

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

CoSL: A Coordinated Statistical Learning Approach to Measuring
the Capacity of Multi-tier Websites

Jia Rao and Cheng-Zhong Xu
Department of Electrical & Computer Engineering
Wayne State University, Detroit, Michigan 48202

{jrao, czxu}@wayne.edu

Abstract

Website capacity determination is crucial to
measurement-based access control, because it deter-
mines when to turn away excessive client requests to
guarantee consistent service quality under overloaded
conditions. Conventional capacity measurement ap-
proaches based on high-level performance metrics like
response time and throughput may result in either re-
source over-provisioning or lack of responsiveness. It
is because a website may have different capacities in
terms of the maximum concurrent level when the char-
acteristic of workload changes. Moreover, bottleneck
in a multi-tier website may shift among tiers as client
access pattern changes. In this paper, we present an
online robust measurement approach based on statis-
tical machine learning techniques. It uses a Bayesian
network to correlate low level instrumentation data like
system and user cpu time, available memory size, and
I/O status that are collected at run-time to high level
system states in each tier. A decision tree is induced
over a group of coordinated Bayesian models in differ-
ent tiers to identify the bottleneck dynamically when the
system is overloaded. Experimental results demonstrate
its accuracy and robustness in different traffic loads.

1 Introduction

Service quality is a multidimensional concept [21].
An important measure in a multi-tier server is response
time — the time from the server receives a client re-
quest to the time when the response is delivered. It
is the processing time incurred by the request, plus its
waiting time in the front-end when the server is heav-
ily loaded. Server capacity is often measured by the
number of requests (or transactions) per second that a
server can handle without dramatically compromising
service quality due to server overload.

Understanding of server capacity is crucial for server
capacity planning, configuration and QoS-aware re-
source management. It is known that an e-commerce
server can be run in one of the three states: under-
loaded, saturated, and overloaded. When the server is
underloaded, its throughput grows with the increase of
input traffic until a saturation point is reached. The
saturated throughput may not remain unchanged when
the input rate continues to increase. It may drop
sharply due to resource contention and algorithmic
overhead for load management [1]. Knowledge about
the server capacity could help measurement-based ad-
mission control in the front-end to regulate the input
traffic so as to prevent the server from running in an
overloaded state [15]. In the presence of classified re-
quests, server capacity information can also be used
by a back-end scheduler to calculate the portion of the
capacity to be allocated to each class of requests for
service differentiation and QoS provisioning [9, 18].

An industry standard approach to server capacity
measurement is stress-testing using benchmarks [5]. It
observes the change of server performance with the in-
crease of the load and approximates server capacity the
saturated throughput or the system throughput when
the response time is observed to rise abruptly. In [1],
the authors proposed a S-client approach to generate
excessive workload efficiently for measuring the capac-
ity of web servers. In [5], the authors focused on the
construction of benchmarks for measuring the basic ca-
pacities of streaming servers. In [9], the authors sug-
gested to measure the capacity of a database server
in terms of execution units. They used the method
of incremental steps [12] to find out the capacity that
provides the maximum throughput.

Response time is an intuitive measure of system per-
formance. It is a good online indicator to the change
of server load for requests of similar sizes. However,
requests of e-commerce services often have very differ-
ent processing times and the times also tend to change

with server load condition. As a result, request-specific
response time becomes an ill-defined performance mea-
sure in stress-testing of server capacity. There were
studies on the use of mean response time to charac-
terize the server load change in statistics. Welsh and
Culler showed that 90th-95th percentile response time
should represent the shape of response time curve more
accurately, in comparison with average or maximum
time [19]. However, choosing an optimal value for the
target response time is not trivial. In [16], Mogul pre-
sented a case that a misconfiguration of the response
time threshold could possibly cause the system to enter
a live-lock state. In practice, the threshold is often set
conservatively. For example, Blanquer et al. [14] set
a threshold to be half of the most restrictive request
response time guarantee for the admission controller
to regular the incoming traffic rate. Such a conser-
vative estimation of the server capacity by setting a
low threshold value equals to the method of resource
over-provisioning. In [9], Elinikety et al. suggested
measurement-based admission control based on offline
estimate of server capacity and online estimated execu-
tion time of admitted servlet request(s). They assumed
a non-preemptive shortest job first scheduling policy,
which makes it possible to estimate system utilization
by admitted servlets.

In a multi-tier e-commerce website, request process-
ing involves multiple system components in different
tiers. Saturation of the system in the processing of one
type of requests may not necessarily mean it cannot
handle other requests. Bottleneck may also shift dy-
namically. Response-time based server capacity mea-
surement provides little insight into constrained re-
sources.

These motivated us to develop a robust approach
to measuring website capacity, based on low level sys-
tem running statistics like CPU utilization, memory
usage, I/O traffic, etc. There are a large set of such
system state parameters that can be monitored in real-
time. Together, they reflect aggregated effects of the
requests in concurrent execution. Questions are how
to define a small group of relevant parameters to char-
acterize the system load condition accurately, how to
map them onto a high level system overload/underload
status, and more importantly how to identify bottle-
neck resource when the system becomes overloaded. In
this paper, we present a coordinated statistical learn-
ing (CoSL) approach in multi-tier websites to measure
system capacity in real-time. It includes a statisti-
cal learning model to characterize the running state
of each tier and a coordinated decision-making layer
for bottleneck identification. The approach is robust
in the sense that it is insensitive to the dynamics of
input traffic and free of tuning parameters. We evalu-

ated the approach in a two-tier Tomcast/MySQL web-
site using TPC-W benchmark. Experimental results
demonstrated its estimation accuracy, responsiveness
and capability of bottleneck identification.

The rest of the paper is organized as follows. Section
2 briefly describes the dynamics of a multi-tier website.
Section 3 presents limitations of conventional response-
time based approaches for measuring capacity. Section
4 gives the coordinated statistical learning approach.
Section 5 and Section 6 give the evaluation method
and experimental results. Related work is presented in
Section 7. Section 8 concludes this paper.

2 Dynamics of a Multi-tier Website

In this section, we give a brief overview of the work-
ing of a typical multi-tier e-commerce website with
Java servlet and relational database implementation.
The description provides background for further dis-
cussion in the following sections. For simplicity, we
focus our discussion on an implementation with Tom-
cat servlet engine as the application server and with
MySQL as the backend database system. The work-
ings of many other implementations of the servlet en-
gine such as Websphere and Weblogic, and relational
database like PostgreSQL are similar in principle. Our
discussion will focus on the aspects of how the requests
are processed by different system components or tiers,
and thus simplifying the aspects of connection estab-
lishment process between the client and the website.

A conventional multi-tier e-commerce website ac-
cepts HTTP requests from clients who issue those re-
quests by using a web browser to access the website.
Once a client requests an URL by clicking on a link in
the webpage, a TCP connection is established and the
request is sent through the connection to the server,
then the client waits to read the response from the
server.

Figure 1 shows the work-flow of how the website pro-
cesses a single request. In our case, we use Tomcat as
both the web server and the application server. There
are mainly four phases in the processing of one request:
(1) HTTP connection establishment; (2) Application
server processing; (3) Database connection establish-
ment; (4) Database request processing. The process
of a request is synchronous throughout the whole 4
phases, i.e. one phase is not finished without the com-
pletion of subsequent phases.

The employment of multi-thread processing model
in both application and database servers enables a web-
site to process multiple requests simultaneously.

In the application server, when multiple requests
arrive, each request will be assigned a processing
thread; and all these threads will be executing their

Figure 1. Workflow of a multi-tier website processing one http request.

corresponding servlets simultaneously. In Tomcat,
there are three configuration parameters related to
the number of threads available: minSpareThreads,
maxThreads, maxSpareThreads. When started the
server, minSpareThreads number of threads will be
created to form a thread pool. As more requests com-
ing, Tomcat will create new threads until the upper
bound of maxThreads number of thread is reached. The
operation of creating new threads are memory inten-
sive and may have performance impacts on the requests
that are being processed. If there are more requests
coming, they will be put into a queue, and after a time-
out they will be dropped. If there are fewer requests
coming, the unused threads in the pool will be killed
until maxSpareThreads.

Each application server maintains a pool of con-
nections to the database. Upon receiving a database
request, it will select one already existing connection
from the pool. If all connections are consumed, new
requests will be queued in the application server until
timeout happens.

In the database server, SQLs from different servlets
are not necessarily executed in the same order as they
arrive at the database. The final execution of queries
on the database is a batch of interleaved SQLs from
different servlets. However, the SQL queries from the
same servlet will be guaranteed to be processed in or-
der, because communication between application and
database server is synchronous.

3 Multi-tier Website Capacity: Defini-
tion and Measurement

In general, a transaction processing system has a
saturation point (upper bound) of the throughput the
system could produce, as its load increases. After the
“upper bound” is reached, the system throughput will
either drop because of thrashing or maintain at a sat-
uration level, but with decreased service quality [12].

In order to fully utilize the system, the admission con-
troller will have to apply the control before the system
reaches this saturation bound.

In practice, admission control is often applied well
before the system capacity is reached so that the sys-
tem would provide more than enough resources to ad-
mitted requests for them to meet their service quality
requirements [14]. However, in this over-provisioning
approach, system resources tends to be under-utilized
for most of the time, and more importantly “how much
more resource is enough” is often determined empiri-
cally, and is never an easy question with a quantitative
answer. If we can determine the best possible service
quality a system configuration could produce when it
reaches its capacity, we can then make more efficient
use of the underlying resources without violation of ser-
vice quality requirements. Therefore, measuring the
system capacity accurately is crucial for system admin-
istrator to set efficient and effective online admission
control policies.

Conventional approaches normally involves two
stages: (1) through offline stress testing, identify the
maximum load a system can afford,in terms of how
many clients’ traffic the server can sustain, when it is
producing the “upper bound” throughput; (2) as the
system reaches its capacity, one or a set of online sys-
tem performance metrics are selected, often request
response time, as the indicator of current system ca-
pacity. In the following, we will first present an ob-
servation about throughput dynamics against different
traffic patterns due to the stress testing. We will then
discuss the pitfalls of using response time as system
capacity indicator for the second stage.

3.1 Throughput Metric

In a traditional transaction processing system that
serves uniform load traffic, when the system reaches its
throughput saturation point, the number of clients be-
ing served can be used to indicate the current system

Table 1. Request composition in TPC-W.
Browsing Shopping Ordering

Browsing request 95% 80% 50%
Ordering request 5% 20% 50%

load. However, this is not the case in a multi-tier web-
site because of its non-uniform traffic load. It is known
that different types of requests require recourses on dif-
ferent tiers. That is, same amount of user traffic can
impose different load onto the system. Therefore, the
number of clients the server can serve depends on the
characteristics of traffic.

In order to evaluate the effects of traffic patterns on
the system throughput, we conducted experiments in a
typical Tomcat/MySQL website setting, using TPC-W
benchmark (www.tpc.org/tpcw), an online bookstore
synthetic load as input. (Please see Section 5 for de-
tails of the testbed setting.) In TPC-W, there are three
types of traffic mixes: Browsing, Shopping and Order-
ing, with different request profiles. Table 1 summarizes
the profile of each mix.

Figure 2 shows the throughput curve of these three
mixes as the number of concurrent clients increases.
From the figure, we can see that for the ordering mix
the throughput increases almost linearly until system
reached its capacity at the peak throughput of 100 web
interactions per second. At this point, there are ap-
proximately 800 clients being served concurrently. As
for browsing and shopping mixes, the peak throughput
are much lower. The maximum number of concurrent
clients are 80 and 180 when the system reaches the
throughput saturation value of around 10 and 20 web
interactions per second respectively. After analyzing
the implementation details of each servlet, we found
that browsing related requests tend to put more pres-
sure on the backend database server. The browsing mix
contains more of this type of requests, while the order-
ing mix contains the least. This explains why different
traffic mix led to very different throughput saturation
points on the system. Due to the presence of different
system throughput saturation points, there is no way
to define a clear cut line about the server capacity in
terms of the number of clients the server can support.

3.2 Response Time Metric

Measurement-based admission control requires to
determine an online system performance metric to rep-
resent the current system load, for a given system ca-
pacity. Request response time is an intuitive system
load indicator. However, this approach has pitfalls
in multi-tier e-commerce websites: (1) It’s not robust
enough to accommodate to the change of traffic; (2)

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

110

Number of Clients

W
eb

 in
te

ra
ct

io
ns

 p
er

 s
en

co
nd

TPC W throughput curve

Browsing mix
Shopping mix
Ordering mix

Figure 2. Throughput curve of a website in
different traffic mix.

It can’t reflect bottleneck shifting among underlying
tiers; (3) It can’t serve as an accurate enough reference
to the system capacity.

In the TPC-W benchmark, there are 14 types of re-
quests from simple ”Home” and ”Order Inquiry” to
more complicated ”Best Sellers” and ”Admin Con-
firm”. Figure 3 shows their execution times under
different load conditions. Each data in the figure is
the 90th percentile of time, because it represents the
shape of response time more accurately than average
and maximum time, as shown in [19]. From this figure,
we can see that under the same system load, requests
processing time varies to a very large degree. For in-
stance, with a load of 100 clients, the “Order Inquiry”
request took less than 10ms, while the request “Best
Seller” cost more than 1000 ms.

The request execution time varies so much that traf-
fic flows of different request types will affect the max-
imum throughput the system can produce. Figure 4
shows the change of response times in Browsing and
Ordering mixes, as the system load increases. If re-
sponse time is used by the admission controller to iden-
tify overload, it is not easy to set an accurate system
capacity threshold. Recall from Figure 2, we know the
system capacity is 800 concurrent clients in an order-
ing mix and 90 clients in a browsing mix. According to
Figure 4, the correspondingly 90th percentile of aver-
age response time is 1.125s and 8.559s, respectively. It
would be impossible for system administrators to use
either of the response times as the control threshold.
Choosing the smaller one may reject browsing requests
prematurely; and choosing the larger one may accept
excessive ordering requests.

In addition, the request execution time includes the
sum of time a request spent on all system tiers. It
gives no further information as to on which tier it spent

Figure 3. Type specific execution time with different number of clients.

most of its time. Since different types of requests put
pressure on different tiers of the system, it is possi-
ble that, under heavy load, the system’s resource bot-
tleneck shifts from one tier to another in the face of
a changed traffic mix. Using request response time
as system load indicator masks the underlying system
load dynamics, and hinders the efficiency of admission
control.

4 Coordinated Statistical Learning ap-
proach

In this section, we propose a coordinated statistical
learning (CoSL) approach to capture the correlation
between system low level metrics and high level sys-
tem load status. It assumes a Bayesian learning model
at each tier to define a small group of relevant system
parameters and correlate them to the load condition of
each server. The models at different tiers are coordi-
nated to identify bottleneck dynamically.

4.1 Coordinated Learning Architecture

CoSL is hierarchical in structure. At the bottom
is a traffic model for each tier that correlates a group
of server low level performance metrics a to high level
system state. At the top is a decision strategy engine
that coordinates results from the models using either
predefined rules or patterns learned from previous data
to generate a final classification result. Figure 5 shows
the CoSL architecture. Dedicated models provide use-
ful information about the bottleneck resources on each
tier. Although the models may not directly point to
the bottleneck resource, they can help administrator
narrow the search spaces. We will discuss this in detail
in Section 5.

More importantly, the multiple learning model
structures are robust in the presence of workload
changes. Recall that the models are induced from dif-
ferent traffic loads. Given an incoming traffic, not all
the models will generate accurate results. The decision

Traffic
specific
model

Coordinated Decision Strategy

Application server Database server

Application server run-
time statistics

Database server run-time
statistics

Prediction

Prediction Prediction

Prediction

Final prediction

Traffic
specific
model

Traffic
specific
model

Traffic
specific
model

dependencies dependencies dependencies

Figure 5. The architecture of CoSL.

strategy engine process the combination of the predic-
tions, and output a final result that is the most likely
one.

In addition, decomposing run-time statistics into
multiple tiers reduces the time complexity of model
induction. Suppose we have P servers in a multi-
tier system, and each server reports n metrics for
learning the model. The training set is composed
of N instances. Inducing a single Tree-Augmented
Bayesian Network (TAN) for the whole system re-
quires O(P 2n2N) time [10]. If using multiple models
in each tier, the time complexity reduces to O(Pn2N).
In modern multi-tier servers, P can be large because
the system may have many tiers and each tier is of-
ten implemented as a server farm. The CoSL archi-
tecture makes it possible to online measurement and
measurement-based admission control.

4.2 Bayesian Network Models and TAN

Bayesian networks is a powerful tool to represent
joint probability distributions over sets of random vari-

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

X: 90
Y: 8.559

Number of Clients

R
es

po
ns

e
tim

e(
s)

90th percentile response time
average response time

(a) Browsing mix

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

X: 800
Y: 1.125

Number of Clients

R
es

po
ns

e
tim

e(
s)

90th percentile response time
average response time

(b) Ordering mix

Figure 4. 90th percentile and average response time in different traffic mixes.

ables [17]. Given the values of a set of random attribute
variables, the Bayesian network maps the instance to a
class value. The objective of this study is to learn such
Bayesian networks that map a combination of system
level metrics values to high level states, e.g. overload
or underload.

A Bayesian network is made up two components: a
directed acyclic graph Bs and a set of conditional prob-
ability tables Bp. Let U={A1,...,An} be a set of at-
tribute variables, in which Ai can be one of the system
metrics, like CPU utilization. A class variable C can
be added into U , we get U∗={A1,...,An,C}. Instanti-
ating each of the variables results in an instance. The
training set can be defined as D={u∗

1,...,u
∗
N}. Thus,

given D, a training set learning a Bayesian network is
to find a probability distribution

P (U) = P (C) ·
n∏

i=1

P (ai|Πai
),

associated with the network Bs that best matches D,
where Πai

is the set of parents of ai in Bs. The induced
network encodes conditional independence statements
assuming that each attribute variable is independent
of its non-descendants in Bs given the state of its par-
ents. Thus, a classification can be performed by ap-
plying Bayes rules on Bp to predict the class with the
highest probability only using the local conditional dis-
tributions.

TAN [10] is an important class of Bayesian networks
that allow the generated Bs to represent correlations
between attribute variables. Past studies [6, 7, 22]
demonstrated the effectiveness of the model in the de-
sign of computer systems.

There are two elements crucial to the accuracy of
the TAN:

• What attributes should be included in the net-
work;

• What scoring function should be employed to eval-
uate the networks.

There are many scoring functions with different
characteristics. In this study, we choose BDeu [11] scor-
ing function because it produces best prediction results
for our training set. The property of the scoring func-
tion and why it fits our training set well is beyond the
scope of this paper.

The attribute selection problem is crucial, because
using all the metrics collected is not efficient. Inclu-
sion of irrelevant metrics may even affect the accuracy
of the induced model. We conducted feature selection
as a filter to the training set. Feature selection is to
select the most relevant metrics correlated to high level
class, based on a concept of information gain. We used
information gain to evaluate the relevance between the
attribute and the class. Information gain is the reduc-
tion of entropy about the classification of a test class
based on observation of a particular variable. It is the
amount by which you reduce the uncertainty about the
target class using a particular variable. The informa-
tion gain between the target class and a variable can
be calculated as follows:

InfoGain(C,Ai) = H(C) − H(C|Ai)

= −
∑

c∈C

p(c) log2 p(c) +
∑

ai∈Ai

∑

c∈C

p(ai, c) log p(c|ai),

where H(C) is the entropy of class variable and
H(C|Ai) is the conditional entropy of class variable
given the attribute variable Ai.

We use their information gain to rank the metrics
in our training sets. The top metrics will be added to
the Bayesian network, until doing so will not increase
the accuracy of the network. After selecting a subset
of metrics highly correlated to the high level class, we
use the method Construct-TAN in [10] to induce TAN
models as Bayesian network classifiers.

Table 2. Metrics selected in bottleneck servers.
APP OR Metrics meaning

dentunusd Number of unused cache entries in the directory cache
kbbuffers Amount of memory used as buffers by the kernel
kbcached Amount of memory used to cache data by the kernel

%util Percentage of CPU time when I/O requests were issued to the device
%iowait Percentage of CPU idle time due to an outstanding disk I/O request
%idle Percentage of time that the CPU were idle

DB BR

ldavg-1 System load average for the last minute
runq-sz number of processes waiting for run time
%idle Percentage of time that the CPU were idle
%user Percentage of CPU utilization that occurred while executing at the user level

5 Evaluation Methodology

In this section, we present our experiment settings,
workload generation, and methodology for build up the
learning models, using the Rice implementation of the
TPC-W benchmark.

5.1 Experiment Settings

Our testbed consisted of a client PC, an application
server and a database server. The application server
hosting the TPC-W online bookstore servlets and the
client PC were configured with a Pentium 4 2.0 GHz
processor and 512 MB RAM. The database server was
configured with a Pentium D processor with Dual core
2.80 GHz and 1 GB RAM. All the devices were inter-
connected by a fast Ethernet network. The network
was dedicated to our experiments, which eliminated
any possible network factors for experiment results.

The machines used in our experiments ran Fe-
dora Core 6 Linux with the Linux kernel 2.6.18. We
used Apache Tomcat version 5.5.20 as the applica-
tion server. For the database server, MySQL ver-
sion standard 5.0.27 was used. We used Sysstat ver-
sion 7.0.3 to collect 64 system level metrics related
to CPU, memory, disk, network on both servers ev-
ery second. Note that the servers can be very busy
when overloaded, and Sysstat failed to get CPU cir-
cles sometimes. In order to record data as accurate
as possible, the command sar which actually reports
system information and its back-end counterpart sadc
were re-niced to a high priority. We ran experiments
with and without this modification, and found that the
performance of the servers was not affected. WEKA
(www.cs.waikato.ac.nz/ml/weka) data mining soft-
ware was used to preprocess training data and induce
Bayesian models.

In the experiments, we aimed at capturing the un-
derlying characteristics of the servers when overloaded.

We increased Java heap size, maxThreads limit in Tom-
cat servlet engine, the maximum number of open file
descriptor limit in Linux, and adjusted a number of
other system configuration parameters so as to ensure
no software mis-configuration or bottleneck existed. By
doing so, we eliminated all other factors, except the
contention of server hardware resource, for a server
overload condition. The value of maximum connec-
tions to database was set to be 500.

5.2 TPC-W and Workload Generation

The TPC-W specification defines 14 different types
of requests (14 servlets in its implementation) for an
online bookstore service. It also defines three traffic
mixes: Browsing, Ordering and Shopping, as shown
in Table 1. We assumed the database contain 10,000
items and 288,000 customers, which corresponds to 350
MB of data. In order to simulate the state that a real
server system would have after running for a period of
time, we exercised with moderate ordering mix, and
increased the size of the database to 600 MB.

The prediction accuracy of a Bayesian network re-
lies on the size and the representation of the training
set. We designed two different workloads to train the
system: steady and spike. We collected system level
runtime statistics on each tier every second. The aver-
age statistics over a 10-second interval combined with
its corresponding high level state formed an instance in
a training set. Data from both steady and spike train-
ing sets were merged into one. Browsing and Ordering
mix were used for both workloads, while Shopping mix
was reserved for testing. The workload generator pro-
vided by the TPC-W implementation was used for the
experiments. We varied the load generated by chang-
ing the number of emulated browsers(EB).

Steady workload. In this experiment, we fixed
the number of emulated clients in each run and grad-
ually increased the load by increasing the number of
EBs from one run to the next. When the server ca-

pacity was reached, we continued to increase the load
to a level of 1100 concurrent clients. Each run lasted
for 800s with a 100s ramp-up followed by a 600s sam-
pling period and 100s ramp-down time. Only the data
from the 600s sampling time was used for training. Re-
call that for different traffic mixes, the peak through-
put and maximum concurrent levels are quite different.
Thus we used different incremental steps for browsing
and ordering mix. For ordering mix, we added 100
concurrent clients after each run. For browsing mix,
we used a small increment, 10 clients, between the two
runs until capacity was reached. After the capacity, we
used the same increment step as ordering mix. Brows-
ing mix started from 10 EBs and ordering mix began
with 100 EBs. Both traffic mix ended with 1100 con-
current clients.

Spike workload. Real Internet traffic sometimes
has an extreme burst in a short period of time and the
website can behave differently under such a spike. The
spike workload was designed to simulate this scenario.
It consisted of two components: a baseline load and a
spike load. The baseline load run 1400s and the spike
load comes at the 300th second, lasting for 400s. We
used different baseline loads for browsing and ordering
mix in order to overload only one tier each time. 200
and 600 ordering clients were running as baseline load
for browsing and ordering spike workload respectively.
The ordering spike was set to a 1000 ordering client
burst, and the browsing spike contained 400 browsing
clients.

5.3 Bayesian Model Induction

In the experiments we used Sysstat utility to collect
system level statistics on both application and database
servers. The data was taken in the sampling interval
of 1 second. We labeled the instances as follows: all
the instances before the capacity in a steady workload
were labeled 0 (underload) and the ones after capacity
(including the capacity) were labeled 1 (overload). For
spike workload, the instances from the 300th second to
the end of the spike were labeled 1. A spike ends when
the throughput goes back to the level before the spike.

In our design, each server is associated with its own
Bayesian models for different traffic mixes. The train-
ing sets for different servers and different mixes were
preprocessed by discretizing with equal frequency. We
chose subsets of the total 64 metrics as the random vari-
ables that appeared in each Bayesian model. To learn
the Bayesian models, a ten-fold cross validation using
the TAN local search algorithm and BDeu scoring func-
tion was performed in each training set. Altogether we
got four models: APP OR, DB OR, APP BR, DB BR,
which represent 4 combinations of application (APP)

and database (DB) server models for ordering (OR)
and browsing (BR) mixes.

The induced model aims to reveal the information
about the bottleneck resources. We tested on the sys-
tem and found the bottleneck to be application server
memory for ordering mix, and database CPU for for
browsing mix. Table 2 lists the metrics selected by the
APP OR model and DB BR models.

Take the APP OR model as an example to see the
information the model revealed. There are six metrics
selected by the APP OR. Among them, %iowait and
%util reflect the amount of time CPU spends on wait-
ing disk I/O requests. By examining the trace file of
Sysstat, we see high %iowait and correspondingly low
processor %idle time during overload. For the applica-
tion server, because there is no disk intensive process,
the cause should be a shortage of physical memory.
When the number of requests exceeds the application
server capacity, the working set of the workload can-
not be effectively held within physical memory. As a
result, memory thrashing occurs, which causes signifi-
cant throughput drop.

Figure 8 shows the structure and probability of the
learned Bayesian network for application server with
ordering mix. From the figure , we can see that when-
ever there comes an ordering spike, given the %util
metric lies in the range of (91.6%, 98.9%], the prob-
ability that the CPU has a very small %idle time(in
the range of [0, 0.495%]) is high, say 95.5%. Given the
number of unused cache entries in the directory cache
(dentunusd) is in the range of [0, 3580], the probabil-
ity that %util in range (91.6%, 98.9%] is 72.5%. Based
on the structure, the Bayesian network tells us, for an
ordering spike, a possible reason for the CPU having
very little idle time is because CPU is waiting for the
response from I/O devices. In meantime, the server
showed a small number of unused cache entries in its
directory cache. It is mainly due to the presence of
excessive file system access which is also attributed to
server overload.

6 Experimental Results

In this section, we present experimental results of
the CoSL approach with respect to its accuracy, re-
sponsiveness and capability of bottleneck identifica-
tion.

6.1 Accuracy

Accuracy of a model is defined as the percentage
of instances that are correctly classified. An accurate
model should identify the status of overload as long as
the spike comes and do not call false alarm when system

Capacity

dentunusd

kbcached

kbbuffers

%idle

%util

%iowait

95.5%

[0, 0.495%]

(91.6%, 98.9%]

Overload

72.5%

[0, 3580]

19.9%

Figure 8. Bayesian network for APP OR
model.

has moderate loads. We evaluated the accuracy of the
induced models with four workloads. Figure 6 shows
the accuracy of these methods under different traffic
patterns. From the figure, we can see that although
Bayesian Network(BN) does not always perform bet-
ter than other metrics, it has a consistent prediction
accuracy throughout the four tests. BN discussed here
is the model from the bottleneck tier according to the
traffic, the BN in the first bar is the APP OR model.

For comparison, Figure 6 also includes results due to
individual metrics and high level response time. The
CPU usage metric performed well in browsing spike
and normal ordering cases. Recall that database CPU
is the bottleneck for browsing mix, this is why single
CPU metric is enough to identify a browsing spike.
However, using only CPU usage is not able to distin-
guish a browsing spike and moderate browsing load
because browsing mix contains long requests consum-
ing much database CPU. This is why CPU usage has
a bad performance in moderate browsing load test.

The SOCKET metric refers to the total number of
sockets opened in the corresponding server. It indi-
rectly reflects the load level on each tier. However,
when server is overloaded, a larger number of clients
quit and leave the sockets they opened on the servers
unreleased. That is why the SOCKET metric per-
formed well in normal cases like NORMAL OR, while
had a poor performance in spike test SPIKE BR.

As for the response time, we tested two threshold
values: the value from a ordering mix and the value
from a browsing mix. According to Figure 2, thresh-
old were set to 1.125s and 8.559s, respectively. If the
threshold is set as ordering mix threshold, the system

Table 3. Prediction results of induced models
in transient spikes.

Instances Labeled State Predicted Yes/No Prob.

...
178 no 0.009/0.991
179 no 0.006/0.994
180 yes 0.979/0.021
181 yes 0.999/0.001
182 yes 0.743/0.257
183 yes 0.649/0.351
184 yes 0.999/0.001
...

will prematurely reject many long requests in browsing
mix. This explains why ordering response time thresh-
old led to worse results in the normal browsing work-
load. In contrast, the response threshold from browsing
mix may not call false alarm often. However it is less
responsive to the spike. In both spike tests, it resulted
in a lower accuracy than ordering response time and
BN.

In summary, the BN model is able to provide ac-
curate prediction of system state across all traffic pat-
terns.

6.2 Responsiveness

The objective of this experiment is to compare the
induced Bayesian models with response time based
measurement in terms of their responsiveness when
spike load occurs. Response time is composed of re-
quest processing time and waiting time in each tier. It
reflects the round trip time of the requests in the last
time window. When there comes an extreme spike, the
execution queue in each tier can be filled in a short pe-
riod of time. However the response time metric is not
able to count the effect caused by the requests waiting
in the queue. In contrast, our CoSL Bayesian model
predicts overload state based on lower level system met-
rics, including waiting queue lengths at each system
component.

Figure 7 shows the changes of the response time dur-
ing a transient spike. In this experiment, we added the
extreme browsing spikes at the 1800th and 5400th sec-
onds. To avoid transient variation, we plotted the 90th
percentile response time in a 10-second interval. From
the microscopic view of the time frame from 1780 to
1900 (the range in the x-axis is from 178 to 190), we
can see that the spike at time of 1800 would not be ob-
served in 2 intervals (20 seconds). Even at the 1820th
second, the response time was reasonably good and be-
low the browsing response time threshold.

SPIKE_OR SPIKE_BR NORMAL_OR NORMAL_BR
0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
ag

e
of

 c
or

re
ct

ly
 c

la
ss

ifi
ed

 in
st

an
ce

BN
CPU
SOCKET
RSP OR
RSP BR

Figure 6. Prediction accuracy due to dif-
ferent models.

0 150 300 450 600 750 900 1050 1200
10 6

10 4

10 2

100

102

104

time(10s)

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

(s
)

178 180 182 184 186 188 190

0

10

20

30

spike
x=180

delay
x=182
y=2.91

Figure 7. Response times in transient spike.

In contrast, the induced Bayesian model is more re-
sponsive to the spike. Table 3 lists the predicted state
(yes/no) probability of the DB BR model. The actual
labeled states are also included. Based on the data
from the 180th interval (1800th second), the model
found that there is a high probability (0.979) that
the server is overloaded and predicted the high level
state as “yes” (“overloaded”). Therefore, our CoSL
approach based on low level statistics is more respon-
sive to the spikes.

6.3 Bottleneck Identification

In this subsection, we demonstrate how an admin-
istrator can make use of the models. Table 4 lists the
prediction accuracies of different models in different
workloads. Note that the table contains the predic-
tions for the shopping mix, which is not included in
training sets. The DB BR model is able to detect the
shopping spike and works well with moderate shopping
load. Note that DB BR model has a good prediction
accuracy for shopping mix. It is because the shopping
mix is close to a browsing mix in request composition.
The CoSL model is robust in that whenever facing a
new traffic, the model which is more similar to the traf-
fic is likely to generate an accurate result. As a whole,
the final result will be a combination of individual re-
sults; it is in-sensitive to the dynamics of workload.

The “0” or “1” is the prediction generated by in-
dividual models and the percentage is the accuracy of
the model in this case. For example, the value 1(96%)
in the first row and first column means 96% of the
instances during a ordering spike will be predicted as
1(overload). A question mark(?) means that we are
uncertain what prediction will the model produce. It
is important to set an optimized threshold for the cer-
tainty of the predictions. A small value results in com-
plicated policies, while a large value may suffer from

app_or

db_br overload

underload overload

=1=0

=1=0

Figure 9. Decision tree-based classification.

Table 4. Prediction accuracy of induced
Bayesian models.

Test set APP OR DB OR APP BR DB BR

spike or 1(96%) ?(62%) ?(59%) 0(99%)
norm or 0(95%) 0(98%) ?(19%) 0(99%)
small or 0(99%) 0(99%) ?(33%) 0(99%)
spike br ?(85%) ?(21%) ?(79%) 1(95%)
norm br 0(100%) 0(95%) ?(75%) 0(96%)
small br 0(100%) 0(100%) 0(97%) 0(100%)
spike sh ?(68%) ?(44%) ?(76%) 1(96%)
norm sh 0(100%) ?(83%) 0(100%) 0(98%)

poor prediction accuracy. In our experiments, we em-
pirically set the threshold of the certainty as 90%.

We enumerated all the possible values whenever
there is a question mark and got the training set. A
decision tree was learned from the training set using
the Iterative Dichotomiser 3 algorithm (ID3). The
tree structure is illustrated in Figure 9. The decision
tree alerts administrators that whenever the APP OR
model has a prediction of 1, the multi-tier server is
most likely to be overloaded. If the APP OR model
says 0 and the DB BR model reports 1, the system is

most likely to accept too many browsing requests and
the bottleneck resides in the database tier.

7 Related work

Server capacity determination is crucial to the prob-
lem of resource planning and quality of service(QoS)
guarantee in Internet servers. However, few of previous
work has directly addressed the problem of measuring
the capacity for multi-tier websites. Early work [1] fo-
cused on how to generate synthetic workload that is
able to exceed the server capacity. Only the single tier
HTTP web server’s capacity was studied. The work in
[5] defined benchmarks for measuring the basic capac-
ities of streaming servers. Our focus is on measuring
the capacity of multi-tier e-commerce websites.

There are many work in the areas of admission con-
trol, overload control, QoS guarantee for web servers;
see [21] for a comprehensive review. Determining
the capacity of servers is an integral component of
measurement-based admission control. An admission
controller should know when to turn away excessive
requests; the overload control mechanism should be in-
voked whenever the server capacity is reached [23].

Many past work employed a single rule of thumb
to measure server capacity. Some use application level
metric as threshold for performing admission control,
such as the length of the web server request queue [13],
or the incoming traffic density [2, 3]. Application level
data structures do not necessary reflect the actual load
in the server; a small number of heavy requests could
cause server overload. Others monitor server system
level metrics, such as CPU utilization and memory us-
age as a indicator of overload [8, 4]. However, in multi-
tier websites, bottleneck resources may change due to
the dynamics of workload and it is difficult to set the
threshold value. Our approach defines a group of rel-
evant metrics and correlate them to high level system
overload state without assuming any threshold value.

More recent approaches have taken end-to-end per-
formance metrics such as request response time, to
identify overload [19, 14, 9]. In [19], the authors sug-
gested to employ SEDA (Staged Event-Driven Archi-
tecture) as the fundamental structure of admission
control in Internet services. At each stage, response
time controller performs admission control if target
response time is violated. In this design, it is hard
to set the value of parameters in response time con-
troller and there is no optimal guarantee. A conser-
vative way in setting the response time target make
admission control easier. In [14], half of the most re-
strictive request response time guarantee is used as the
threshold for controlling the incoming request rate. In
[9], the measurement-based admission control approach

was based on the execution time of servlets (requests).
However, they assumed a non-preemptive shortest job
first scheduling policy in the database server. As a
result, the servlets would have predictable processing
time, independent of the server load condition. It
makes it possible to estimate system utilization by ad-
mitted servlets. Most of application servers are run in
a processor sharing policy. In such servers, the pro-
cessing time of a request is affected by other requests
in concurrent execution. Even with a time-based server
capacity estimate, request response time can no longer
be used as a reference to calculate server utilization.

Our work is closely related to [6, 22, 7, 20] in that
they use similar statistical models to capture underly-
ing server characteristics. Cohen et al. proposed to
use a TAN model to generate system signatures for the
purpose of performance problem diagnosis [6, 7]. The
model accuracy was improved in [22] by maintaining
an ensemble of models. However, their work is differ-
ent from us in objectives and methods. They were to
develop correlation information in a busy server rather
than a overloaded system. In [20], the authors used
low level system metrics to maximize throughput by re-
configuring hardware under different traffic rather than
overload prevention. All of them used a single model
for the whole website. In contrast, we use multiple
models for multi-tiers. The prediction results from the
models are combined together to identify server capac-
ity as well as the bottleneck tier.

8 Conclusion

In this paper. we propose a robust coordinated sta-
tistical learning approach (CoSL) to measuring the ca-
pacity of multi-tier websites. It uses a Bayesian net-
work model to correlate instrumentation data to sys-
tem states in each tier. A decision tree is induced over
the group of Bayesian models to identify the bottleneck
tier dynamically when the system is overloaded. The
approach is robust in the sense that it is insensitive to
the change of input traffic and free of tuning parame-
ters. The CoSL could be extended to websites in server
farm organizations.

Acknowledgements

The authors thank Dr. Song Jiang and other group
members for their comments and suggestions about
this work. The authors are also grateful to the
anonymous reviewers for their constructive comments.
This research was supported in part by U.S. NSF
grants ACI-0203592, CCF-0611750, DMS-0624849,
CNS-0702488, CRI-0708232, and NASA grant 03-
OBPR-01-0049.

References

[1] G. Banga and P. Druschel. Measuring the capac-
ity of a web server. In Proceedings of USENIX
Symposium on Internet Technologies and Sys-
tems(USITS), 1997.

[2] H. Chen and P. Mohapatra. Session-based over-
load control in qos-aware web servers. In Proceed-
ings of INFOCOM, 2002.

[3] X. Chen, P. Mohapatra, and H. Chen. An admis-
sion control scheme for predictable server response
time for web accesses. In Proceedings of inter-
national conference on World Wide Web(WWW),
pages 545–554, 2001.

[4] L. Cherkasova and P. Phaal. Session based ad-
mission control: a mechanism for improving the
performance of an overloaded web server. Techni-
cal Report HPL-98-119, HP Labs, 1998.

[5] L. Cherkasova and L. Staley. Measuring the capac-
ity of a streaming media server in a utility data
center environment. In ACM Multimedia, pages
299–302, 2002.

[6] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly,
and J. Symons. Correlating instrumentation data
to system states: A building block for automated
diagnosis and control. In Proceedings of Sympo-
sium on Operating Systems Design and Implemen-
tation(OSDI), pages 231–244, 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons,
T. Kelly, and A. Fox. Capturing, indexing, cluster-
ing, and retrieving system history. In Proceedings
of ACM Symposium on Operating Systems Prin-
ciples(SOSP), pages 105–118, 2005.

[8] Y. Diao, N. Gandhi, J. L. H. S. Parekh, and D. M.
Tilbury. Using mimo feedback control to enforce
policies for interrelated metrics with application to
the apache web server. In Proceedings of Network
Operations and Management Symposium(NOMS),
pages 219–234, 2002.

[9] S. Elnikety, E. M. Nahum, J. M. Tracey, and
W. Zwaenepoel. A method for transparent admis-
sion control and request scheduling in e-commerce
web sites. In Proceedings of international confer-
ence on World Wide Web(WWW), pages 276–286,
2004.

[10] N. Friedman, D. Geiger, and M. Goldszmidt.
Bayesian network classifiers. Machine Learning,
29(2-3):131–163, 1997.

[11] D. Heckerman, D. Geiger, and D. Chickering.
Learning bayesian networks: The combination of
knowledge and statistical data. Machine Learning,
20(2):197–243, 1995.

[12] H.-U. Heiss and R. Wagner. Adaptive load control
in transaction processing systems. In Proceedings
of International Conference on Very Large Data
Bases(VLDB). Morgan Kaufmann, pages 47–54,
1991.

[13] R. Iyer, V. Tewari, and K. Kant. Overload control
mechanisms for web servers. In Proc. of Workshop
on Performance and QoS of Next Generation Net-
works, 2000.

[14] J.M.Blanquer, A.Batchelli, K.Schauser, and
R.Wolsk. Quorum: Flexible quality of service
for internet services. In G. M. Lohman, A. Ser-
nadas, and R. Camps, editors, Symposium on
Networked Systems Design and Implementation
(NSDI), 2005.

[15] A. Kamra, V. Misra, and E. M. Nahum. Yak-
sha: a self-tuning controller for managing the
performance of 3-tiered web sites. In Proceed-
ings of International Workshop on Quality of Ser-
vice(IWQoS), pages 47–56, 2004.

[16] J. C. Mogul. Emergent(mis) behavior vs. complex
software systems. In ACMSIGOPS Operating Sys-
tem Review, 2006.

[17] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Pub., San Francisco, CA, USA, 1988.

[18] J. Wei and C.-Z. Xu. eQoS: Provisioning
of client-perceived end-to-end qos guarantees in
web servers. IEEE Transactions on Computers,
55(12):153–1556, Dec. 2006.

[19] M. Welsh and D. E. Culler. Adaptive overload
control for busy internet servers. In Proceedings
of USENIX Symposium on Internet Technologies
and Systems(USITS), 2003.

[20] J. Wildstrom, P. Stone, E. Witchel, and
M. Dahlin. Machine learning for on-line hard-
ware reconfiguration. In Proceedings of Inter-
national Joint Conferences on Artificial Intelli-
gence(IJCAI), pages 1113–1118, 2007.

[21] C.-Z. Xu. Scalable and Secure Internet Services
and Architecture. Chapman and Hall/CRC Press,
2005.

[22] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons,
and A. Fox. Ensembles of models for automated
diagnosis of system performance problems. In Pro-
ceedings of International Conference on Depend-
able Systems and Networks(DSN), 2005.

[23] X. Zhong, C.-Z. Xu, M. Xu, and J. Wei. Opti-
mal time-variant resource allocation for internet
servers with delay. In Proceedings of IEEE Real-
Time and Embedded Technology and Applications
Symposium(RTAS), pages 22–31, 2005.

