An Analysis and Empirical Study of
Container Networks

Kun Suo®, Yong Zhao™, Wei Chen”, Jia Rao”

University of Texas at Arlington™, University of Colorado, Colorado Springs”

INFOCOM 2018 @Hawaii, USA

M TEXAS UCCS

ARLINGTON University of Colorado
Colorado Springs

The Rise of Containers

e Containers are a lightweight alternative
to virtual machines for application

packaging
* Key benefits of containers wi e

v Rapid deployment - -
. | Bins/Li Bins/Libs
v' Portability

v |Isolation

(a) Architecture of a virtual machine (b) Architecture of Docker

v Lightweight , efficiency, and density

Docker Adoption Behavior

* Increasingly and widely-adopted in o
data centers -|UP 40%

IN ONE YEAR

ent of Datadog Users

v Google Search launches about 7,000

containers every second .‘

Month (segmentation based on end-of-month snapshot) C'2
Source:

[

Container Networks in the Cloud

m Network on a single host Network on multiple hosts
—a NErgar | Bridge (Default) NAT (Default) |
‘ amazon EC2 I None Overlay |
web services I Host Third party solutions I
I Bridge (Default) |
Docker | None |
Cloud | Container Overlay (Default) I
Host |
NAT (Default) NAT (Default) |
Microsoft Transparent Transparent 1
A Overlay Overlay |
zure L2Bridge L2Bridge Il
Microsoft Azure other | I
clouds _:

 Typical use case: containers running in VMs
 Challenging to select an appropriate container network

Container Networking Projects

& A £ %

' '\l S x f ROMANA
U ol

...
Open vSwitch ... w WeaveWOrkS CI | I U m

nuagenetworks

docker

* canal

Container networks provide connectivity
among isolated, sandboxed applications

* A qualitative comparison
v Applicable scenarios

v’ Security isolation

* An empirical study
v Throughput / Latency
v Scalability

v Overhead/start-up cost

Container Networks on a Single Host

* None

v A closed network stack and
namespace

v High security isolation

e Host mode

v'Share the network stack and
namespace of the host OS

v Low security isolation

none

[m]

| DockerO

Physical device

host

!

I A

| Physical device

=

loopback
interface

namespace

loopback
interface

ethernet
interface

a8

vethernet
interface

namespace

6

Container Networks on a Single Host

¢ Brldge mOde bridge bridge O loopback
interface
v The default network setting of Docker I—E'—'::'-l; LE'—':F'J; ethernet
J l interface
v An isolated network namespace and an IP 5500 | g vethernet
. interface
address for each container :
| Physical device _ I namespace
v Moderate security isolation
¢ Contalner mOde bridge container O loopback
I I | I interface
v A group of containers share one network r— cthernet
interface
namespace and IP address (Docker ’ | g vetheret
v 3 interface
Low isolation within the same group and [Py doioe BT« namespace

moderate isolation across groups

Container Networks on a Single Host

Access to
external
networks

Intra-machine
communication

Inter-machine

Namespace Security

communication

Independent, .
None / / / isolated High
% A N
. * R Bind host Independent
B » dockerO bridge M
ridge ™ & .‘ / port, NAT isolated ETELE
*a, us?
EmmB
. Inter-process Port Shared with :
Cont Med
ontainer communication / binding, NAT group leader ediim
Host .
Host Host network Host network SN Shared with Low
stack stack the host OS

v stack

Container Networks on Multiple Hosts

e Host mode

host

. loopback
v Communicate through host network stack and IP E’ ™ intertace
. th t
v Pros: near-native performance B terface
v Cons: no security isolation ! yelnemet
| Physical device - |
namespace

* Network address translation (NAT)

v Bind a private container IP to the host public IP — Container
and a port number. The docker0 bridge I

translates between the private and public IP :

Docker0
addresses
v Pros: Easy configuration 1

Physical
[1 Device

v Cons: IP translation overhead, inflexible due to

AT . ethernet vethernet
host IP binding and port conflicts O iterface B interfacg

Container Networks on Multiple Hosts

* Overlay network

v A virtual network built on top of
another network through
packet encapsulation

v' Examples: IPIP, VXLAN, and
VPN, etc.

v" Pros: isolation, easy to manage,
resilient to network topology

change
v Cons: overhead due to packet

encapsulation and
decapsulation, difficult to

monitor

MAC

TCP/UDP | Data

i
I

Container

VXLAN bridge

VXLAN device

Physical
device

@ loopback interface

a ethernet interface
@ vethernet interface

TCP/UDP

Data

10

ion

DeCaPSUIat

Container Networks on Multiple Hosts

* Routing

v A network layer solution based
on BGP routing

v" Pros: high performance

v Cons: BGP not widely supported
in datacenter networks, limited
scalability, not suitable for highly
dynamic networks or short-lived

containers

MAC

IP | TCP/UDP | Data

-

I Host 1

[Containerj (Container]

N 4

Host 2

[Container] [Container)

~

TCP/UDP

Data

11

Container Networks on Multiple Hosts

K/V store Security

Sharing host network

Host ALL No No
stack and namespace
NAT Host network port ALL No No
binding and mapping
Encrypted
Overlay VXLAN or UDP or IPIP Depends Depends
support
ol Border Gateway SR Yes Encrypted

Protocol support

12

An Empirical Study

* Containersin a single VM

v How much are the overheads of single-host networking modes?

* Containers in multiple VMs on the same PM

v’ How much are the overheads of cross-host networking?

e Containers in multiple PMs vs. containers in multiple
VMs on different PMs

v’ The interplay between VM network and container networks?

* Impact of packet size and protocol

 Scalability and startup cost

13

Experiment settings

e Hardware

v Two DELL PowerEdge T430 servers, equipped with a dual ten-core
Intel Xeon E5-2640 2.6GHz processor, 64GB memory, a 2TB
7200RPM SATA hard disk, Gigabit Ethernet

e Software

v Ubuntu 16.10, Linux kernel 4.9.5, KVM 2.6.1 as hypervisor, Docker
CE 1.12, rtl8139 NIC drivers

v Etcd 2.2.5, weave 1.9.3, flannel 0.5.5 and calico 2.1

 Benchmarks
v Netperf 2.7, Sockperf 2.8, Sparkyfish 1.2, OSU benchmarks 5.3.2

14

1.2

0.8
0.6
0.4
0.2

Throughput relative to
w/o container

Bandwidth (MBps)
S
8

Container Networking in a Single VM

Sparkyfish throughput Sockperf throughput
2000
| I =w/ocontainer g 1500 [| B w/o container
: : M bridge *g’_ 1000 l : M bridge
M container ® | — M container
| | > 500 |]
. | | host é . | | host
4 =’ - =4
Upload Download TCP UDP-
OSU benchmark bandwidth OSU benchmark latency
3 15
/—O—W/o container ‘z /, // —e—\/0 container
O 10
—e—bridge § V4 Y 4 —e—bridge
©
-

-
host 1 4 16%om M 1L 4k

Packet size (Bytes)

1
Packet size (Bytes)

The container mode and host mode achieved close performance to the baseline

while the bridge mode incurred significant performance loss.

15

Diagnosis of Bridge-based Container Networking

W/o container Bridge mode

Flame Graph Flame Graph

Overhead on bridges
inside network stack

e Longer critical path of packet processing due to centralized bridge docker0
* Higher CPU usage and possible queuing delays

16

Overhead of packet encapsulation

Contain| and decapsulation; additional |SS MUl ltip|egeiiermps

T — bridge processing; prolonged packet routing
e processing inside the kernel; etc.

translation

R E

TCP throughput Avg latency

w/o container

B host-mode

B NAT
def-overlay

M weave

M flannel

B calico(IPIP)

M calico(BGP

All overlay networks
consumed much more

~ Network ~ CPU(c) CPU(s) CPU (Mostly in softIRQ).
w/o container 33.37 18.41 75.466 .626
Host mode 34.19 _22£4 82.403 53.127
Def Overlay 38.75 /4291) f 953867, 106.145
Weave 54.92 I 4756 | | 150.678 | 130.478
Flannel 42.96 I 4044 127.118 | 119.659
Calico(IPIP) 38.53 | 4053 , |~107.854, 113.465
Calico(BGP) 37.72 36.92 99.665 95.035

17

Diagnosis of Overlay Networks

W/o container Container in overlay network

Flame Graph

Flame Graph

_ram ..

--»

|| '
‘ (
L] |
; {é -I fepsertmt IE j | 'mn q
_dev_gueve.. ‘ijg.ﬂﬂl— | I I_Aev_nlma.mlt
e E!mm | — A_‘_W
Elr | lm_—l |= 3 dev_gqueue_xmit
e '-=- ~eecacic o — ‘br_dev_gueue push xmit
j ‘

br_nf_post_routing
nf_hook_slow

nf_iterate
nf_hook_slow |
. brforward
‘orforward
| WBANF_HOOK_THRESH ; |
|

LB
/ Ws 1

e OVErhead on VXLAN

:

i

Overhead on bridges

* much longer critical path inside the kernel
* more CPU usage, more soft interrupt
processing

B
3

Impact of Packet Size and Protocol

Under TCP, overlay networks do not scale as the packet size

increases because they are bottlenecked the packet processing rate B w/o container
g 100 B host-mode
5 [
£3 80 NAT
o 60 def-overlay
o
& 20
O . H flannel
F 0
16 32 64 2 aey. '
PEy All networks scale better under UDP than that under
o TCP, though the actual throughput is much lower
2
& 50
E 40 M host-mode
3 30 m NAT
'oco -
5 20 def-overlay
o
< — — B weave
=) B flannel
= 16 32 64 128 256 512 1024
Packet size (Bytes) M calico(IPIP)

Fixed packet rate, throughput should scale with packet size 19

Interplays between VM network
virtualization and Container networks

120
’glOO Container
= VM network network
PRl overheads overheads
Q
<
[eT0]
S R R —
e
< 40
sy
[a W
O
= 20
0
< e A 3\ 2 > N N
& a,&’@ S N <® ‘\\°° S
$\0 S Q @)
W 16 Bytes(PM) B 16 Bytes(VM) m 1024 Bytes(PM) 1024 Bytes(VM)

* The two-layer virtualization induces additional degradation on top of

virtualization overheads
e Overlay networks suffer most degradation

20

The communication over the
overlay network is a major

Bridge dockerO limits the

scalability of container SCa Ia bi | ity bottleneck for container

network across hosts

network in a single node

MPI alltoall latency (us)

Y A N P el \\
Containers on a single V Containers on multi \/Qs (1:N-1) | Containers on multi V!\é (N/Z:N/Z),
—e—w/o Contai —~o—w/ Contai N N -
w/o Lontainer W/ -ontainer —e—w/o Container ~ —®—w/ Container —o—w/o Container ~—#—w/ Container
60 __ 800 __ 1500
50 2 3
— 600 =
40 9 S 1000
C c
30 9 400 Q
20 = = 500
10 = 200 =
,_.,‘——0—0"_—‘ 2 2
0 < O = 0
2 3 4 5 6 7 8 % 2 3 4 5 6 7 8 g 2 3 4 5 6 7 8
Number of containers or processes Number of containers or processe Number of containers or process
Bridge mode Docker overlay Docker overlay

1

l

Vol 1

l

l

Vo Vo |

docker docker docker docker docker docker docker docker docker docker docker docker

21

Network setup time in
docker startup time;
attaching to an existing
network in the container
mode requires least
setup time

None
Bridge
Container
Host
/

/

/

Network Startup Time

—)

Function

e

kContainer/

N

)

539.6 ms
663.1 ms
239.4 ms

497.4 ms

/
/
/

Host
NAT
Docker Overlay
Weave
Flannel
Calico (IPIP)
Calico (BGP)

Data / Cloud service

Overlay and routing-
based networks require
much longer startup time

497.4 ms

674.5 ms
10,979.8 ms
2,365.2 ms
3,970.3 ms
11,373.1 ms
11,335.2 ms

The startup time was measured as the time since a container create command is
issued until the container is responsive to a network ping request.

22

Insights & Takeaways

Challenging to determine an appropriate network for
containerized applications

v Performance vs. security vs. flexibility

v Small packets vs. large packets
v TCP vs. UDP

Bridging is a major bottleneck
v" Linux bridge and OVS have the similar issue
v Avoid bridge mode if containers do not need to access external networks

Overlay networks are most convenient but expensive 08T e

v The existing network stack is inefficient in handling packet encapsulation \o—- \\.
dd lati |

and decapsulation ./>/<.2€/

Optimizing container networks
v Streamlining the asynchronous operations in the network stack
v Making the network stack aware of packets of overlay networks

v Coordinating VM-level network virtualization and container networks

Thank, you !

Questions?

