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ABSTRACT
Virtualizing Hadoop clusters provides many benefits, including rapid
deployment, on-demand elasticity and secure multi-tenancy. How-
ever, a simple migration of Hadoop to a virtualized environment
does not fully exploit these benefits. The dual role of a Hadoop
worker, acting as both a compute and a data node, makes it diffi-
cult to achieve efficient IO processing, maintain data locality, and
exploit resource elasticity in the cloud. We find that decoupling
per-node storage from its computation opens up opportunities for
IO acceleration, locality improvement, and on-the-fly cluster re-
sizing. To fully exploit these opportunities, we propose StoreApp,
a shared storage appliance for virtual Hadoop worker nodes co-
located on the same physical host. To completely separate stor-
age from computation and prioritize IO processing, StoreApp pro-
actively pushes intermediate data generated by map tasks to the
storage node. StoreApp also implements late-binding task creation
to take the advantage of prefetched data due to mis-aligned records.
Experimental results show that StoreApp achieves up to 61% per-
formance improvement compared to stock Hadoop and resizes the
cluster to the (near) optimal degree of parallelism.

1. INTRODUCTION
As the amount of data generated by enterprises and organizations
has exploded, conventional warehouse systems are unable to effi-
ciently store and analyse the data. MapReduce, a distributed pro-
gramming model on clusters of commodity hardware, has emerged
as the de facto standard for processing a large set of unstructured
data. Since big data analytics requires distributed computing at
scale, usually involving hundreds to thousands of machines, access
to such facilities becomes a significant barrier to practising big data
processing in small business.

Moving MapReduce into the cloud, either converting the exist-
ing in-house computing facility into a private cloud or outsourc-
ing data processing to a public cloud, offers a more efficient and
cost-effective model to implement big data analytics [8]. It is be-
lieved that the benefits of virtualizing MapReduce include rapid de-
ployment, high availability, on-demand elasticity and secure multi-
tenancy [3]. However, a simple migration of MapReduce to a virtu-

alized environment does not fully exploit the flexibility, efficiency
and elasticity in the cloud.

Hadoop, the open source implementation of MapReduce, has been
increasingly deployed in cloud environments. Leading public cloud
vendors, such as Amazon EC2 [7] and Rackspace [22], already
provide Hadoop as an online service. Virtualization software ven-
dors, e.g., VMware, also have Hadoop virtualization extensions
(HVE) [16] to support Hadoop in a private cloud. Hadoop con-
sists of two subsystems: the MapReduce Engine and Hadoop Dis-
tributed File System (HDFS). In conventional clusters, these two
subsystems are deployed on the same worker nodes so that compu-
tation can be directly applied to its associated data. The coupling of
computation and storage requires that data locality be preserved as
much as possible, which is critical to the performance of Hadoop
map tasks. However, such settings pose significant challenges on
achieving good Hadoop performance in a virtualized environment.

First, unified compute and data node impedes the scaling of Hadoop
clusters. As discussed in [17], matching the cluster size with work-
load demands is crucial to the performance of MapReduce jobs and
the efficiency of Hadoop clusters. However, adding or removing
unified Hadoop nodes requires that data be rebalanced and thus in-
curs significant data movement. The resulted inter-node traffic in-
evitably limits the scalability of virtual Hadoop clusters and makes
it difficult to exploit the elasticity provided by virtualization.

Second, coupling computation and storage leads to inefficient use
of resources in virtualized environments. To exploit the parallelism
of multicore processors, usually multiple Hadoop nodes are con-
solidated onto one physical machine. On the other hand, colocated
virtual nodes often access disk concurrently, causing interleaved
IOs on the host machine. These almost random IO operations can
greatly affect the performance of Hadoop jobs that are bottlenecked
by disk accesses. There is existing work focusing on exploiting the
additional layer of data locality, i.e., host-local, in virtual Hadoop
clusters [11, 16]. Data stored on colocated Hadoop nodes is consid-
ered local on the same host. Thus, Hadoop scheduler is modified to
launch ”local” task even its data is on a different virtual node. How-
ever, this approach does not address the inefficient IO accesses. The
separation of data on different virtual nodes prevents Hadoop from
coordinating concurrent disk IOs for better efficiency.

Finally, performing task execution and data serving in the same
virtual node poses challenges on efficient virtual machine (VM)
scheduling. It is believed that IO-intensive VMs should be priori-
tized as they only consume a small amount of CPU time for IO pro-
cessing and stay idle waiting for IO completion. Existing virtual
machine monitors (VMM) use a simple heuristic, i.e., short CPU



burst, to identify VMs doing mostly IOs and assign them higher
priorities. However, the overlapping of computation and IO in the
unified Hadoop node renders the heuristic ineffective. We show
that (Section 2.2) VMs running a mix of computation and IO op-
erations experience up to 50% IO performance degradations under
multi-tenant interferences.

In this work, we find that decoupling the HDFS storage to a sep-
arate data node, one per host machine, opens up opportunities for
optimized disk accesses, more efficient VM scheduling, and flex-
ible Hadoop scaling. We propose StoreApp, a set of Hadoop op-
timizations that fully uncover the performance potential of using
a separate HDFS storage node. StoreApp completely decouples
disk accesses from compute nodes by redirecting intermediate data
spills to the data node. By consolidating disk accesses into one VM,
StoreApp uses existing IO prioritization mechanisms in VMMs to
accelerate IO processing. To optimize disk accesses in the storage
node, StoreApp takes advantage of the prefetched partial HDFS
block due to unaligned records and devises a late-binding task sched-
uler to reduce the number of disk accesses by launching tasks asso-
ciated with the prefetched data. We also demonstrate that automate
cluster scaling is possible with the help of separated storage node.

We have implemented StoreApp on a 22-node virtual Hadoop clus-
ter and evaluated its benefits using TestDFSIO benchmark and the
Purdue MapReduce Benchmark Suite (PUMA) [2] with datasets
collected from real applications. Experiment results show that Store-
App is able to reduce the job completion time by up to 61% for
different benchmarks. We compared the performance of Store-
App running different workloads with that of the stock Hadoop
and a recently proposed I/O efficient MapReduce implementation
Themis [24]. Experimental results show that StoreApp reduces job
completion time by 48% and 37% compared with stock Hadoop
and Themis, respectively.

The rest of this paper is organized as follows. Section 2 introduces
the background of Hadoop, discusses existing issues, and presents
a motivating example. Section 3 elaborates StoreApp’s architec-
ture and key designs. Section 4 presents the implementation details
of StoreApp. Section 5 gives the testbed setup and experimental
results. Related work is presented in Section 6. We conclude this
paper in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we first introduce the basics of the Hadoop MapRe-
duce framework. Then, discuss the major challenges of virtualized
Hadoop clusters. We show that moving HDFS into separate data
nodes improves the read and write throughput.

2.1 Hadoop MapReduce Framework
Data processing in MapReduce is expressed as two functions: map
and reduce. The map function takes an input pair and produces a
list of intermediate key/value pairs. The reduce function processes
the intermediate key with the list of its values and generates the
final results. In the implementation of Hadoop, the map and reduce
functions are implemented in MapTask and ReduceTask. Each
MapReduce job is divided into multiple map tasks and reduce tasks.

Figure 1 shows the data storage in a Hadoop cluster. Hadoop has
two type of storage: the Hadoop Distributed File System (HDFS)
and the intermediate storage. HDFS is the persistent storage for
input and output data of MapReduce jobs. Data in HDFS is saved
as blocks and replicated across all HDFS nodes. The intermediate
storage is the place for the storing intermediate result of a MapRe-
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Figure 1: The slot-based task scheduling in Hadoop.

duce job. For example, map tasks save their intermediate data to
this temporary space when the output buffer is full. Temporary data
is save in the local file system of a Hadoop node and deleted after
a job is completed. In Hadoop’s default setting, each worker node
runs TaskTracker and DataNode at the same time. The coupling
between task execution and data allow tasks to run locally avoiding
inter-node data movement and communications. Hadoop tasks are
created during job initialization and assigned input splits as their
associated data. To preserve data locality, Hadoop task scheduler
always tries to launch tasks onto nodes that contain their input data.
If no such nodes are available, tasks will run on nodes where they
access input data remotely.

2.2 Challenges in Virtualized Hadoop Clusters
There exist several challenges when running Hadoop in a virtual-
ized cluster. Performance interference in a shared cloud infrastruc-
ture and the lack of knowledge on the actual cluster topology are
the main reasons for inefficient Hadoop execution.

As reported by [9], there are typically 4-6 VMs consolidated on one
physical server in modern datacenters. Therefore, performance in-
terferences from co-located VMs are quite common in virtualized
environments. While interference usually come from applications
belonging to other cloud tenants, it can also originate from com-
petitions within the same cluster application. Depending on the
deployment of VMs, multiple virtual Hadoop nodes can co-locate
on the same physical machine. It is also a recommended virtual
Hadoop cluster deployment from industry documentations [4, 16].
However, such colocations inevitably incur resource competitions
among virtual Hadoop nodes. As most Hadoop jobs are data inten-
sive, their performance is primarily bottlenecked by slow disk ac-
cesses. When running in a consolidated scenario, individual nodes
can cause interleaved and non-sequential disk IOs. The tight cou-
pling of computation and storage in one Hadoop node makes it dif-
ficult to coordinate concurrent disk accesses on different nodes.

The load of input data and intermediate data spills are two main
sources of disk IOs in Hadoop. A task reads input data using
the FileInputFormat interface and transforms unstructured input
data that saved in the HDFS into meaningful records. As record
lengths can vary, the record at the end of a HDFS data block may
be incomplete. When Hadoop loads input data for a task, it will
fetch the missing part of the misaligned record from the data block
on a different data node. Due to this misalignment between in-
put records and HDFS blocks, creating one input split may result
in reading multiple data blocks and issuing multiple disk seek re-
quests to the DataNode. Two data blocks that contains consecu-
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Figure 2: The percentage of blocks with misaligned records.
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Figure 3: Computation and IO overlapping significantly affects
IO performance in virtualized environments.

tive records may not store sequentially on disk, therefore reading
them incurs even more random access to the disk and significantly
reduces the efficiency of disk IO. More importantly, the fetch of
incomplete records requires that a data node read the complete data
block into memory. As only part of the loaded block will be sent to
the node requesting the record, the remaining loaded data, though
is resident in memory, can not be efficiently utilized. In the de-
fault Hadoop setting, such in-memory HDFS fragments spread over
many independent data nodes, making it even harder to use them.

Next, we show that such misaligned records are prevalent in rep-
resentative Hadoop workloads. We ran the PUMA benchmarks
suite [2] and set the HDFS block size to 64MB. Figure 2 shows
the percentage of blocks that have misaligned records at the begin
or end of the block. For all four input data sets in PUMA, more
than 70% data blocks has misaligned records at the begin or end of
the block. Among all these blocks, around 15.5−18.7% involved
reading the second block from a remote data node. As long as the
records have variable lengths, the misalignment between records
and blocks is inevitable.

In a virtualized environment, there also exist contentions on CPU
resources between co-running applications. Such contentions are
particularly damaging to IO workloads because IO processing time
can be significantly prolonged. Inspired by traditional operating
system design, modern VMMs use a simple heuristic to identify IO
intensive workloads and prioritize them to avoid poor IO perfor-
mance. If a VM spends a significant amount of time idling (prob-
ably blocked by IO operations) and occasionally consumes short
CPU bursts, it will receive a higher priority. However, Hadoop jobs
do not benefit from the IO acceleration. To hide IO latency, Hadoop
uses different threads in a task to handle task execution, intermedi-
ate data spill, and shuffling. This design works well in a dedicated
cluster but is less efficient in a cloud environment with interfer-
ences. Due to the overlapping of computation and IO, VMMs fail
to prioritize a node when it is performing IO operations.
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Figure 4: The average HDFS read and write throughput.

We created a micro-benchmark that sequentially accesses 10 GB
data on disk and ran it on both a physical and a virtualized ma-
chine. We emulate the overlapping of computation and IO by run-
ning a busy loop along with the IO benchmark. We ensured that
the aggregate CPU demand of the busy loop and the IO bench-
mark is below the capacity of one CPU so that the competition
between the two does not affect IO performance. In the virtualized
environment, we put the busy loop and the IO benchmark in a 1-
vCPU VM and created another VM on the same host competing for
CPU cycles. Figure 3 shows the IO throughput in different settings.
Although virtualization adds overheads to IO processing, IO only
workloads achieved reasonably good performance (i.e., 103 MB/s)
in a virtualized environment even in the presence of interferences.
However, when co-running with computation-intensive programs,
the IO benchmark suffered a significant performance degradation
(i.e., 49 MB/s). Next, we show that decoupling the data node from
compute node and use a shared storage node per machine, offers
opportunities for more efficient IO processing and more flexible
cluster scaling.

2.3 Shared HDFS Storage Appliance
Consolidating data storage on multiple nodes into one data node
shared by Hadoop nodes colocated on the same machine, provides
a possible solution to the stated issues in virtualized environments.
By serving multiple compute nodes, the shared storage node can
possibly apply optimizations to a group IO requests. Separating
IO from computation allows more effective VM scheduling at the
VMM level. Next, we show that the decoupling provides immedi-
ate performance improvement to Hadoop HDFS benchmarks.

We built a controlled testbed of two Dell T420 servers, each with
two Intel Xeon E5-2420 hex-core CPUs and 16 GB memory. Xen
4.3 and Linux kernel 3.10.0 were used as the VMM and the guest
OS. We created an 11-node virtualized Hadoop cluster on the two
hosts. One nodes were configured as the JobTracker and the Na-
meNode. We created two shared storage nodes, one per machine.
Each of them had 4 VCPUs and 4 GB memory. They were assigned
higher priorities in the Xen scheduler to improve the responsiveness
of I/O operations. We set the HDFS block size to its default value
64 MB. The set the number of replications to one to ensure that two
storage appliance contain different part of the input data. The rest 8
nodes were configured as compute nodes for task execution. Each
compute node was allocated with 2 VCPU and 2 GB memory. We
set the per-node map and reduce slots to 4 and 2, respectively.

Figure 4 shows the HDFS read and write throughput using the
TestDFSIO benchmark. The results show that the separate HDFS
storage node achieved 66.5% and 70.9% higher average read and
write throughput than the unified Hadoop node, respectively. It
shows that using separate HDFS in a virtualized Hadoop cluster
leads to higher disk performance.



 0.4

 0.6

 0.8

 1

Hadoop Separated
HDFS

Separated HDFS
Host-awareness

N
o
rm

a
liz

e
d
 J

o
b
 C

o
m

p
le

ti
o
n
 T

im
e

Figure 5: The normalized job completion time of terasort.

The separate HDFS node also improves the flexibility in task schedul-
ing. Because no compute node have input data in its local disk, it
automatically enables the task scheduler to launch host-local tasks.
Figure 5 shows the performance the terasort benchmark due to dif-
ferent approaches. The results show that using separated HDFS
itself can only reduce the job completion time by 5%. But combine
the separated HDFS with host-aware task scheduling can signifi-
cantly reduce the job completion time by 24%. The performance
improvement mainly because the elimination of unnecessary re-
mote tasks.

[Summary] We have shown that separating the HDFS from com-
pute nodes improves the performance of HDFS in virtualized Hadoop
cluster. To fully exploit the benefit of shared HDFS storage, there
are still several issues to be addressed. First, decoupling HDFS doe
not remove all IOs from compute nodes. Intermediate data is saved
in the local file system of a compute node. Unless all IOs are con-
solidated onto the storage node, IO processing can not be properly
accelerated. Second, there still lacks a mechanism to utilize the
in-memory HDFS fragments, which may significantly reduce the
number of disk accesses. Finally, there is a need for auto-scaling
virtual Hadoop clusters to realize cost-effective hosting. To address
these issues, we propose StoreApp, a collection of techniques that
optimize Hadoop performance based on shared storage appliance.

3. STOREAPP DESIGN
We propose StoreApp, a shared storage appliance for virtualized
Hadoop clusters. It consists of a set of storage nodes and a Store-
App manager. Each physical machine has one storage node shared
by all the compute nodes residing on the same host. It decouples
HDFS data nodes from compute nodes, and provides the accurate
information about data locality. To consolidate all IO operations,
StoreApp pro-actively pushes intermediate data to the storage node.
StoreApp provides efficient HDFS I/O through HDFS prefetching
and implements a late-binding task scheduler that schedules tasks
onto prefecthed HDFS data. StoreApp further employs an auto-
mated cluster resizing technique to determine the optimal cluster
size for different jobs.

3.1 Overview
Figure 6 shows the architecture of StoreApp. StoreApp consists
of four components HDFS proxy, shuffler, StoreApp manager, and
task scheduler. The HDFS proxy receives all HDFS requests and
forwards them to the HDFS DataNode. The shuffler is a job in-
dependent shuffle service that receives the map outputs and pro-
actively pushes them to their destination data nodes. It removes all
IOs due to intermediate data spills at the local disks of compute
nodes. With these two components, StoreApp fully decouples the
storage and computation. The StoreApp manager coordinates the
operation of all data nodes and provides the global view of data
availability. The task scheduler extends existing Hadoop scheduler
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Figure 6: The architecture of StoreApp.
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Figure 7: Process of prefetching in HDFS proxy.

to consider the data availability in individual data nodes. We briefly
describe major features of StoreApp.

Shared Hadoop Storage - The shared storage provides separated
VMs for storage in Hadoop. The storage VM is assigned with
higher priority in VMM scheduler to improve the I/O efficiency. It
separates the HDFS DataNode from the compute node and imple-
ments an independent shuffler to collect the intermediate data. The
shared storage is designed to be compatible with current Hadoop
API. Any user job can be moved on StoreApp seamlessly.

HDFS Prefetching - The HDFS proxy provides a prefetching ser-
vice to the HDFS. It prefetches the data adjacent to the partial
HDFS block due to misaligned input records and form a complete
input split in memory. The new split can later be fed to a newly cre-
ated task. HDFS proxy exploits the fragmented in-memory block
to reduce the number of disk accesses.

Late-binding Task Scheduler - The task scheduler on-the-fly cre-
ates tasks and associates them with prefetched data in the data
nodes. It also uses the deployment information of shared storage
node on each machine and its association with corresponding com-
pute node to schedule map tasks.

Automated Cluster Resizing - StoreApp monitors the processing
of individual tasks of a job and searches for the optimal cluster
size for the job. By maximizing the parallelism of job execution, it
significantly improves the efficiency of virtualized Hadoop cluster.

3.2 HDFS Prefetching
StoreApp uses the HDFS proxy to create the input splits based on
fragmented HDFS blocks. We design a prefetching technique that



preloads data when the unaligned read occurs. Figure 7 shows an
example of how the data is prefetched. During the creation of an
input split s0, the prefetcher first reads data block b0 into the mem-
ory buffer. Because the last record at block b0 is incomplete, the
prefetcher needs to read the rest of the record from block b1. In-
stead of only reading the needed partial record, the prefetcher reads
the whole block b1 into the memory buffer. Then, the prefetcher
serves the input split s0 to the task. The unused data in block b1 is
kept in the memory, and the prefetcher reads its consecutive block
into the memory to form input split s1. Therefore, when the task
scheduler assigns a new task to process input split s1, the data will
be readily available in the memory of the StoreApp node. StoreApp
keeps tracking the alignment of record read and performs prefetch-
ing if unaligned reads are detected.

Algorithm 1 HDFS Prefetching.
1: Variables: Memory buffer area S; Input buffer B;
2:
3: function CREATEINPUTSPLIT(t)
4: get the input block list L for task t
5: check S and fetch any block in L and not in S
6: concatenate all block in L and save in buffer area S[L]
7: find the start of first record i
8: find the end of last record j
9: move data in S[L][i : j] into buffer B[t]

10: get the last block ID k in L
11: move data in S[L][ j :] into buffer S[k]
12: end function

Algorithm 1 shows the pseudo code of the prefetching algorithm.
When the CreateInputSplit function is invoked by the prefetcher
to create the input split for task t, it first extracts the list L of input
blocks from the task configuration. Then it checks the buffer area
S with all the block IDs in list L and fetches all blocks that is not
stored in S. All fetched blocks are concatenated and saved in S.
Next, the algorithm identifies the begin and end of the input split
and moves the corresponding data into the input buffer for task t.
The unused data is kept in the buffer area S and indexed with the
ID of the block. Each StoreApp node reports the list of prefetched
input splits to the StoreApp manager to prevent multiple data nodes
from prefetcing that same blocks.

3.3 Late-binding Task Scheduler
StoreApp provides accurate information of data locality in virtu-
alized Hadoop clusters. But Hadoop task schedulers need modifi-
cations to support the functionality of StoreApp. In Hadoop, map
tasks are assigned based on the location of its input data. How-
ever, StoreApp requires tasks to be scheduled based on the data
availability on data nodes, e.g., the availability of prefetched input
splits. The task scheduler also needs to check the partition place-
ment on a StoreApp node and schedules the corresponding reduce
task. StoreApp implements a late task binding mechanism that dy-
namically associates a task with the available input data. For map
tasks, the scheduler first checks the prefetched blocks of a Store-
App node and associates one map task with the data. The task can
be scheduled to any of the compute nodes that co-locates with the
StoreApp node. The similar process applies to reduce tasks. A
reduce task will not be assigned with a partition until it is being
scheduled. Since all shuffle data has been pro-actively pushed to
one of the StoreApp nodes, reduce scheduling is deterministic.

For single-user clusters, we modified Hadoop’s FIFO scheduler to
support the runtime task-data binding. When a compute node with
free map or reduce slots requests for new tasks, the task sched-
uler first checks with the StoreApp manager to obtain the list of
prefetched data or available partitions that reside on the co-hosted

StoreApp node. The scheduler picks the input split or partition in
the list and associates its ID with the first map or reduce task in the
waiting queue. The selected task is then launched on that compute
node. As such, all tasks are guaranteed to have host-local access
to their input data and some tasks can even read their input directly
from memory.

For multi-user clusters with heterogeneous workloads, we add the
support for runtime task-data binding to the Hadoop Fair Sched-
uler (HFS). The minimum fair share allocated to individual users
can negatively affect the efficiency of StoreApp as tasks may be
launched on remote nodes to enforce fairness. We disable such fair-
ness enforcement for reduce tasks to support more flexible schedul-
ing. This allows some users to temporarily run more reduce tasks
than others. We rely on the data replication of HDFS to minimize
the chance of starting remote map tasks. Because the DataNode of
HDFS is deployed on StoreApp. The default configuration of repli-
cation can ensure that each data block is replicated on three differ-
ent physical machines. Given the fact that each physical machines
hosts multiple compute nodes, the possibility that a task cannot find
a local compute node is quite small.

3.4 Automated Cluster Resizing
With the separation of the storage and computation, adding com-
pute node to virtualized Hadoop clusters no longer requires data re-
balancing. It enables flexible resizing of Hadoop clusters. To maxi-
mize the efficiency of virtualized Hadoop cluster, StoreApp imple-
ments automated cluster resizing. The goal of automated cluster
resizing is to determine the number of compute nodes on each host
that yields the shortest completion time of a given job.

Hadoop provides progress score to represent the fraction of work
completed. It is computed as the ratio of finished input size and
the original input size. Progress rate [30], which is defined as the
change in progress score in unit time, is a good online measure of
task performance. By monitoring the progress rate of each map
task, StoreApp is able to calculate the expected completion time
of a map task as t = 1

r , where r is the progress rate of the task.
Due to the job characteristics and the data distribution, the optimal
number of compute nodes on one host can vary from host to host.
Therefore, we need to evaluate the choice of number of compute
nodes on each host machine separately.

For example, a MapReduce job with n map tasks is running on a
tiny cluster within one physical machine, the expected completion
time of the job’s map phase can be calculated as

Tmap =
n
p
× tavg

where p is the number of compute nodes per physical machines
and tavg is the average expected completion time of tasks. We can
evaluate Tmap with different p and find the one that leads to the
minimum tmap. Thus we can assert that for this particular physi-
cal machine, provisioning p compute nodes leads to the best job
performance and resource efficiency. StoreApp uses an iterative
approach to search the optimal cluster size through multiple trials.

The pseudo-code of the automated cluster resizing algorithm is
shown in Algorithm 2. StoreApp performs the algorithm on each
physical machine. The algorithm first increases the number of com-
pute nodes on the physical machine p by one and provisioning new
node accordingly. Then it calculates the expected job completion
time Tnew and compares it with the expected job completion time
in the previous iteration Told . If Tnew is larger than Told , the perfor-
mance degradation due to intra-cluster contention outweighs hav-



Algorithm 2 Automated cluster resizing.
1: Variables: List of all running tasks on one physical machine

M; Number of computation nodes on one physical machine p;
Expected completion time of the job in previous iteration Told ;

2:
3: while true do
4: p← p+1
5: provision additional node
6: for i in M do
7: ti← 1/ri
8: end for
9: calculate average expected completion time for M as tavg

10: Tnew = n/p× tavg
11: if Tnew > Told then
12: p← p−1
13: kill newly provisioned node
14: break
15: end if
16: end while
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Figure 8: The structure of HDFS proxy.

ing a greater degree of parallelism. Thus the newly provisioned
node should be removed.

4. IMPLEMENTATION
In Hadoop, the HDFS is abstracted in class DistributedFileSys-
tem. It wraps the DFSClient that communicates with the NameN-
ode in the master and the DataNode in the slave nodes. A task’s op-
erations on DistributedFileSystem is performed by its internal
DFSClient. It is responsible for retrieving location of individual
blocks from NameNode and accessing the data blocks from DataN-
ode. The HDFS proxy is deployed with DataNode and intercepts
the request from DFSClient. It listens on the RPC port and passes
received requests to the DataNode. Therefore, prefetching feature
can be easily implemented without change the HDFS.

The structure of the HDFS proxy is shown in Figure 8. It has
three main components: Prefetcher, SplitBuffer, and HDFS
Interface. The route 1© 2© 3© serves the HDFS read operation
with prefetching. The HDFS proxy will create the input split be-
fore a task is scheduled to the slave node that the StoreApp serves.
When a task issues HDFS read, the HDFS proxy will respond the
request with buffer input splits. The route 4© 5© serves the HDFS
write operation. When a task issues HDFS write, the HDFS proxy

will pass the request to the underlying HDFS. In order to create the
input splits in the HDFS proxy. HDFS proxy retrieve the Input-
Format for the job from the StoreApp and use it to find the begin
and end of a record in data blocks.

We implement a modified version of iShuffle [15] to handle the
intermediate data. The ShuffleServer, DataDispatcher, and
Merger are implemented as different threads. The grouped map
output records is saved in the intermediate queues and waiting for
partitioning. StoreApp repetitive performs the balanced partition-
ing algorithm with latest update of map output record groups. The
partitioned and shuffled results are saved as reduce input files. The
task scheduler performs runtime task-data binding to associates
these data with reduce tasks.

5. EVALUATION
We implement StoreApp on a prototype cloud environment and
evaluate its performance in improving HDFS throughput and re-
ducing job completion time. We further study how virtualized Hadoop
cluster benefits from automated cluster resizing. We also evaluate
the performance of StoreApp in multi-user Hadoop clusters.

5.1 Testbed Setup
Our cloud environment consists of 4 Dell T420 servers. Each server
is equipped with 2-way Intel Xeon E5-2420 hex-core CPUs and 16
GB memory. The servers are connected with Gigabit Ethernet. Xen
4.3 with Linux kernel 3.10.0 is used to provide the server virtual-
ization.

The testbed is a 22-nodes Hadoop cluster. We deployed Hadoop
stable release version 1.1.1 and each VM run Ubuntu Linux with
kernel 2.6.32. Two nodes are configured as the JobTracker and
NameNode, respectively. Four nodes are setup as StoreApp nodes.
Each of them have 4 VCPUs and 4 GB memory. We set the HDFS
block size to its default value of 64 MB. The rest 16 nodes are
configured as compute nodes for MapReduce task execution. Each
node is allocated with 2 VCPUs and 2 GB memory. Each slave
node is configured with 2 map slots and 2 reduce slots. In the ex-
periments of automated cluster resizing, the cluster can be scaled
up to have 40 compute nodes.

For comparison, we also implemented Themis [24]. Themis is a
system that focuses on I/O efficient MapReduce. It batches the
disk I/O to exploit the sequential I/O performance of hard disk. It
dynamically allocates memory buffers for the intermediate data and
reduce the disk I/O with in-memory merge sort. Themis employed
a different workflow for intermediate data processing. It moves the
shuffle process to the map side. As the map task running, the output
data is copied to different nodes and partitioned into intermediate
results. However, the disk virtualization of the slave nodes reduces
the effectiveness of I/O batching in Themis. Themis does not has
the host-awareness for virtualized Hadoop cluster, which makes it
suffers from the inflexible task scheduling that leads to concealed
data locality.

5.2 Workloads
We used the TestDFSIO to evaluate the performance of HDFS. It
is a HDFS specific benchmark that is included as a test job in
Hadoop source code. It consists of two parts: TestDFSIO-write and
TestDFSIO-read. It first writes a large amount of data into HDFS,
then reads it back. TestDFSIO measures the maximum read and
write throughput of the HDFS.

We also use the PUMA benchmark suite [2] to test the performance



Table 1: Benchmark details.
Benchmark Input Size (GB) Input Data Output Size (GB) Shuffle Volume (GB)
tera-sort 150 TeraGen 150 150
ranked-inverted-index 150 multi-word-count output 125 160
term-vector 150 Wikipedia 30 120
wordcount 150 Wikipedia 2 29
grep 150 Wikipedia 3 31
histogram-movies 100 Netflix data 0.0010 0.0012
histogram-ratings 100 Netflix data 0.0013 0.0014

of StoreApp with representative MapReduce jobs. The PUMA
benchmark suite contains various MapReduce benchmarks and real-
world test inputs. Table 1 shows the benchmarks and their configu-
rations used in our experiments.

These benchmarks are divided into three categories based on the
size of their intermediate data. The terasort, ranked-inverted-index
and term-vector are I/O intensive benchmarks. They have a have
large input data size and a large shuffle volume that is compara-
ble to the input data size. These benchmarks poses great pressure
to the host disk. The wordcount and grep are I/O sensitive bench-
marks. They have a large input data size but an relatively small
shuffle volume. They are sensitive to the performance disk. But the
host disk is not a major bottleneck for them. The histogram-movies
and histogram-ratings are I/O light benchmarks. The performance
of HDFS have some impact on their performance, but the major
bottleneck is the CPU.

5.3 HDFS I/O Performance
We study the HDFS I/O performance of StoreApp. We use the
TestDFSIO benchmark to measured the throughput of the HDFS.
We configure TestDFSIO to write 50 GB data into the HDFS and
then read it back. The TestDFSIO benchmark does not have inter-
mediate data and shuffling, which allows us to accurately measure
the performance of HDFS storage. We compare the HDFS read and
write throughput due to different approaches.

Figure 9 shows the average HDFS storage throughput in three cases:
the stock Hadoop, StoreApp without prefetching, and StoreApp
with prefetching. The results show that StoreApp with prefetching
outperformed stock Hadoop by 78.3% and 71.8% higher average
throughput in HDFS read and HDFS write, respectively. Store-
App significantly improves the throughput of HDFS in virtualized
Hadoop cluster. StoreApp outperformed stock Hadoop for two
reasons. First, the shared storage VM has higher priority in VM
scheduling, it significantly improves the I/O responsiveness when
the interference presents. Second, consolidating the storage into
one VM reduces the I/O contentions between compute nodes and
allow disk I/O operations to be batched and performed sequentially.
As the traces in Figure 9(b) and Figure 9(c) shown, StoreApp not
only achieved higher throughput than stock Hadoop in both read
and write, it also achieved stabler throughput than stock Hadoop.

The prefetching plays an important role in improving the HDFS
throughput. StoreApp with prefetching achieved 9.2% higher read
throughput than StoreApp without prefetching. The traces in Fig-
ure 9(b) show that StoreApp without prefetching has similar unsta-
ble read throughput like stock Hadoop. Without prefetching, the
HDFS read operation of Hadoop involves multiple disk seek.

5.4 Performance Impact of Efficient I/O
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Figure 10: The normalized job completion time due to different
approaches.

We have shown the StoreApp is effective in improving HDFS per-
formance for virtualized Hadoop cluster. In this subsection, we
study how StoreApp helps improving the overall job completion
time. We use the job completion time in the stock Hadoop as
the baseline and compare the normalized job completion time of
StoreApp and Themis. Figure 10 shows the normalized job com-
pletion time of all benchmarks due to these three approaches. The
results show that I/O intensive benchmarks with large intermediate
data, e.g., terasort, ranked-inverted-index and term-vector, Store-
App outperformed stock Hadoop by 42.2%, 48.1%, and 37.8%, re-
spectively. StoreApp also outperformed Themis by 26.6%, 37.3%,
and 20.5% in these benchmarks. Note that StoreApp achieved
less improvement on term-vector because it has small output data,
which means it has less HDFS write than other two benchmarks.
This results in less pressure on the HDFS and decreases the perfor-
mance gain of using StoreApp.

Benchmarks such as wordcount and grep are I/O sensitive. In the
experiments with these benchmarks, StoreApp outperformed the
stock Hadoop by 27.8% and 23.2%, respectively. However, the per-
formance improvement of these benchmarks are less then I/O inten-
sive benchmark, because their small intermediate data decreases
the performance gain from the shuffle-on-write shuffler. Store-
App achieved 16.9% and 12.5% shorter job completion time than
Themis in wordcount and grep benchmarks, respectively.

For I/O light benchmarks such as, histogram-movies and histogram-
ratings, StoreApp outperformed the stock Hadoop by 15.4% and
19.1%, respectively. StoreApp also outperformed Themis by 13.3%
and 16.5% in these benchmarks, respectively. StoreApp is able to
reduce the job performance by improving the efficiency of HDFS,
while Themis only achieves marginal performance improvement.
StoreApp clearly showed a significant advantage compared to Themis.

To further understand how the job completion time is reduced by
StoreApp. We pick three representative benchmarks, terasort, word-
count, and histogram-movies, from all three categories of bench-
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(b) Read throughput.
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Figure 9: The HDFS storage throughput of Hadoop and StoreApp.
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Figure 11: The average task completion time due to three dif-
ferent approaches.

marks. We compare the average task completion time due to stock
Hadoop, Themis, and StoreApp. We decompose the average task
execution time into three parts: the map time, the HDFS I/O time,
and the shuffle I/O time. The map time represents the time that a
map task spent on executing map function over input records. The
HDFS I/O time represents the time spent on HDFS read. Note that
in StoreApp, the HDFS read operation is fulfilled by the Split-
Buffer due to the prefetching, the HDFS I/O time does not in-
clude the actual time that the StoreApp node accesses the HDFS.
The shuffle I/O time represents the time spent on sending map out-
put records to the shuffler in the case of StoreApp, or to the map
output file in the case of Themis and stock Hadoop.

Figure 11 shows the average task completion time for these three
benchmarks. The results show that StoreApp achieved 41.4%, 38.7%,
and 40.2% shorter task execution time than stock Hadoop in these
three benchmarks, respectively. StoreApp also outperformed Themis
by 25.1%, 30.6%, and 33.3% in these benchmarks, respectively.
StoreApp significantly reduces the task completion time results shorter
job completion time.

The decomposition results show that StoreApp, Themis, and stock
Hadoop spent similar time in executing map function. The results
suggest that the differences in the task completion time is mainly
due to the reduction in the time spent on shuffle I/O and HDFS I/O.
Both StoreApp and Themis are able to reduce the shuffle I/O time.
StoreApp used 62.5%, 60%, and 50% shorter shuffle I/O time than
stock Hadoop in terasort, wordcount, and histogram-movies bench-
marks, respectively. StoreApp outperformed stock Hadoop for two
reasons. First, StoreApp bypasses the map-side combine, which
eliminated extra disk access during shuffle. Second, StoreApp uses
shuffler to collect and shuffle the map output. This saves the time
for a map task by not writing intermediate data into disk. Store-
App also outperformed Themis with around 25% shorter shuffle
I/O time in these benchmarks because StoreApp does not involve
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Figure 12: The normalized job completion time due to different
storage organization.

writing output data into local disk.

StoreApp achieved 51.2%, 62.5%, and 68.2% shorter HDFS I/O
time than stock Hadoop in terasort, wordcount, and histogram-
movies benchmarks, respectively. StoreApp outperformed Themis
by 45.5%, 59.1%, and 65.2% in these three benchmarks, respec-
tively. The improved performance on HDFS read of StoreApp
shows significant advantage against Themis, which lacks the op-
timization on HDFS operations.

5.5 Benefit of Automated Cluster Resizing
StoreApp decouples computation nodes and storage nodes, which
allows flexible cluster resizing. StoreApp is able to determine the
cluster size for each job to further improve the performance and
efficiency of virtualized Hadoop cluster. In this section, we first
study how StoreApp improves the scalability of virtualized Hadoop
cluster. Then we show how does automated cluster resizing help in
reducing job completion time. We use the job completion time in
the stock Hadoop as the baseline and compare the normalized job
completion time of different approach. Each physical nodes can
hold up to 10 slave nodes and the cluster is initialized with 4 nodes
per host.

As Section 2 shown, one major challenge of virtualized Hadoop
cluster is the scalability. In stock Hadoop cluster, adding com-
pute nodes incurs significantly overhead due to the data rebalanc-
ing and can results in performance issue. Using hybrid nodes [10]
can avoid data balancing, but breaks the data locality. Here we the
evaluate the performance improvement of using automated clus-
ter resizing with data rebalancing, hybrid nodes, and StoreApp.
We use three representative benchmarks terasort, wordcount and
histogram-movies for the experiment. Figure 12 shows the nor-
malized job completion time of different approaches on all bench-
marks. The results show that StoreApp outperforms data rebal-
ancing by 47.3%, 42.1%, and 37.2% in terasort, wordcount, and
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Figure 13: The normalized job completion time due automated
cluster resizing.

histogram-movies, respectively. It demonstrates that StoreApp has
better scalability in cluster resizing than data rebalancing. The
overhead of data rebalancing evens out the performance gain due
to the increased cluster size. Moreover, in terasort and wordcount
benchmarks, cluster resizing with data rebalancing achieved longer
job completion time than Hadoop without any resizing technique.
StoreApp also outperforms hybrid nodes by 32.9%, 20.1%, and
27.9% in these benchmarks. It is mainly because the broken data
locality and unsolve I/O contentions in hybrid nodes.

Figure 13 shows the normalized job completion time of all bench-
marks due to these three approaches. The results show that Store-
App with automated cluster resizing can reduce the job comple-
tion time by up to 61%. For I/O intensive benchmarks like tera-
sort, ranked-inverted-index, and term-vector, StoreApp with auto-
mated cluster resizing outperformed the stock Hadoop by 53.2%,
51.6%, and 58.4%, respectively. However, employing automated
cluster resizing only brings very limited performance improvement
for StoreApp in these three benchmarks. StoreApp with automated
cluster resizing only achieved 8.9%, 2.1%, and 6.5% shorter job
completion time than StoreApp without cluster resizing. The num-
ber of slave nodes per host is not changed for these benchmarks.
Due to the fact that the disk of host machine is the bottleneck of
I/O intensive benchmarks, increasing the number of slave nodes
poses even more pressure on the disk. It reduces the performance
of individual tasks and counteracts the speedup of increased level
of concurrency.

For I/O sensitive benchmarks like wordcount and grep, StoreApp
with automated cluster resizing outperformed the stock Hadoop by
59.7% and 53.5%, respectively. It also outperformed StoreApp
without automated cluster resizing by 20.3% and 31.2% in word-
count and grep, respectively. These benchmarks poses less pressure
to the host disk than I/O intensive benchmarks. Therefore, the host
machine has extra resource than can be used to further improve the
performance of these benchmarks. Thus the automated cluster re-
sizing is able to increase the number of slave nodes per host and
speedup the execution of jobs.

For I/O light benchmarks like histogram-movies and histogram-
ratings, StoreApp with automated cluster resizing outperformed
the stock Hadoop by 49.2% and 51.3%. Since the host disk is not
the bottleneck for these benchmarks, StoreApp is able to provi-
sion more slave nodes on each physical machine. Thus, StoreApp
with automated cluster resizing achieved 42.4% and 37% shorter
job completion time than StoreApp without automated cluster re-
sizing. The results also provide an interesting observation that the
storage appliance and automated cluster resizing act in a comple-
mentary way, which can significantly improves the performance of
different jobs.
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Figure 14: The job completion time of two terasort job due to
different approaches.

Table 2: Job completion time of co-running jobs.
Workload Mix Sep. StoreApp StoreApp HFS
A + B A B A B

terasort + grep 2210 1247 2046 1038
term-vector+ wordcount 2410 1447 2196 1238

terasort + histogram
-ratings 2308 653 1676 570

terasort + histogram
-movies 2217 840 1584 790

terasort +TestDFSIO 2441 675 1474 721

5.6 Multiple Job Performance
In this section, we evaluate the effectiveness of using StoreApp in
a multi-user Hadoop cluster. We created multiple workload mixes,
each contained two different MapReduce jobs. We run one work-
load at a time with two jobs sharing the Hadoop cluster. We modi-
fied the Hadoop Fair Scheduler (HFS) (i.e., StoreApp HFS) to sup-
port runtime task-data binding and incorporate with StoreApp. For
comparison, we also study the performance of StoreApp running
a single job on a dedicated cluster (i.e., Separate StoreApp). We
shrink the cluster to half of its original capacity to mimic the fair
share of one job in the multi-user cluster.

First, we perform the experiment with two I/O intensive jobs. Fig-
ure 14 shows the performance of two terasort benchmarks. The
results show the difference of job completion time of terasort in
separate StoreApp and StoreApp HFS is less than 5%. StoreApp
HFS is able to enforce fairness between these two benchmarks.

Then, we perform the experiment with the mix of one I/O intensive
job and one I/O sensitive job. The first section of Table 2 shows
the results of two different job mixes. The results show that Store-
App HFS improved job execution times by 8.6% and 16.8% over
separate StoreApp in terasort and grep benchmarks, respectively.
Although the size of input datasets of these two benchmarks are
the same, grep has a smaller shuffle volume. Therefore, its reduce
tasks can be started earlier as their intermediate data required less
time to shuffle. Because the fair share of reduce tasks is removed
in StoreApp, grep is allowed to temporarily use the whole cluster
to run its reduce tasks until terasort starts reduce tasks. Moreover,
grep finishes earlier than tera-sort, it also allows terasort to utilize
the entire cluster. The result of term-vector and wordcount is sim-
ilar where StoreApp reduces the job completion time of these two
benchmarks by 8.9% and 14.4%, respectively.

Third, we test the combination of a I/O intensive job and a I/O light
job. The second section of Table 2 shows the results for this case.
The results show that StoreApp HFS improved the job execution



time by 27.4% and 12.7% over separate StoreApp in terasort and
histogram-ratings benchmarks, respectively. Like the case of one
I/O intensive job and one I/O sensitive job, both jobs benefit from
the performance boost of reduce tasks. Because the shuffle work-
load of histogram-ratings is light and it finishes far earlier than
terasort, terasort is able to use the entire cluster for longer time. It
further improves the performance of terasort. In the case of tera-
sort runs with histogram-movies, StoreApp HFS outperformed sep-
arate StoreApp by by 28.6% and 5.9%, respectively.

Furthermore, we study the performance boost of reduce tasks with
an extreme case of heterogeneous workloads. We experiment with
one terasort job and one TestDFSIO job. The last section of Ta-
ble 2 shows the results show that StoreApp achieved 39.6% shorter
job completion time in terasort than separate StoreApp. Because
TestDFSIO-write only have one reduce task and it end instanta-
neously, terasort occupied every reduce slots on all slave nodes.
However, the job completion time of TestDFSIO in StoreApp HFS
is 6.8% longer than it in separate StoreApp. This unexpected re-
sult is due to the contention in HDFS. TestDFSIO has two parts:
TestDFSIO-write and TestDFSIO-read, which results in intensive
HDFS read and write in map tasks. Due to the replication factor
of HDFS, TestDFSIO can generate triple as much I/O than terasort
with the same amount of data. However, this is the extreme case of
heterogeneous workload. It is very uncommon that a real world job
has comparable intensity in HDFS I/O.

6. RELATED WORK
MapReduce is a programming model for large-scale data process-
ing [13]. Hadoop, the open-source implementation of MapReduce,
provides a software framework to support the distributed process-
ing of large datasets [1]. YARN [27] is the second generation of
Hadoop. It redesigns the resource management of Hadoop cluster
and provides the support of different programming models. YARN
provides a shuffle plugin interface that allows user to customize
the shuffle process. But the shuffler is not an independent service
by default. YARN does not provide host-awareness for virtualized
Hadoop clusters. The storage and computation are still coupled.

Adaptive processing allows the Hadoop framework to change the
execution flow of jobs to improving performance and efficiency.
Recent work focuses on balancing the workload distribution by
adaptively changing the partition of input data [5, 14, 18, 19, 25].
FLUX [25] splits an operator into mini-partitions. It monitors the
utilization of different computation nodes by the time they spent
in idle. FLUX moves mini-partitions from the most heavily uti-
lized node to the most lightly utilized one. However, running a
large amount of small tasks poses significant overhead. SkewRe-
duce [18] alleviated the computational skew problem by applying a
user-defined cost function on the input records. Partitioning across
nodes relies on this cost function to optimize the data distribu-
tion. SkewTune [19] proposed a framework for skew mitigation
by adaptive processing. It repartitioned the long tasks to take the
advantage of idle slots freed by short tasks. SkewTune does not
pose large scheduling overhead because only straggler tasks will
be repartitioned. However, moving rTarazu balances the workload
using data repartitioning [5]. It repartitions the intermediate data
and distributes the workload of reduce phase to meet the perfor-
mance difference of heterogeneous clusters. PIKACHU focuses on
achieving optimal workload balance for Hadoop [14]. It presents
guidelines for the trade-offs between the accuracy of workload bal-
ancing and the delay of workload adjustment.

The shuffle and reduce in Hadoop also have a large space for im-
provement. MapReduce Online [12] proposed a push-based shuf-

fle mechanism to support the online aggregation and continuous
queries. MaRCO [6] overlaps the reduce and shuffle. But the early
start of reduce generates partial reduces which could be the source
of overhead for some applications. Hadoop Acceleration [28] pro-
posed a different approach to mitigate shuffle delay and repetitive
merges in Hadoop. It implemented a hierarchical merge algorithm
based on remote disk access and eliminated the explicit copying
process in shuffle. However, this approach relies on the RDMA
feature of Infiniband network, which is not available on commodity
network hardware. Wang et al. [29] developed JVM-Bypass Shuf-
fling (JBS). JBS avoids the overhead of JVM in data shuffling and
enables fast data movement on both RDMA and TCP/IP protocols.
CooMR [20] is a cross-task coordination framework for efficient
data management in MapReduce. It enables cross-task opportunis-
tic memory sharing and log-structured I/O consolidation, which are
designed to facilitate task coordination. Its key-based in-situ merge
algorithm allows the sorting/merging of Hadoop intermediate data
without actually moving the key-value pairs. Sailfish [23] proposed
a novel approach to improve the shuffle performance with I-File.
I-File is implemented on Kosmos File System (KFS) to store the
intermediate data of jobs. The data is automatically merged to an I-
File. It significantly reduces the shuffle delay. However, it does not
remove the map-side combine, which still has extra disk accesses.

There are few recent studies focusing on improving the perfor-
mance of Hadoop with different file systems [21, 26]. QFS [21]
is a distributed file system designed to replace HDFS. It improves
the efficiency of the distributed file system. It uses erasure coding
instead of replication, which enables QFS to provide the same data
availability with less disk space. Tantisiriroj et.al. proposed to use
Parallel Virtual File System (PVFS) to replace HDFS [26]. How-
ever, these file systems are not optimized towards the virtualized
Hadoop cluster. They shared the same issues that HDFS has.

Themis [24] is a system that focuses on providing I/O efficient
MapReduce. It proposed a different design that batches the disk
I/O operation and reduces the disk seeks. Themis also provides an
adaptive memory allocation to dynamically change the sort buffer
to reduce the disk I/O during merge/shuffle. The objective is close
to StoreApp, but it lacks of host-awareness for virtualized environ-
ment. The virtualization of slave node disks can reduce the effi-
ciency of Themis. Themis focuses on the I/O efficiency of interme-
diate storage. It does not improve the efficiency of HDFS.

7. CONCLUSIONS
Hadoop provides an open-source implementation of the MapRe-
duce framework. But its design poses challenges to attain the best
performance in the virtualized environment due to the coupled com-
putation and storage nodes. Separating the storage from slave nodes
enables flexible cluster resizing and allows task scheduler to exploit
the host-locality. In this paper, we propose and implement Store-
App, a shared storage appliance for virtualized Hadoop cluster. It
provides both HDFS and intermediate storage for co-hosted slave
nodes on the same physical machine. StoreApp provides an easy
way for Hadoop to discover the VM-host topology and exploit the
host-locality. StoreApp introduce prefetching to the HDFS and im-
proves the efficiency of HDFS. StoreApp implements automated
cluster resizing to determine the optimal cluster size for different
jobs. We modified the Hadoop Fair Scheduler with the support to
StoreApp and evaluated its effectiveness on a 22-node virtual clus-
ter with various workloads. Experimental results show that Store-
App is able improve the average HDFS throughput by as much as
15% and reduce job completion time by as much as 61% than stock
Hadoop. Our future work will be on implementing StoreApp with
automated cluster resizing for heterogeneous environments.
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