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Abstract

In a web system, configuration is crucial to the perfor-
mance and service availability. It is a challenge, not only
because of the dynamics of Internet traffic, but also the
dynamic virtual machine environment the system tends to be
run on. In this paper, we propose a reinforcement learning
approach for autonomic configuration and reconfiguration
of multi-tier web systems. It is able to adapt performance
parameter settings not only to the change of workload, but
also to the change of virtual machine configurations. The RL
approach is enhanced with an efficient initialization policy to
reduce the learning time for online decision. The approach
is evaluated using TPC-W benchmark on a three-tier web-
site hosted on a Xen-based virtual machine environment.
Experiment results demonstrate that the approach can auto-
configure the web system dynamically in response to the
change in both workload and VM resource. It can drive the
system into a near-optimal configuration setting in less than
25 trial-and-error iterations.

1. Introduction

Web systems like Apache and Tomcat applications often
contain a large number of parameters; their settings are cru-
cial to systems performance and service availability. Manual
configuration based on operator’s experience is a non-trivial
and error-prone task. Recent studies revealed that more than
50% root causes of Internet service outages was due to
system misconfiguration caused by operator mistakes [6].

The configuration challenge is due to a number of reasons.
First is the increasing system scale and complexity that
introduce more and more configurable parameters to a level
beyond the capacity of an average-skilled operator. For
example, both of the Apache server and Tomcat server have
more than a hundred configurable parameters to set for dif-
ferent running environments. In a multi-component system,
the interaction between the components makes performance
tuning of the parameters even harder. Performance optimiza-
tion of individual component does not necessarily lead to
overall system performance improvement [2]. Therefore, to
find an appropriate configuration, the operator must develop

adequate knowledge about the system, get familiar with each
of parameters, and run numerous trail-and-error tests.

Another challenge in configuration comes from the dy-
namic trait of web systems. On the Internet, the systems
should be able to accommodate a wide variety of service
demands and frequent components in both software and
hardware. Chung et al. [2] showed that in web system no
single universal configuration is good for all workloads.
Zheng et al. [20] demonstrated that in a cluster-based
Internet service, the system configuration should be modified
to adjust to cluster nodes updates.

Moreover, virtual machine technology and related util-
ity and cloud computing models pose new challenges in
web system configuration. VM technology enables multiple
virtualized logical machines to share hardware resources
on the same physical machine. This technology facilitates
on-demand hardware resource reallocation [12] and service
migration [3]. Next-generation enterprise data centers will
be designed in a way that all hardware resources are
pooled into a common shared infrastructure; applications
share these remote resources on demand [11], [17]. It is
desirable that the resources allocated to each VM should be
adjusted dynamically for the provisioning of QoS guarantees
and meanwhile maximizing resource utilization [8]. This
dynamic resource allocation requirement adds one more
dimension of challenge to the configuration of web systems
hosted in virtual machines. In particular, the configuration
needs to be carried out on-line and automatically.

There were many past studies devoted to autonomic
configuration of web systems; see [18], [19], [2], [20] for
examples. Most of them focused on performance parameters
tuning for dynamic workload in static environments. Their
optimization approaches are hardly applicable to online
setting of the parameters in VM-based dynamic platforms
due to their high time complexity. There were a few control
approaches targeted at online tuning in response to changing
workload [5]. They were largely limited to tuning of single
MaxClient parameter because of the inherent complexity
of the control.

In this paper, we propose a reinforcement learning ap-
proach, namely RAC, for automatic configuration of multi-
tier web systems in VM-based dynamic environments. Re-
inforcement learning is a process of learning from interac-
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tions. For a web system, its possible configurations form
a state space. We define actions as reconfiguration of the
parameters. Reinforcement learning is intended to determine
appropriate actions at each state to maximize the long-
term reward. Recent studies showed the feasibility of RL
approaches in resource allocation [14], [16], [9], power man-
agement [15], job scheduling in grid [1] and self-optimizing
memory controller [4]. To best of our knowledge, the RAC
approach should be the first one in the application of the RL
principle to automatic configuration of web systems.

The RAC approach has the following features: (1) It is
applicable to multi-tier web systems where each tier contains
more than one key parameters to configure; (2) It is able to
adapt system configuration to the change of workload in
VM-based dynamic environments where resource allocated
to the system may change over time; (3) It is able to support
online auto-configuration.

Online configuration has a time efficiency requirement,
which renders conventional RL approaches impractical. To
reduce the initial learning overhead, we equip the RL algo-
rithm with efficient heuristic initialization policies. We de-
veloped a prototype configuration management agent, based
on the RAC approach. The agent is non-intrusive in the sense
that it requires no change in either server or client sides.
All the information needed is application level performance
such as throughput and response time. We experimented with
the RAC agent for a three-tier TPC-W website/benchmark
on a Xen-based virtual machine environment. Experiment
results showed that the RAC agent can auto-configure the
web system dynamically in response to the change in both
workload and VM resource. It can drive the system into a
near-optimal configuration setting in less than 25 trial-and-
error iterations.

The rest of this paper is organized as follows. Section 2
presents scenarios to show the challenges in configuration
management in dynamic environments. Section 3 presents
basic idea of the RL approach and its application in auto-
configuration. Enhancement of the approach with policy
initialization is given in Section 4. Section 5 gives the
experimental results. Related work is discussed in Section 6.
Section 7 concludes the paper with remarks on limitations
of the approach and possible future work.

2. Challenges in Website Configuration

2.1. Match Configuration to Workload

Application level performance of a web system heavily
depends on the characteristics of the incoming workload.
Different types of workloads may require different amounts
and different types of resources. Application configuration
must match the need of current workloads to achieve a good
performance.

Table 1. Tunable performance critical parameters.

Parameters Ranges Default
MaxClients [50, 600] 150

Web Keepalive timeout [1, 21] 15
server MinSpareServers [5, 85] 5

MaxSpareServers [15, 95] 15
MaxThreads [50, 600] 200

Application Session timeout [1, 35] 30
server minSpareThreads [5, 85] 5

maxSpareThreads [15, 95] 50

For instance, MaxClients is one of the key performance
parameters in Apache, which sets the maximum number of
requests to be served simultaneously. Setting it to a too small
number would lead to low resource utilization; in contrast,
a high value may drive the system into an overloaded state.
With limited resource, how to set this parameter should be
determined by the requests resource consumption and their
arrival rates. Configurations of this parameter for resource
intensive workload may lead to poor performance under
lightly loaded conditions.

To investigate the effect of configuration on per-
formance, we conducted experiments on a three-tier
Apache/Tomcat/MySQL website. Recall Apache and Tomcat
each has more than a hundred configuration parameters.
Based on recent reports of industry practices and our own
test results, we selected eight most performance relevant run-
time configurable parameters from different tiers, as shown
in Table 1. For simplicity in testing, we assumed the default
settings for the MySQL parameters.

We tested the performance using TPC-W benchmark.
TPC-W benchmark defines three types of workload: order-
ing, shopping, and browsing, representing three different
traffic mixes. It is expected that each workload has its
preferred configuration, under which the system would yield
the lowest average response time. Figure 1 shows the system
performance for different workloads under the three best
configurations (out of our test cases). From the figure, we
observe that there is no single configuration suitable for all
kinds of workloads. In particular, the best configuration for
shopping or browsing would yield extremely poor perfor-
mance under ordering workload.

2.2. Match Configuration to Dynamic VM Environ-
ments

For a web system hosted on VMs, its capacity is capped
by the VM resources. It tends to change with reconfiguration
of the VM (for fault tolerance, service migration, and other
purposes). The change of the VM configuration renders the
previous web system configuration obsolete and hence calls
for reconfiguration online. Such reconfigurations are error
prone and sometimes even counter-intuitive.
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Figure 1. Performance under configurations tuned for
different workloads.
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Figure 2. Effect of MaxClients on performance.

In the following, we still use MaxClients parameter
to show the challenges due to VM resource change. In this
experiment, we kept a constant workload and dynamically
changed the VM resource allocated to the application and
database servers. We defined three levels of resource provi-
sioning: Level-1 (4 virtual CPUs and 4GB memory), Level-2
(3 virtual CPUs and 3GB memory), and Level-3 (2 virtual
CPUs and 2GB memory). Figure 2. shows the impact of
different MaxClients settings under different VM con-
figurations. From the figure, we can see that each platform
has each own preferred MaxClients setting leading to the
minimum response time. We notice that as the capacity of
the machine increases, the optimal value of MaxClients
actually goes down instead of going up as we initially
expected. The main reason for this counter-intuitive finding
is that with the VM becoming more and more powerful, it
can complete a request in a shorter time. As a result, the
number of concurrent requests will decrease and there is
no need for a large MaxClients number. Moreover, the
measured response time included request queuing time and
its processing time. The MaxClients parameter controls
the balance between these two factors. A large value would
reduce the queueing time, but at the cost of processing
time because of the increased level of concurrency. The
tradeoff between the queuing time and processing time is
heavily dependent on the concurrent workload and hardware
resource.
MaxClient aside, we tested the settings of other pa-
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Figure 3. Performance under configurations tuned for
different VMs.

rameters under different VM configurations. Their effects
are sometimes counter-intuitive due to the dynamic features
of web systems. Figure 3 shows no single configuration is
best for all platforms. In particular, the performance under
Level-2 resource may even deliver better performance under
Level-1 platform.

3. Reinforcement Learning Approach to Auto-
configuration

In this section, we will present an overview of our RL
approach and its application to auto-configuration.

3.1. Parameter Selection and Auto-configuration

Today’s web systems often contain a large number of
configurable parameters. Not all of them are performance
relevant. For tractability of auto-configuration, we first select
the most performance-critical parameters as configuration
candidates. Because online reconfiguration is intended to
performance improvement at the cost of its run-time over-
head. Including a huge number of parameters will sharply
increase the online search spaces, causing a long time
delay to converge or making the system unstable. To select
an appropriate tuning parameter, we have to deal with
the tradeoff between how much the parameter affects the
performance and how much overhead it causes during the
online searching.

Even from the performance perspective, how to select
the appropriate parameters for configuration is a challenge.
In [20], authors used parameters dependency graph to find
the performance relevant parameters and the relationship
among them. Our focus is on autonomic reconfiguration
in response to system variations by adjusting a selective
group of parameters. Table 1 lists the parameters we selected
and the ranges of their values for testing purposes. How to
automatically select the relevant parameters is beyond the
scope of this paper.

For a selective group of parameter in different tiers, we de-
sign a RL-based autonomic configuration agent for multi-tier
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web systems. The agent consists of three key components:
performance monitor, decision maker, and configuration
controller. The performance monitor passively measures the
web system performance at a predefined time interval (we set
it to 5 minutes in experiments), and sends the information to
RL-based decision maker. The only information the decision
maker needs is the application level performance such as
response time or throughput. It requires no OS-level or
hardware level information for portability. The decision
maker runs a RL algorithm and produces a state-action table,
called Q-value table. A state is defined as a configuration of
the selected parameters. Possible actions include increasing,
decreasing their values or keeping unchanged; see the next
section for details. Based on the dynamically updated Q
table, the configuration controller generates the configuration
policy and reconfigures the whole system if necessary.

3.2. RL-based Decision Making

Reinforcement learning is a process of learning through
interactions with an external environment (or the web sys-
tem in this paper). The reconfiguration process is typi-
cally formulated as a finite Markov decision process(MDP),
which consists of a set of states and several actions for
each state. During each state transition, the learning agent
should receive a reward defined by a reward function
R = E[rt+1|st = s, at = a, st+1 = s′]. The goal of the
agent is to develop a policy π : S → A to maximize the
collected cumulative rewards based on iterative trial-and-
error interactions [13].

We first cast the online automatic configuration problem
as a MDP, by defining state space S, action set A, and
immediate reward function r(s, a).

State Space. For the online auto-configuration task,
we define a state as possible system configuration. For the
selective group of n parameters, we represent a state by a
vector in the form as:

si = (Para1, Para2, · · · , Paran).

Action Set. We define three basic actions: increase,
decrease, and keep associated with each parameter. We use
a vector ai to represent an action on parameter i. Each
element itself is a 3-element vector, indicating taken/not-
taken (1/0) of three actions. For example, the following
notation represents an increase action on parameter i:

aincrease
i = (· · · , Parai(1, 0, 0), Paran(0, 0, 0)).

Immediate Reward. The immediate reward should
correctly reflect the system performance. The immediate
reward r at time interval t is defined as

rt = SLA − perft,

where SLA is a reference time predefined in Service Level
Agreement, and perf is measured response time. For a given

SLA, a lower response time returns a positive reward to the
agent; otherwise the agent will receive a negative penalty.

Q-value Learning. The temporal difference(TD) is
most suitable for our work due to its two advantages: It needs
no model of the environment and it updates Q-values at each
time step based on its estimation. Using such incremental
fashion, the average Q-value of an action a on state s,
denoted by Q(s, a), can be refined once after each immediate
reward r is collected:

Q(st, at) = Q(st, at)+α∗[rt+1+γ∗Q(st+1, at+1)−Q(st, at)],

where α is a learning rate parameter that facilitates con-
vergence to the true Q-values in the presence of noisy or
stochastic rewards and state transitions [13], and γ is the
discount rate to guarantee the accumulated reward conver-
gence in continuing task. Algorithm 1 presents the pseudo
code of our Q-value learning algorithm.

Algorithm 1 Q-value Learning Algorithm.
1: Initialize Q table
2: Initialize state st

3: error = 0
4: repeat
5: for each state s do
6: at = get action(st) using ε − greedy policy
7: for (step = 1;step <LIMIT;step + +) do
8: Take action at observe r and St+1

9: Qt = Qt + α ∗ (r + γ ∗ Qt+1 − Qt)
10: error = MAX(error, |Qt − Qprevious−t|)
11: st = st+1, at+1 = get action(st), at = at+1

12: end for
13: end for
14: until error < θ

4. Online Learning and Adaptation

RL algorithm explores system dynamic features by inter-
acting with the external environment. A practical problem
with the basic algorithm is that the number of Q-values that
need to explore increases exponentially with the number of
attributes used in state representations [4]. The initial poor
performance and long time convergence make the online
learning challenge.

4.1. Policy Initialization

The initial poor performance and poor scalability would
limit the potential of RL algorithms for online auto-
configuration. For a remedy, our RL agent assumes an
external policy initialization strategy to accelerate the learn-
ing process. Briefly, it first samples the performance of
a small portion of typical configurations and uses these
sample data to predict the performance of other similar
configurations. Based on these information, the agent runs
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Figure 4. Concave upward effect of MaxClients and
regression.

another reinforcement learning process to generate an initial
policy for the online learning procedure.

First, to learn the initial policy, we need to collect training
data for the subsequent RL Learning. It is not practical to
collect the performances of all the configurations due to its
long time consumption. A key issue is to choose represen-
tative states for approximation. In implementation, we use a
technique named parameter grouping to group parameters
with similar characteristics together so as to reduce the
state space. For example, both parameters MaxClients
and MaxThreads are limited by the system capacity and
both parameters KeepAlive timeout and session
timeout are limited by the number of multiple connection
transactions. Then the first two parameters form one group
and the other two form another group. The parameters in
the same group are always given the same value. Moreover,
coarse granularity is used for each group during training
data collection instead of the fine granularity used in online
learning.

After having the state value of representative configu-
rations, we use a simple but efficient method to predict
the performance of other configurations. It is based on the
fact that all parameters have a concave upward effect on
the performance, as revealed in [5]. Figure 4 shows the
concave upward effect of a single parameter MaxClient
on response time, observed in one of our experiments. By
using polynomial regression algorithm, we formulate the
performance as a function of configurable parameters and
predict performance of the absent states in the data collection
step.

After getting all the training data, we run a offline
reinforcement learning process showed in Algorithm 1 to
generate an initial Q-value table for online learning. In
implementation, we set α = 0.1, γ = 0.9, ε = 0.1 for the
offline training. Algorithm 2 gives the pseudo-code of the
policy initialization algorithm.

Algorithm 2 Policy Initialization.
1: Parameter Grouping
2: for each group do
3: Collect data in coarse granularity
4: end for
5: Generate regression-based predicting function
6: Predict performance of unvisited configuration
7: Run RL process to learn an initial policy

4.2. Online Learning

Although the policy initialization could avoid the initial
poor performance, it may not be accurate enough for re-
configuration decision. In the subsequent online learning,
our agent keeps measuring the current system performance
and retraining the Q-value table at each time interval using
Algorithm 1with α = 0.1, γ = 0.9, ε = 0.05 . For each
retraining procedure, the agent updates the performance
information for current configuration but still keep the old
information for other configurations. Based on these updated
performance information, it updates the Q-value table using
batch training so as to guarantee that most of the states
are aware of the new changes in the system. After each
retraining, the agent will then direct the system to the next
state based on the new policy derived from the updated Q-
value table.

4.3. Adaptation to Workload and System Dynamics

Recall the web system hosted in a VM-based environment,
there are two dynamic factors: the changing of incoming
workloads and VM resource variation. As we discussed
in Section 2, there is no single best configuration for all
types of workloads and VM resource profiles. We call
the combinations of traffic mixes and the VM resource
settings system contexts. To address the problem of poor
initial performance and accelerate the learning process, we
construct different initialization policies for different scenar-
ios through offline training. Algorithm 3 shows the online
training and adaptation algorithm. The RL agent continu-
ously collect the immediate reward in each configuration,
and compares it with the average of the last n values.
An abrupt change in the reward value is considered as a
violation. If violations are detected in several consecutive
iterations, the agent believes that there is a context change
and switches to a corresponding initial policy. The violations
are detected based on a violation threshold v thr. Once
there are s thr times violations happened continuously, the
agent will switch to a most suitable initial policy according
to the current performance. The threshold s thr controls
the trade-off between the agent’s adaptability and stability.
Setting it to a too small value will make the agent too
sensitive to system fluctuations but a too large value will

6



harm the agent’s adaptability. The effect of the s thr will
be discussed in Section 5.2. Empirically, we set n, s thr,
and the v thr to 10, 5, and 0.3, respectively.

pvar = |rptimecur − rptimeaver|/rptimeaver,

violation =
{

0 if pvar ≤ v thr;
1 otherwise.

Algorithm 3 Online Learning.
1: Input initialized Q-value table
2: Input initialized state St

3: for each configuration iteration do
4: Issue reconfiguration action based on current Q-value table
5: Measure current performance
6: Check context variations
7: If number of consecutive violations exceeds s thr
8: Then Switch policy
9: Update Q-value table using Algorithm 1

10: Enter the next step
11: end for

5. Experiments Results

In this section, we evaluate the effectiveness of the RL-
based auto-configuration agent on a multi-tier web system
running TPC-W benchmark. The application level perfor-
mance is measured in terms of the response time.

5.1. Experimental Setup

To evaluate the effectiveness of the RAC approach, we
deployed a multi-tier website in a VM-based environment.
The physical machine was configured with two Intel quad-
core Xeon CPUs and 8GB memory. A client machine
with the same hardware configuration was used to emulate
concurrent customers. All experiments were conducted in
the same local network.

The physical machine hosting the multi-tier website in-
stalled Xen virtual machine monitor(VMM) version 3.1.
Xen is a high performance resource-managed VMM, which
consists of two components: a hypervisor and a driver
domain. The hypervisor provides the guest OS the illusion of
occupying the actual hardware devices. The driver domain
is in charge of managing other guest VMs and executes
resource allocation policies. In our experiments, both the
driver domain and the VMs were running CentOS 5.0 with
Linux kernel 2.6.18. The multi-tier website was deployed
on two VMs, with Apache web server in the first one and
Tomcat application server and MySQL database server in
the other one. The RAC agent resided in the driver domain.

We evaluated the RAC approach using the TPC-W bench-
mark [10]. TPC-W benchmark defines three different work-
load mixes: ordering, shopping, and browsing. They have

Table 2. Examples of contexts with different workloads
and VM resources.

Workload mixes VM resources
Context-1 Shopping Level 1
Context-2 Ordering Level 1
Context-3 Ordering Level 3
Context-4 Shopping Level 2
Context-5 Ordering Level 2
Context-6 Browsing Level 1

different combinations of browsing and ordering requests. To
evaluate the RAC approach’s adaptation to system dynamics,
we changed the client traffic as well as the resources
allocated to the VMs hosting the website. Considering the
fact that the application server and data base server are the
bottleneck for our system, only the resources allocated to
the VM hosting the last two tiers are changed. Table 2 lists
the combinations of the client traffic and VM resources.

5.2. Performance of Configuration Policies

In this section, we studied the effectiveness of the RAC
approach for online auto-configuration. We compared the
RAC agent with the other two configuration approaches. The
first one is with static default parameter settings as listed
in Table 1. The other is a trial-and-error method based on
tuning individual parameters. This approach assumes that
all parameters have a concave upward effect on system per-
formance. More specifically, the trial-and-error method tunes
the system starting from an arbitrary parameter and fixes the
remaining parameters. The parameter setting that produces
the best performance is selected as the optimal value for this
parameter. Then the agent goes to the next parameter. Once
all the parameters are processed, the resulted parameters
settings are considered as the best configuration for the
system. This approach mimics the way an administrator may
use to tune the system manually.

In this experiment, we dynamically changed the system
contexts to evaluate the adaptability of the RAC agent. The
system stayed in one context for 30 iterations before switch-
ing to a new one. Figure 5 plots the online performance
of the RAC agent compared to the other two methods in
three consecutive system contexts: context-1(from 0 to 30
iteration), context-2(from 31 to 60 iteration) and context-
3(from 61-90 iteration).

From Figure 5, we can see that RAC agent performed best
among the three approaches. It was always able to drive the
system to a stable state in less than 25 interactions with the
external environment. Its overall performance was around
30% better than the trail-and-error agent and 60% better than
the static default configuration. Furthermore, the RAC agent
was able to adapt to context change in a timely way. After
the client traffic changed at the 30th iteration, the RAC agent
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Figure 5. Performance due to different auto-
configuration policies.

continuously observed performance violations and switched
policy at iteration 35. The response time dropped more than
60% after RAC agent got the new initial policy. The new
policy can lead the system to a stable configuration within
15 iterations. More importantly, the RAC agent consistently
improved the performance during the process of parameter
reconfiguration. It could optimized the cumulative reward
during the reconfiguration steps avoiding severe performance
degradation.

As we expected, the static default configuration yielded
the worst performance in most of the test cases. Because
there was no adaptation to the system context variations,
the static configuration was not suitable for dynamic en-
vironment. For most of the time, the trail-and-error agent
produced a much better performance and it was able to drive
the system to a stable state. However, because this approach
was based on tuning individual parameters independently,
the agent was prone to being trapped in local optimal
settings. Figure 5 shows that the performance of the stable
states found by trail-and-error agent were at least 30% worse
than those found by the RAC agent. Moreover, with the
increase of the number of tunable parameters, convergence
to a stable state would become a challenge in this approach
due to huge size of the search space.

We notice that, in some cases, the resulted performance of
the RAC agent was not so good as others. For example, in
the second context transition at the 60th iteration, the system
experienced five iterations of poor performance before the
agent detected the context changes. We refer to the detection
delay as policy switching delay. The policy switching delay
can be mitigated by reducing s thr. However, this may
cause the system unstable due to false detection of context
change and frequently switch of initial policies. In our work,
our original setting of 5 worked well and several iterations
policy switching delay should be acceptable for the web
system.

5.3. Effect of Online Learning

Recall that the initial policies are learned from offline
traces for specific system contexts. In this experiment, we

study whether it is necessary to refine the learned policies
through online learning.

Figure 6 compares the agent’s performance with and with-
out online learning. The agent without online learning drove
the system to a stable configuration in 12 iterations less than
the one uses online learning. However, the policy refined by
online learning achieved better stable performance. There
is approximately 50% performance improvement from the
online refinement than the offline trained policy. The slower
convergence to a stable state and the fluctuations at the
beginning in online learning attribute to the process of online
interactions which involve a certain amount of exploration
actions. Explorations are often considered as sub-optimal
actions that explore environment dynamics. Although online
learning suffered a longer convergence time and initial
fluctuation, it was able to find a better configuration than
the offline policy.

5.4. Effect of Policy Initialization

The state space of the RL algorithm grows exponentially
with the number of configurable parameters. Without an
initial policy, the RL algorithm performs a large amount
of explorations, which are believed to be suboptimal actions
leading to bad performance, before obtaining a stable policy.
In this section, we studied the effect of policy initialization
on improving RL online performance.

Figure 7(a) and Figure 7(b) show the performance of the
RAC agents with and without policy initialization in system
context-2 and context-4. From the figures, we observe that
the agent with policy initialization led to considerable per-
formance improvements. In Figure 7(b), after 8 iterations,
the response time due to the RAC agent without policy
initialization was always above 6 times longer than the one
with initialization. In Figure 7(a), the performance gap was
not as big as in Figure 7(b), but remains substantial. The
differences may be due to the fact that the optimal state
in context-2 was much closer to the default configurations
than in context-4. In both cases, the agents with policy
initialization were able to drive the system to a stable state
in less than 12 iterations. In contrast, the agents without
policy initialization failed to generate fixed policies with
stable configurations in a small number of interactions.

Note that, in a dynamic web system, it is not always
possible to derive sufficient environment specific initial
policies for all the contexts. In this experiment, we show
that the initial policies attained for certain system contexts
can be used as an good starting point for online learning. The
RL algorithm continuously revises the policy through online
interactions. We compared the performance of the agent
using static policy with the one that adaptively switches poli-
cies upon context changes. In the experiment, we randomly
selected the initial policy derived from system context-2
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Figure 9. Performance with static and adaptive policy initialization.

as the static policy. We evaluated the performance of the
static initial policy and adaptive initial policy under system
context-5 and system context-6 separately. Figure 9(a) and
Figure 9(b) show the results, respectively.

The figures suggest that the agents with static policy
initialization were able to drive the systems to stable states
in less than 27 iterations. The static policies were gradually
refined by online learning and the response time improved
as more interactions were performed. Although the agents
with static policies needed more time to converge to a
stable configuration, the resulted configurations yield similar
performance to the ones generated by dynamic policies. In
contrast with the agent without any policy initialization, the
agent with static policy initialization was able to keep the
response time at a relatively low level after a limited number
of iterations, for example, 12 iterations in Figure 9(b) and
19 iterations in Figure 9(a).

Both the online batch training and the characteristics
of web systems contributed to the effectiveness of the
static initial policy. During each iteration, newly measured
performance information was used to retrain the Q table. The
recent attained rewards spread the environment dynamics to
all the states. Therefore, although the static initial policy can
not accurately reflect the system dynamics, the interactions
between the agent and the external environment was able
to calibrate the mapping from configuration to performance

within an acceptable amount of time. Moreover, for a
web system, some extreme configurations are rarely used
in practice. For example, in our experiment, setting the
KeepAlive timeout to a value higher than 20 seems a
bad decision. Because few web pages in TPC-W benchmark
requires the TCP connections to be kept for such a long time.
The static policy can automatically mask these impractical
configurations and avoid possible performance degradations.

Such RAC agent with carefully designed initial policy
is more practical in real systems. It relies on interactions
with environment instead of policy switching to continuously
update the Q-value table, and assumes much less knowledge
of the dynamic system.

In the next experiment, we evaluate the online adaptation
of three RL algorithms: the algorithm without policy initial-
ization, with static policy initialization, and with adaptive
policy initialization. We dynamically changed the system
contexts in the same way as the previous experiments in
Section 5.2.

Figure 10 plots the performance of the three RL algo-
rithms. From the figure, we can see that the agent with
adaptive policy initialization performed best during online
adaptations. The agent with static policy initialization was
also able to adapt to the system context variations and
achieved comparable performance as the adaptive agent.
At iteration 30 and iteration 60, the system experienced a
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Figure 10. Performance due to different RL policies.

workload change and a VM resource reallocation, respec-
tively. The agent with static policy initialization successfully
detected the variations and refined the policy within 25
iterations based on interactions with the new environment.
Its resulted configuration generated good performance which
only have less than 10% loss compared to the best possible
performance obtained by the adaptive agent. As expected,
the agent without any initial policy can not lead the system
to a stable state and its performance was much worse than
the other two agents.The variations in average response time
were not from the algorithm’s adaptation but just from the
system itself.

5.5. Effect of Exploration

How to balance exploration and exploitation is one of the
challenges in online RL algorithms. Insufficient explorations
would result in suboptimal configurations while too much
exploration would incur prohibitive performance degrada-
tion. In this section, we studied the effect of the exploration
rate in RAC performance. Two types of explorations were
considered: in batch training and in online learning.

Batch training is a part of the online learning process.
During each iteration, agent updated the performance infor-
mation for current state and uses batch training to generate
a latest Q-value table. The online learning algorithm makes
a reconfiguration decision based on the newly updated Q
table. The online performance of RAC is more sensitive to
the online learning exploration rate. In our experiment, we
set a higher exploration rate of 0.1 for batch training in order
to make best use of collected performance information. A
smaller exploration rate of 0.05 was used for online learning
to avoid fluctuations and performance degradation.

Figure 8 shows the effect of online learning exploration
in three exploration rates: 0.05, 0.1 and 0.3. From the figure,
we can see that the performance of the resulted stable
state for different exploration rates were nearly the same.
But, a higher exploration rate may lead to more suboptimal
exploration actions in turn and resulted in response time
spikes. For example, Figure 8 shows 2 spikes in the case

of rate 0.1 and 4 spikes in the case of rate 0.3. Moreover,
during such fluctuation, the response times increased at least
4 times. The result shows that the rate 0.05 performed best.

6. Related Work

Many past works were devoted to autonomic configuration
of web systems; see [20], [7], [18], [2], [5], [19] for
examples. Xi et al. [18] and Zhang et al. [19] applied Hill-
climbing algorithms to search optimal configurations for ap-
plication servers by adjusting a small number of parameters.
They treated the system as a black-box and assumed that
the application tier configurations were independent of other
tiers.

Actually, the configurations for interconnected web sys-
tem components interfere with each other. In [20], Zheng et
al employed a CART algorithm to generate the parameter
dependency graph through a three tier web system, which
explicitly represented relationship between configurable pa-
rameters. Chung et al. demonstrated that the performance
improvement cannot easily be achieved by tuning individual
component of web system [2]. These two works suggested
to construct performance functions of parameters in a direct
approach so as to tune the parameters by optimizing the
functions. However, the huge number of initial testings made
their works not applicable to online adaptations.

In [5], Liu et al. proposed a fuzzy control based algorithm
to online optimize response time of a web server. Zhang et
al. [19] developed a online tuning agent to reconfigure the
application sever according to system variations. However,
the inherent complexity of the control approach considerably
limited capacity of their auto-configuration method. There-
fore, both of these works limited themselves to the tuning
of single parameter of single tier applications.

Moreover, the traditional hill-climbing and control ap-
proaches require system knowledge and suffer from delay
consequences. The RL algorithm inherently avoid such prob-
lems by taking the long term rewards. Several works have
employed reinforcement learning in other contexts. Tesauro
et al. applied a hybrid reinforcement learning algorithm to
optimize server resource allocation in a server farm [16].
Also a reinforcement learning based self-optimizing memory
controller was designed in work [4]. To avoid the poor initial
performance, function approximation and coarse-grain Q-
value table were adopted separately in these two works. In
this work, we used typical data collection and pre-learning
to solve this problem.

There were other works on autonomic configuration in
virtual machines. Padala et al. applied classical control
theory to auto-configure the resource shares allocated to each
VM in order to increase resource utilization [8]. In [12],
an VM advisor automatically configured VMs to adapt to
different database workloads. What they focused on were
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resource configurations of VMs, which complements to the
work in this paper on web systems configuration under VM-
based dynamic platforms.

7. Conclusion

In this paper, we propose a reinforcement learning ap-
proach, namely RAC, towards automatic configurations of
multi-tier web systems in VM-based dynamic environment.
To avoid initial learning overhead, we equip the RL al-
gorithm with efficient heuristic initialization policies. Ex-
periments in a multi-tier web system showed that RAC is
applicable to online system configuration adaptation in the
presence of variations in both workload and VM resources.
It is able to direct the web system to a near-optimal config-
uration within less than 25 trial-and-error iterations.

Although the RL-based auto-configuration agent per-
formed well in the experiments, it still has room for im-
provement. First, the quality of collected training data will
affect the agent’s online performance. Designing a more
accurate initial model or function approximation is one of
our future extended work. We used parameter grouping and
coarse granularity techniques to reduce time for collecting
training data. It still took more than ten hours to get
sufficient system information. Furthermore, the time for
data collection will increase with the number of parameters
exponentially. Therefore, scalability of the approach remains
a challenge. To apply our approach in a real complex system,
configurable parameters need to be selected automatically in
a more efficient way.
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