
Online Measurement of the Capacity of Multi-tier Websites Using Hardware
Performance Counters

Jia Rao and Cheng-Zhong Xu
Department of Electrical & Computer Engineering
Wayne State University, Detroit, Michigan 48202

{jrao, czxu}@wayne.edu

Abstract

Understanding server capacity is crucial for system ca-
pacity planning, configuration, and QoS-aware resource
management. Conventional stress testing approaches mea-
sure the server capacity in terms of application-level perfor-
mance metrics like response time and throughput. They are
limited in measurement accuracy and timeliness. In a multi-
tier website, resource bottleneck often shifts between tiers
as client access pattern changes. This makes the capacity
measurement even more challenging. This paper presents
a measurement approach based on hardware performance
counter metrics. The approach uses machine learning tech-
niques to infer application-level performance at each tier. A
coordinated predictor is induced over individual tier models
to estimate system-wide performance and identify the bot-
tleneck when the system becomes overloaded. Experimental
results demonstrate that this approach is able to achieve an
overload prediction accuracy of higher than 90% for a priori
known input traffic patterns and over 85% accuracy even for
traffic causing frequent bottleneck shifting. It costs less than
0.5% runtime overhead for data collection and no more than
50 ms for each on-line decision.

I. Introduction

Understanding of server capacity is crucial for server
capacity planning, configuration and QoS-aware resource
management. It is known that a server can be run in one
of the three states: underloaded, saturated, and overloaded.
When the server is underloaded, its throughput grows with
the increase of input traffic rate until a saturation point
is reached. The saturated throughput may not remain un-
changed when the input rate continues to increase. It may
drop sharply due to resource contention and algorithmic
overhead for load management [11]. Knowledge about the
server capacity can help a measurement-based admission
controller in the front-end to regulate the input traffic rate
so as to prevent the server from running in an overloaded
state. Moreover, for input traffic of multi-class requests,

server capacity information can also be used by a back-
end scheduler to calculate the portion of the capacity to be
allocated to each class for service differentiation and QoS
provisioning [9], [17], [20].

Application-level performance metrics like response time
and throughput are good intuitive measures. However, they
have limitations in accuracy and timeliness when they are
used for fine-grained QoS-aware resource management. It
is known that requests of an e-commerce transaction have
very different processing times and the times also tend to
change with server load condition. As a result, request-
specific response time becomes an ill-defined performance
measure in stress-testing of server capacity. There were
studies on the use of mean response time to characterize the
server load change in statistics; see [18], [17] for examples.
However, setting a request-specific response time value for
admission control is non-trivial. In [13], Mogul presented a
case that a misconfiguration of the response time threshold
could possibly cause the system to enter a live-lock state.
In practice, the threshold is often set conservatively. For
example, Blanquer et al. [12] set a threshold to be half of
the most restrictive request response time guarantee for the
admission controller to regulate the incoming traffic rate.
Such a conservative estimation of the server capacity by
setting a low threshold value is equivalent to resource over-
provisioning.

Besides the limitation in accuracy, server processing ca-
pability measured in application-level response time may not
be a timely measure for fine-grained resource management.
The observed response time of past requests may mislead the
front-end admission controller to wrong decisions because
of the presence of long dead-time of requests in a multi-tier
website. That is, there is a non-negligible delay from the time
a request is admitted to the time its response can be observed,
particularly when a system is heavily loaded. In a multi-tier
e-commerce website, processing of a request often involves
multiple system components in different tiers. Saturation
of the system in the processing of one type of requests
may not necessarily mean it cannot handle other requests.
Bottleneck may also shift dynamically. Response-time based
server capacity measurement provides little insight into con-
strained resources. In [15], we quantified the delay in various

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.97

701

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.97

705

input patterns and revealed that response-time based capacity
measurement lack in accuracy and timeliness.

In our previous work [15], we developed an online
capacity measurement approach, based on operating sys-
tem (OS) level running statistics. The proposed statistical
learning approach achieved better prediction accuracy than
single performance metrics in the presence of workload
changes. However, OS level metrics lack accuracy in re-
flecting detailed application performance which is useful for
request scheduling and access control. Modern processors
like Intel Xeon and AMD Operon are all equipped with a
set of performance monitoring counters to record detailed
hardware-level system information. The information includes
a large group of parameters like instruction mix, rate of
execution, memory access behaviors and branch prediction
accuracy [16]. Together, they define a more accurate system
internal running state and reflect aggregated effects of the
requests in concurrent execution.

In this paper, we present effective and efficient solu-
tions to the capacity measurement problem. In [15], we
determined the capacity of the server based on application-
level healthiness. This approach is sometimes problematic
due to the limitations of application-level metrics discussed
above. In this work, we define a metric of productivity
index as a quantitative indicator of system healthiness and
develop models over a small set of hardware performance
counter metrics to characterize the system state of each
server. We further develop a two-level coordinated real-time
classification framework to infer system overload/underload
state and identify resource bottleneck. We evaluated the
approach in a two-tier Tomcat/MySQL website using TPC-W
benchmark. Experimental results demonstrated its effective-
ness and efficiency.

The rest of the paper is organized as follows. Sections II
and III show the details of hardware-level capacity measuring
approach. Sections IV and V give the evaluation method and
experimental results. Related work is presented in Section
VI. Section VII concludes this paper.

II. Lower Level System Performance Metrics

A system provides a rich set of performance metrics in
both hardware performance counters and OS levels. Their
statistics represent the internal performance states at run-
time. Identifying a system state using lower level perfor-
mance metrics involves three challenges: (1) What metrics
should be used to characterize the high level performance
state; (2) How to infer high level performance states such as
“underload” and “overload” from the statistics of the metrics;
(3) How to identify the bottleneck tier in a multi-tier website,
based on the runtime statistics of each tier. We will discuss
the first two challenges in this section and leave the third in
Section III.

A. Revisit of the Concept of Capacity

System capacity often refers to the maximum amount of
work that can be completed during a certain period of time.
We refer to the amount of completed work as yield and the
amount of resource consumed during the time as cost. An
overloaded system means that its cost keeps increasing but
with stagnated or compromised yield. We define a metric of
productivity index as the ratio of yield to cost and use it to
measure the system processing capability:

PI =
Y ield

Cost
. (1)

This is a generic concept. By defining yield to be the
number of completed requests and cost as the wall time, PI is
equivalent to throughput in application level. Today’s modern
processors are all equipped with a number of Hardware
Performance Counters (HPC) that provide a rich source
of statistical information on application execution. This in-
formation includes but not limited to memory bus access
pattern, cache reference and pipeline execution information.
By defining yield as instructions-per-cycle and cost the
stall cycles or cache miss rate, the PI metric reflects the
instruction-level productivity.

The concept of productivity can also be defined at OS
level. By defining yield and cost as user-mode and system-
mode execution times, PI reflects CPU utilization. We argue
that OS level metrics like CPU utilization may not be
a good metric for system performance. For example, two
programs reading data from memory in different ways, one
sequentially and the other in a stride of 8, may have similar
OS level resource utilization. In comparison, hardware-level
metrics such as L2 cache miss rate can reflect application-
level performance more accurately.

Hardware-level PI provides a good measure of system
processing capability. An application-level “overload” and
“underload” state can be identified by setting thresholds
for PI. The thresholds can be determined empirically in
offline stress-testing. For online identification, the single
PI metric is not enough to identify system state because
any change of PI can be either due to the system capacity
or the input load change. With the offline classification of
“overload” and “underload” states in terms of PI, we take
snapshots of hardware counter metrics and develop an online
model to correlate them to each high-level system state in a
machine learning approach. The model makes it possible for
online prediction of system state for a given set of hardware
statistics.

B. Definition of Performance Synopsis

We define a performance synopsis data structure to repre-
sent the correlation between a set of lower-level performance
metrics and their corresponding high-level system states,
for a given workload pattern. It is built based on previous
correlations. Formally, let U = {A1, ..., An} be a set
of attribute variables, in which Ai can be any individual

702706

hardware counter performance metric such as number of
L2 cache miss. Adding a class variable C into U , we have
U∗ = {A1, ..., An, C}. The class variable can be any type of
system state. In capacity measuring, it is a binary variable,
taking value of 1 (“overload”) or 0 (“underload”). Each
attribute Ai, 1 ≤ i ≤ n, can be instantiated by assigning a
measured value ai during a sampling interval. Instantiating
each variable in U∗ results in an instance u∗.

For a training set D = {u∗
1, ..., u

∗
N} with N in-

stances, we build a synopsis to capture the relationship
between attributes A1, . . . , An and class C. We denote it
by SY N({A1, ..., An}, C). The following subsection shows
the construction in detail.

1) Construction of Synopsis and Prediction: A synopsis
builder is essentially a set of algorithms that generate a
synopsis from a training set. Generally speaking, there are
two types of synopsis builders: linear and non-linear. In the
following, we consider the following four linear and non-
linear machine learning algorithms for synopsis construction:
Linear regression (LR), Naive Bayes (Naive), Tree aug-
mented naive Bayes (TAN), Support vector machine (SVM).

For a synopsis trained from a set D, we consider a testing
set P = {p∗1, ..., p∗N} with a similar structure as D. For each
instance p∗i ∈ P , the same training algorithm of the synopsis
is re-applied to generate a prediction C ′ with respect to the
class variable C ∈ p∗i . We represent the prediction algorithm
as function Predict(). That is, C ′ = Predict(SY N, p∗i). If
C ′ = C, the prediction is correct, otherwise incorrect.

2) Attribute Selection: We borrow the concept of infor-
mation gain in information theory to evaluate the relevance
between each attribute and the class variable and only
include the most relevant metrics in a synopsis. Attribute
selection is an iterative process, in which the most relevant
attribute is added to the attribute set each time only if its
addition improves synopsis accuracy. The overall accuracy
of a synopsis is evaluated by a 10-fold cross validation.

III. Two-Level Coordinated Website Capacity
Measurement

The preceding section defines PI index and performance
synopsis to correlate lower level metrics to high level system
state in a single server. In a multi-tier website, each server
has a PI reference for “underload” and “overload” states.
Because the bottleneck may shift between tiers, there are two
challenges in the website capacity measurement: (1) which
PI reference should be used to identify the entire system
state offline? (2) which synopsis should be used to predict
system state online?

A. Issues in Multi-tier Website

We assume that the metrics from a bottleneck tier have
the strongest correlation to high-level performance. We select
the corresponding PI reference as a measure of the website
capacity. We define a correlation measure Corr, in a way

similar to [16], between the PI and high level performance
metric r (e.g. throughput) over a time period:

Corr =
Cov(pi, r)
σpi · σr

=

∑q
j=1(pij − pi)(rj − r)

q · σpi · σr
, (2)

where q is the number of (pi, r) pairs sampled during
the time t. The correlation measure between pi and r is
calculated using their means pi, r and standard deviations
σpi, σr in the q samples. The PI with the largest Corr value
will be selected as the measure of the entire system capacity.

Internet traffic contains many different types of requests
(e.g. browsing and ordering) and their mixes may change
with time. Intuitively, a synopsis due to a specific workload
is unlikely to be accurate for traffic whose bottleneck lies in
another tier. We build synopses on each tier for representative
workloads. For a given set of runtime statistics under a traffic
pattern, each workload-specific synopsis will be used to
make a prediction. To make a global system state prediction,
we propose a two-level coordinated learning scheme which
dynamically selects the best synopsis for the given traffic
pattern. Following are the details of the scheme.

B. Framework

The two-level coordinated capacity measurement employs
a similar hierarchical architecture as in [15]. It consists of a
group of performance synopses and a coordinated predictor,
which can be found in figure 1. The two-level coordinated
prediction architecture takes runtime statistics on each tier as
inputs. Based on these inputs, individual synopsis generates
its prediction in regard to system high-level states. Final
state prediction will be made in the coordinated predictor
by combining these individual predictions.

Traffic
specific
synopsis

Coordinated Predictor

Tier 1 Tier K

Tier 1 server run-time
statistics

Tier K server run-time
statistics

Prediction
Prediction Prediction

Prediction

Final prediction

Traffic
specific
synopsis

Traffic
specific
synopsis

Traffic
specific
synopsis

dependencies dependencies dependencies

…...

Fig. 1. The two-level coordinated prediction
framework.

Although a synopsis is built on specific workload, its cor-
relation remains valid in the presence of workload changes,
as long as the bottleneck remains in the same tier. Once the

703707

workload changes make the bottleneck shifting to another
tier, the corresponding synopsis should be selected. The
coordinated predictor selects the best synopses dynamically
by studying the spatial (synopsis-wise) and temporal (time-
wise) patterns among predictions of individual synopsis.

C. Coordinated Two-level Predictor

The coordinated predictor is designed as a two-level
predictor to capture spatial and temporal patterns in synopses
predictions. Its structure, as shown in Figure 2, is similar to
a branch predictor of superscalar processors [22].

The first level is a Global Pattern Table (GPT) which
represents synopsis-wise patterns. Each entry in GPT is a
Global Pattern Vector (GPV). A GPV is an m bit vector (m
is the number of synopses), each bit Ri is the prediction
result of corresponding synopsis during a sampling interval
τ . That is, Ri = Predict(SY Ni, p

∗
τ). The GPT enumerates

all the possible patterns of GPV, thus it has 2m entries.

The second level are Local History Tables (LHTs) that
record the last h prediction results of the specific pattern of in
GPT. For each of these 2m patterns, there is a corresponding
LHT in the second level which contains the occurrences
of different temporal patterns. Each entry of a LHT is
referred to as Local History Bits (LHB), denoted by Hc. It is
used for making the coordinated prediction. The coordinated
prediction is C ′′ = λ(Hc), where λ is the prediction decision
function. The length of LHB determines the size of the LHT
table.

Along with the two-level predictor for the system state
prediction, we also include a simple bottleneck predictor in
the coordinated predictor. The bottleneck predictor is imple-
mented by adding an extra Bottleneck Pattern Table (BPT)
to the second level. Each entry in the BPT is a Bottleneck
Vector (BV) which is indexed by GPV, as well. The bottle-
neck prediction is defined as λb(bK ...b1) = arg max

i
(bi). It

chooses the tier having the largest value in its corresponding
bit in bK ...b1 as the bottleneck tier.

D. Training and Prediction

To exploit the spatial (synopsis-wide) and temporal pre-
diction patterns, the coordinated predictor needs to be
trained. The training process is to determine the values of
LHB Hc in each LHT. Initially, all Hc are set to 0. The values
of Hc are learned from all the instances from which each
individual synopsis is built. The training process includes the
following steps:

1) Given an instance u∗
i , generate predictions from each

synopsis. Combining these predictions forms a GPV.
Then the GPV, denoted as Rm−1...R0, is used to
address the LHTs and find corresponding LHT for the
GPV.

2) In the LHT, the local history bits Hc is indexed by
last h prediction history. Update the value of the
corresponding Hc for each instance u∗

i as follows:

Bottleneck Vector
(BV)

0 0
0 1

1
1 1

0

Global Pattern Table
(GPT)

0R......
1mR

Local History Tables
(LHTs)

00 00
00 01

11 10
11 11

Local History Bits
(LHB)

Index

Global Pattern Vector
(GPV)

0H
1H

vH
1vH

K 1

Bottleneck Pattern Table
(BPT)

Index

Fig. 2. The structure of the two-level predictor.

If the value of the class variable in u∗
i equals to 1,

increase Hc by 1, otherwise decrement by 1.

The training of the bottleneck predictor is similar except
that instead of learning Hc values. The values for each
bK ...b1 should be selected. For bottleneck identification, we
manually augment a training instance u∗

i with information
about the bottleneck tier. For example, if the class variable
in instance u∗

i has a value of 1 and tier i is the bottleneck
for current workload, update bi as bi = bi + 1, otherwise
bi = bi − 1.

The coordinated predictor is used to make online global
system state predictions as well as bottleneck tier identifi-
cation. The bottleneck predictor is invoked only when the
system state is predicted to be overloaded. The system state
predictor finds the corresponding Hc according to the current
value of GPV. During each sampling interval, the coordinated
prediction is made using the prediction decision function
C ′′ = λ(Hc), and

λ(Hc) =

⎧⎨
⎩

1 if Hc > δ,
φ(Hc) if −δ ≤ Hc ≤ δ,
0 if Hc < −δ,

where δ is a threshold for Hc which describes the confidence
in Hc making a prediction.

A large δ prevents the predictor from making a prediction
unless current spatial and temporal prediction patterns occur
a large number of times in previous workloads. Setting δ
to a small value has the restriction relaxed. For any δ > 0
there exists an interval [−δ, δ], in which the predictor is not
sure what prediction to make. We implemented two heuristic
schemes for φ(Hc): An optimistic scheme set φ(Hc) = 0
(underload) when Hc ∈ [−δ, δ], while a pessimistic scheme
sets φ(Hc) = 1 (overload).

704708

IV. Evaluation Methodology

To evaluate the two-level coordinated website capacity
measurement, we built a test-bed of multi-tier e-commerce
website. It consists of two tiers: front-end application server
and back-end database server. The website was tested using
workloads conforming TPC-W specifications. During execu-
tion, hardware counter level runtime statistics were collected.
For comparison, OS level metrics were also reported.

A. TPC-W and Workload Selection

TPC-W is a transactional web e-commerce benchmark
(www.tpc.org/tpcw). Its specification defines 14 differ-
ent types of requests for an online bookstore service. In our
test-bed, we deployed a free Java implementation of TPC-W
benchmark from Rice University. TPC-W defines three traffic
mixes: Browsing, Shopping, and Ordering, which have the
percentages of browsing and ordering requests: (95%, 5%),
(80%, 20%), and (50%, 50%), respectively. It classifies web
interactions as either Browse or Order depending on whether
they involve browsing and searching on the site or whether
they play an explicit role in the ordering process.

The primary TPC-W performance metric WIPS is based
on the shopping mix, which is the most common workload
in e-commerce websites. TPC-W also considers the extreme
cases in which the workload is either mostly composed of
browsing requests or ordering requests. Experimented with
our test-bed, browsing mix was found to put more pressure
on database than on application server. For ordering mix,
front-end would become bottleneck.

We assumed that the incoming traffic had a request mix
in between the above two extremes: Browsing and Ordering.
The bottleneck may change with the request mix in input
traffic. Thus we selected the browsing and ordering mix
as the representative workloads for training synopses and
the coordinated predictor. The workloads were generated
using the Remote Browser Emulator (RBE) shipped with
the Rice TPC-W implementation. We modified the RBE to
generate the workload needed in training and testing sets.
The number of concurrent clients was controlled by the
number of Emulated Browsers (EBs).

In real scenarios, internet traffic can be either steady
or bursty. To generate realistic workloads, we compose the
workload generating the training runtime statistics as two
parts: Ramp-up workload and Spike workload. In ramp-
up workloads, we gradually increased concurrent client ses-
sions until overloaded. Spike workload refers to occasional
extreme traffic burst. See [21] for workload configuration
details. We collected the hardware counter level and OS level
runtime statistics on each tier every second. The average
statistics over a 30 second interval combined with its cor-
responding high-level state formed an instance in a training
set. The training sets were used to build synopses and tune
the coordinated predictor.

We designed the testing sets as four parts: browsing mix,
ordering mix, interleaved mix, and unknown workload mix.

The interleaved mix refers to a workload that continues
to switch between browsing mix and ordering mix. For
the unknown mix, we change the transition probability in
RBE to generate workload different from either browsing
or ordering mix. We defined a Balanced Accuracy (BA)
metric to evaluate the prediction of induced synopses. It is an
average of the probabilities of true positive and true negative.

B. Experiment Settings

Our test-bed consisted of a client machine, an application
server and a database server. The front-end and back-end
machines were configured with Pentium 4 2.0 GHz CPU,
512 MB RAM and Pentium D 2.80 GHz CPU, 1 GB RAM
respectively. The CPUs in the servers are based on Intel Net-
Burst architecture and without Hyperthreading technology.
The servers were interconnected by a fast Ethernet network.

The machines ran Linux kernel 2.6.18. We used Apache
Tomcat version 5.5.20 as the application server. For the
database server, MySQL standard version 5.0.27 was used.
We used Sysstat version 7.0.3 to collect 64 OS level
metrics. Hardware counter level metrics were recorded
through a kernel patch PerfCtr (www.user.it.uu.
se/˜mikpe/linux/perfctr.) We wrote a lightweight
tool to read hardware counter metrics in all physical CPUs
using the global mode in PerfCtr. Event counter mainte-
nance in hardware requires no runtime overhead [16] and we
limited our tool to minimum functionalities that just initialize
and read hardware counters to reduce runtime overheads.
The machine learning algorithms used in our experiments
were adapted from WEKA (www.cs.waikato.ac.nz/
ml/weka) data mining software.

V. Experimental Results

A. Effectiveness of Productivity Index

0 3000 6000 9000 12000 15000 18000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time(s)

N
or

m
al

iz
ed

 fa
ct

or

Productivity Index
Throughput

9000 9600 11200 11800
0.5

1

1.5

2

Fig. 3. Effectiveness of PI in reflecting high-
level performance.

The first experiment was conducted to show the effective-
ness of PI in (1) in reflecting system high-level performance.

705709

We took Ordering and Browsing workloads as input and
drove the test-bed into an overloaded state. We selected yield
and cost metrics according to the correlation measure Corr
in (2). For an ordering mix input, the front-end server turned
out to be the bottleneck; accordingly we defined IPC as yield
and L2 cache miss rate in this tier as cost. For a browsing
mix input, database IPC and stalled CPU cycle metrics were
considered.

Figure 3 shows the effectiveness of PI as an indicator
of high-level throughput. Due to space limit, only Ordering
mix is plotted here. In order to display PI and throughput
curves in a similar scale, we normalized each of their values
to their geometric means in different sampling intervals. The
figure suggests that the PI and throughput metrics are in high
agreement with each other. From the microscopic views, we
can see that whenever there is a drop in PI, the corresponding
throughput would decrease. Moreover, during some intervals,
as pointed out by dotted arrows in the figure, the PI is more
responsive than the throughput metric.

B. Individual Prediction Accuracy

The second experiment was designed to demonstrate the
prediction accuracy of individual synopsis. A high synopsis
accuracy means that the low-level metrics selected are suffi-
cient in representing system internal states and the machine
learning algorithm used is capable of correlating low-level
metrics to high-level state.

We tested the prediction accuracy for different level of
metrics (e.g. OS level and hardware counter level) and using
different machine learning algorithms. Table I summarizes
the accuracy results in different input mixes.

We make several observations from the results:

1) For each testing workload, only the synopsis from
the bottleneck tier and built from a similar workload
pattern would produce a high prediction accuracy.
For example, the synopsis built from a browsing mix
on the database server had an accuracy of 0.965 in
Table I(a) due to TAN algorithm. But, even with the
same learning algorithm, other synopses observed poor
accuracy.

2) Hardware counter level metrics produced a higher
accuracy than OS level metrics. For an ordering mix
input, they achieved an accuracy of 0.952 and 0.935,
respectively. But for a browsing mix input, the ac-
curacy of OS level metrics dropped down to 0.635.
The result was different from the one we observed
in [15] due to the more accurate way we monitored
system healthiness here. A possible reason is that the
OS level metrics are insufficient to represent system
internal state under the browsing mix input. More
specifically, an ordering mix input would saturate the
application server because there were too many threads
in concurrent execution. But for a browsing mix input,
system overload was due to a small percentage of
heavy requests in the database server. OS level metrics
might not be able to identify whether the overload state

is due to excessive load (i.e., too many requests) or
excessive work (i.e., heavy requests).

3) Among the machine learning algorithms, SVM and
TAN gained highest accuracy in most of the test cases.
Linear regression performed worst because it can only
capture linear correlations. Naive Bayes performed not
as well as TAN. It is because of its strong assumption
on the independence of each metric.

The execution time required to build a synopsis and
make a single decision using LR, Naive, SVM and TAN are
90ms, 10ms, 1710ms, and 50ms, respectively. Considering
the accuracy and runtime overhead, TAN is the best choice
for synopsis construction.

C. Coordinated Prediction Accuracy

The third experiment was to demonstrate the overload
prediction accuracy and bottleneck identification accuracy of
coordinated predictor under different workloads. We used
TAN learning algorithm in each synopsis and set the length
of history bits to 3. We assumed optimistic scheme with a
threshold δ = 5.

Figure 4 presents the results based on both OS level
and hardware counter level metrics. For overload prediction
in Figure 4(a), similar to individual synopsis accuracy, OS
level metrics had poor accuracy in a browsing mix input.
Hardware counter metrics have consistent good accuracy
over all the workloads. For a priori known traffic (e.g.
ordering mix), the prediction accuracy can be up to 90%. For
interleaved workload, which consists of either browsing or
ordering mix during any interval, the coordinated predictor
still has an accuracy over 85%. The predictor is robust to
workload changes and can maintain high accuracy even in
the presence of bottleneck shifting.

It is expected that coordinated predictor would not be
able to outperform the best individual synopsis for current
workload. Based on spatial and temporal patterns in in-
dividual synopses, the predictor actually masks inaccurate
synopses and selects the best synopsis for a workload.
But for unknown workload, individual synopsis will have
a degraded accuracy due to the limitation of supervised
learning. Thus, the resulted coordinated accuracy decreased
to approximately 80% in unknown workload input, which is
still acceptable.

For the bottleneck identification in Figure 4(b), the hard-
ware counter level metrics also have consistent good accu-
racy. It is interesting that the bottleneck prediction accuracy
has a similar trend as overload prediction in Figure 4(a).
This may be due to the similar way the bottleneck identifier
exploits the patterns in individual bottleneck prediction.

Recall that the results in Figure 4 were obtained under
an assumption of optimistic scheme and a 3-bit history.
We also evaluated the impact of these two factors. Results
suggest that the schemes had little impact on the coordinated
accuracy and the prediction accuracy would be increased by
approximately 10% if a single history bit is used. However,

706710

TABLE I. Prediction accuracy of individual synopsis.
(a) Browsing Mix Input

Specific Synopsis OS Level HPC Level
Workload Tier LR Naive SVM TAN LR Naive SVM TAN

Ordering
APP 0.585 0.500 0.505 0.545 0.570 0.500 0.502 0.505
DB 0.473 0.500 0.465 0.587 0.439 0.453 0.493 0.646

Browsing
APP 0.635 0.621 0.505 0.603 0.529 0.557 0.540 0.515
DB 0.604 0.612 0.667 0.635 0.859 0.935 0.957 0.965

(b) Ordering Mix Input

Specific Synopsis OS Level HPC Level
Workload Tier LR Naive SVM TAN LR Naive SVM TAN

Ordering
APP 0.842 0.928 0.965 0.935 0.805 0.883 0.921 0.952
DB 0.689 0.932 0.776 0.665 0.746 0.791 0.844 0.840

Browsing
APP 0.583 0.585 0.593 0.547 0.662 0.588 0.588 0.588
DB 0.545 0.514 0.512 0.572 0.635 0.659 0.662 0.694

Workload

Ordering Browsing Interleaved Unknown

B
al

an
ce

d
A

cc
ur

ac
y

0

20

40

60

80

100

120

OS Level Metric
HPC Level Metric

(a) Overload prediction accuracy.

Workload

Ordering Browsing Interleaved Unknown

B
al

an
ce

d
A

cc
ur

ac
y

0

20

40

60

80

100

120

OS Level Metric
HPC Level Metric

(b) Bottleneck prediction accuracy.

Fig. 4. Coordinated prediction accuracy under different workloads.

any further history information would lead to only a marginal
improvement.

D. Runtime Overhead

The last experiment was to investigate the runtime over-
head of the predictor. The cost for prediction in different
machine learning algorithms has been discussed above. We
also measured the runtime overhead in metrics collection. We
normalized the throughput and request latency with respect
to the values without metrics collection. The experiments
took the average of 5 executions and each execution lasted
30 minutes. The results show a much lower overhead for the
hardware counter metrics collection. The performance loss
due to hardware counter metrics collection is within 0.5%,
compared with 4% for OS level metrics.

VI. Related Work

Early work on server capacity measurement [1] focused
on how to generate synthetic workload to stress test the
server capacity. Studies in [3] defined a set of benchmarks

for stress testing the basic capacities of streaming servers.
Unlike their offline measurement approaches, our approach
focuses on online measuring the capability of multi-tier web-
sites for the purpose of request-specific QoS-aware resource
management.

Server capacity measurement is necessary for admission
control and QoS-aware resource management. Most of the
past work employed a single rule of thumb to measure
server capacity based on application level metrics such as
length of the web server request queue [14], incoming traffic
density [2], and request response time [18], [12], [9].

There were other QoS-aware resource management work
that measured server capacity based on OS level metrics,
such as server CPU utilization [7]. However, in multi-tier
servers, bottleneck resources may shift from tier to tier due
to the dynamics of workload and it is difficult to set threshold
values for capacity estimation. Our previous work [15] uses a
combination of OS metrics and does not require specifically
setting the threshold values for each metric.

Our work is closely related to [4], [23], [5], [8] in
that we use similar statistical models to capture underlying
server characteristics. Our approach is different from theirs
in the following aspects. Firstly, they developed correla-

707711

tion for busy servers rather than overloaded systems. Most
importantly, we use multiple synopses for multi-tiers. The
prediction results from the synopses are combined together
to identify server capacity as well as the bottleneck tier.
Wildstrom et al. also employed a similar idea using system
level metrics [19]. However, their goal was to maximize
throughput by reconfiguring hardware under different traffic
rather than overload prevention.

Finally, we remark that there are recent work on the
utilization of hardware counter metrics for application per-
formance tuning and debugging. Examples include works
for identification of parallel program execution phases [6],
online workload modeling and job scheduling [24], [16],
[10], and management of energy consumptions real-time
embedded systems [25]. Their focus was on the hardware
counter events occurred within application codes. In con-
trast, our work uses system-wide hardware counter metrics
to estimate high-level system state. System-wide hardware
counter events provide useful information on the health of
the system and bottleneck resources.

VII. Conclusion

In this paper, we proposed a two-level coordinated ma-
chine learning approach to measuring the multi-tier website
capacity based on hardware performance counters. We devel-
oped performance synopses to correlate low-level hardware
counter metrics with high level system states of each tier. A
coordinated predictor was then used to infer system-wide
overload/underload state and identify resource bottleneck.
Experiments results demonstrate the effectiveness of our
approach at less than 0.5% overhead even in the presence
of workload changes and bottleneck shifting.

Our current model cannot reflect I/O related system
performance. There is also room for accuracy improvement
when the input traffic pattern is unknown. This work can be
further extended to combine hardware counter level metrics
with OS level metrics to capture I/O related performance
problems.

Acknowledgement We would like to thank the
anonymous reviewers for their constructive comments and
suggestions. This research was supported in part by U.S.
NSF grants CCF-0611750, DMS-0624849, CNS-0702488,
and CRI-0708232.

References

[1] G. Banga and P. Druschel. Measuring the capacity of a web
server. In Proc. of USITS, 1997.

[2] X. Chen, P. Mohapatra, and H. Chen. An admission control
scheme for predictable server response time for web accesses.
In Proc. of WWW, 2001.

[3] L. Cherkasova and L. Staley. Measuring the capacity of a
streaming media server in a utility data center environment.
In ACM Multimedia, 2002.

[4] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons.
Correlating instrumentation data to system states: A building
block for automated diagnosis and control. In Proc. of OSDI,
2004.

[5] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, indexing, clustering, and retrieving system
history. In Proc. of ACM SOSP, 2005.

[6] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of multi-
threaded programs using hardware event-based prediction. In
ICS, 2006.

[7] Y. Diao, N. Gandhi, J. L. H. S. Parekh, and D. M. Tilbury.
Using mimo feedback control to enforce policies for interre-
lated metrics with application to the apache web server. In
Proc. of NOMS, 2002.

[8] S. Duan and S. Babu. Processing forecasting queries. In VLDB,
2007.

[9] S. Elnikety, E. M. Nahum, J. M. Tracey, and W. Zwaenepoel.
A method for transparent admission control and request
scheduling in e-commerce web sites. In Proc. of WWW, 2004.

[10] R. J. Fowler, A. L. Cox, S. Elnikety, and W. Zwaenepoel.
Using performance reflection in systems software. In Proc. of
HotOS, 2003.

[11] H.-U. Heiss and R. Wagner. Adaptive load control in trans-
action processing systems. In Proc. of VLDB, 1991.

[12] J.M.Blanquer, A.Batchelli, K.Schauser, and R.Wolsk. Quo-
rum: Flexible quality of service for internet services. In Proc.
of NSDI, 2005.

[13] J. C. Mogul. Emergent(mis) behavior vs. complex software
systems. In ACMSIGOPS Operating System Review, 2006.

[14] V. T. R.Iyer and K. Kant. Overload control mechanisms for
web servers. In Proc. of Workshop on Performance and QoS
of Next Generation Networks, 2000.

[15] J. Rao and C.-Z. Xu. CoSL: A coordinated statistical learning
approach to measuring the capacity of multi-tier websites. In
Proc. of IPDPS, 2008.

[16] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and
X. Zhang. Hardware counter driven on-the-fly request signa-
tures. In Proc. of ASPLOS, 2008.

[17] J. Wei and C.-Z. Xu. eQoS: Provisioning of client-perceived
end-to-end qos guarantees in web servers. IEEE Trans.
Computers, 2006.

[18] M. Welsh and D. E. Culler. Adaptive overload control for
busy internet servers. In Proc. of USITS, 2003.

[19] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin. Machine
learning for on-line hardware reconfiguration. In Proc. of
IJCAI, 2007.

[20] C.-Z. Xu. Scalable and Secure Internet Services and Archi-
tecture. Chapman and Hall/CRC Press, 2005.

[21] J. Rao and C.-Z. Xu. Online measurement of the capacity
of multi-tier websites using hardware performance counters.
Technical Report, Cluster and Internet Computing Laboratory,
Wayne State University, October 2007.

[22] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-
level adaptive branch prediction. In Proc. of ISCA, 1992.

[23] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensembles of models for automated diagnosis of system
performance problems. In Proc. of DSN, 2005.

[24] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Proces-
sor hardware counter statistics as a first-class system resource.
In Proc. of HotOS, 2007.

[25] X. Zhong and C.-Z. Xu. Frequency-aware energy optimization
for real-time periodic and aperiodic tasks. In Proc. of LCTES,
2007.

708712

