithms to improve Hadoop performance. The
Longest Approximate Time to End (LATE) scheduling
algorithm [22] improved the job performance in hetero-
geneous environments. FLEX [20] is a scheduling al-
gorithm that enforces fairness between multiple jobs in
a Hadoop cluster. It optimized the performance of each
job under different metrics. Zaharia et al., proposed de-
lay scheduling [21] as an enhancement to Hadoop Fair
Scheduler. It exploited data locality of map task and sig-
nificantly improved performance.

There are a few studies on skew mitigations. SkewRe-
duce [11] alleviated the computational skew problem
by applying a user-defined cost function on the in-
put records. Partitioning across nodes relies on this
cost function to optimize the data distribution. Skew-
Tune [12] proposed a framework for skew mitigation. It
repartitioned the long tasks to take the advantage of idle
slots freed by short tasks. However, moving repartitioned
data to idle nodes requires extra I/O operations.

Some recent work focused on the improvement of
shuffle and reduce. MapReduce Online [6] proposed a
push-based shuffle mechanism to support the online ag-
gregation and continuous queries. MaRCO [3] overlaps
the reduce and shuffle. But the early start of reduce gen-
erates partial reduces which could be the source of over-
head for some applications. Hadoop Acceleration [19]
proposed a different approach to mitigate shuffle de-
lay and repetitive merges in Hadoop. It implemented a
merge algorithm based on remote disk access and elim-
inated the explicit copying process in shuffle. However,
this approach relies on the RDMA feature of Infiniband
network, which is not available on commodity network
hardware. Without RDMA, the remote disk access added
significant overhead to reduce tasks. Moreover, Hadoop-
A does not decouple shuffle and reduce, making it less
effective for jobs with multiple reduce waves.

6 Conclusions

Hadoop provides a simplified implementation of the
MapReduce framework, but its design poses challenges
to attain the best performance in job execution due to
tightly coupled shuffle and reduce, partitioning skew, and
inflexible scheduling. In this paper, we propose iShuffle,

116 10th International Conference on Autonomic Computing (ICAC "13)

USENIX Association

a novel user-transparent shuffle service that provides op-
timized data shuffling to improve job performance. It de-
couples shuffle from reduce tasks and proactively pushes
data to be shuffled to Hadoop node via a novel shuffle-on-
write operation in map tasks. iShuffle further optimizes
the scheduling of reduce tasks by automatic balancing
workload on multiple nodes and runtime flexible reduce
scheduling. We implemented iShuffle as a configurable
plug-in in Hadoop and evaluated its effectiveness on a
32-node cluster with various workloads. Experimental
results shows that iShuffle is able to reduce job comple-
tion time by as much as 30.2%. iShuffle also signifi-
cantly improves job performance in a multi-user Hadoop
cluster running heterogeneous workloads.

Acknowledgement

This research was supported in part by U.S. NSF CA-
REER Award CNS-0844983 and research grant CNS-
1217979.

References

[1] Apache Hadoop Project. http://hadoop.apache.org.

[2] PUMA: Purdue mapreduce benchmark suite. http://web.ics.
purdue.edu/~fahmad/benchmarks.htm.

[3] AHMAD, F., LEE, S., THOTTETHODI, M., AND VIJAYKUMAR,
T. N. [inpress]mapreduce with communication overlap (marco).
Journal of Parallel and Distributed Computing (2012).

[4] ANANTHANARAYANAN, G., AGARWAL, S., KANDULA, S.,
GREENBERG, A., STOICA, 1., HARLAN, D., AND HARRIS, E.
Scarlett: coping with skewed content popularity in mapreduce
clusters. In Proc. of the ACM European Conference on Computer
Systems (EuroSys) (2011).

[5] CHIANG, R. C., AND HUANG, H. H. Tracon: interference-
aware scheduling for data-intensive applications in virtualized en-
vironments. In Proc. of Int’l Conference for High Performance
Computing, Networking, Storage and Analysis (SC) (2011).

[6] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
ELMELEEGY, K., AND SEARS, R. Mapreduce online. In Proc.
of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2010).

[7] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data
processing on large clusters. In Proc. of the USENIX Symposium
on Operating System Design and Implementation (OSDI) (2004).

[8] DEWITT, D., AND GRAY, J. Parallel database systems: the fu-
ture of high performance database systems. Communication of
ACM 35, 6 (1992), 85-98.

[9] GAREY, M. R., AND JOHNSON, D. S. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1990.

[10] J1ANG, D., Ool, B. C., SHI, L., AND WU, S. The performance

of MapReduce: an in-depth study. Proc. VLDB Endow. (2010).

[11] KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J.
Skew-resistant parallel processing of feature-extracting scientific
user-defined functions. In Proc. of the ACM Symposium on Cloud

Computing (SOCC) (2010).

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J.
Skewtune: Mitigating skew in mapreduce applications. In Proc.
of the ACM SIGMOD (2012).

LAMA, P., AND ZHOU, X. AROMA: Automated resource allo-
cation and configuration of mapreduce environment in the cloud.
In Proc. of the ACM Int’l Conference on Autonomic Computing
(ICAC) (2012), pp. 63-72.

L1, M., SUBHRAVETI, D., BUTT, A. R., KHASYMSKI, A., AND
SARKAR, P. Cam: a topology aware minimum cost flow based
resource manager for mapreduce applications in the cloud. In
Proc. of the ACM Int’l Symposium on High-Performance Parallel
and Distributed Computing (HPDC) (2012).

MITZENMACHER, M. The Power of Two Choices in Randomized
Load Balancing. PhD thesis, University of California, Berkeley,
1996.

TAN, J., MENG, X., AND ZHANG, L. Coupling scheduler for
mapreduce/hadoop. In Proc. of the ACM Int’l Symposium on
High-Performance Parallel and Distributed Computing (HPDC)
(2012).

VERMA, A., CHERKASOVA, L., AND CAMPBELL, R. H. Aria:
automatic resource inference and allocation for mapreduce envi-
ronments. In Proc. of the ACM Int’l Conference on Autonomic
Computing (ICAC) (2011).

VERMA, A., CHERKASOVA, L., AND CAMPBELL, R. H. Re-
source provisioning framework for mapreduce jobs with perfor-
mance goals. In Proc. of the ACM/IFIP/USENIX Int’l Conference
on Middleware (2011).

WANG, Y., QUE, X., YU, W., GOLDENBERG, D., AND SEH-
GAL, D. Hadoop acceleration through network levitated merge.
In Proc. of Int’l Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (2011).

WOLF, J., RAJAN, D., HILDRUM, K., KHANDEKAR, R., KU-
MAR, V., PAREKH, S., WU, K.-L., AND BALMIN, A. Flex: a
slot allocation scheduling optimizer for mapreduce workloads. In
Proc. of the ACM/IFIP/USENIX Int’l Conference on Middleware
(2010).

ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J., ELMELE-
EGY, K., SHENKER, S., AND STOICA, I. Delay scheduling:
A simple technique for achieving locality and fairness in cluster
scheduling. In Proc. of the ACM European Conference on Com-
puter Systems (EuroSys) (2010).

ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R.,
AND STOICA, I. Improving mapreduce performance in hetero-
geneous environments. In Proc. of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2008).

USENIX Association

10th International Conference on Autonomic Computing (ICAC "13) 117

