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Abstract—MapReduce applications, which require access to
a large number of computing nodes, are commonly deployed
in heterogeneous environments. The performance discrepancy
between individual nodes in a heterogeneous cluster present
significant challenges to attain good performance in MapReduce
jobs. MapReduce implementations designed and optimized for
homogeneous environments perform poorly on heterogeneous
clusters.

We attribute suboptimal performance in heterogeneous clus-
ters to significant load imbalance between map tasks. We identify
two MapReduce designs that hinder load balancing: (1) static
binding between mappers and their data makes it difficult to
exploit data redundancy for load balancing; (2) uniform map
sizes is not optimal for nodes with heterogeneous performance.
To address these issues, we propose FlexMap, a user-transparent
approach that dynamically provisions map tasks to match distinct
machine capacity in heterogeneous environments. We imple-
mented FlexMap in Hadoop-2.6.0. Experimental results show that
it reduces job completion time by as much as 40% compared to
stock Hadoop and 30% to SkewTune.

I. INTRODUCTION

MapReduce is a popular parallel programming model for

processing large data sets on distributed clusters [1]. The

power of MapReduce is a simplified interface to express

computations that need to be parallelized on clusters without

worrying about fault tolerance and load balancing. Users

express computation as map and reduce functions and the

MapReduce library automatically parallelizes the computation

by dispatching map and reduce tasks on the cluster. The

automation hides the messy details of parallelization to enable

an easy-to-use programming interface, but makes performance

optimizations difficult on distributed clusters. The automati-

cally generated tasks have homogeneous configurations and

run inefficiently on machines of heterogeneous performance.

Performance heterogeneity has become increasingly com-

mon in MapReduce clusters. Not only can continuous device

upgrading in a cluster lead to distinct processing capabilities

on nodes with different generations of hardware, running

MapReduce on virtual resources in a multi-tenant cloud [2],

[3], [4], [5] can also introduce uncontrollable performance

variations due to resource contentions on the shared cloud

infrastructure. For the ease of management, most MapReduce

implementations, such as Hadoop [6], assume a homogeneous

cluster and design task scheduling, data placement, and fault

tolerance based on this assumption. In a heterogeneous envi-

ronment, these designs inevitably lead to suboptimal perfor-

mance and severe load imbalance in the cluster. The stragglers

that caused by slow machines can run five times longer those

on fast machines. The culprit is the disparate task execution

speeds on heterogeneous machines which results in excessive

idleness in the cluster; fast machines that finish tasks sooner

are unable to help slow machines.

Existing mechanisms in MapReduce for handling node

failures and load balancing mitigate performance heterogeneity

to a certain extent but can be ineffective in a realistic cluster.

MapReduce runs a speculative copy of a task on a different

machine if the task does not make good progress on its original

host. It also allows fast worker nodes to execute tasks remotely

if there are no local tasks available when fast machines

become idle. Ideally, if tasks are infinitely small, these mech-

anisms achieve perfect load balance even on heterogeneous

machines [7]. However, fine-grained tasks incur considerable

overhead in MapReduce computation. Popular MapReduce

frameworks, such as Hadoop [6], YARN [8] and SPARK [9],

create JVMs to run individual tasks. The overhead to start a

JVM is prohibitively high for small tasks as the JVM startup

time can outweigh the actual task runtime [10]. Moreover,

these mechanisms require that there be sufficient resources in

the cluster for speculative or remote task execution [11]. If

slow machines account for a large portion of the cluster or the

cluster is highly loaded, there is little room for load balancing.

There are studies focusing on improving MapReduce per-

formance in a heterogeneous environment. Zaharia et al. [12],

proposed the LATE scheduler in Hadoop to improve task

speculation in heterogeneous clusters. Interference [13] and

communication-aware [14] task scheduling and data shuf-

fling [15] have been proved effective in mitigating performance

heterogeneity. Techniques on addressing data skewness [16],

[17] can also help address performance heterogeneity as the

slow execution on less powerful machines can be treated

as processing computationally expensive data. Unfortunately,

these approaches either require domain knowledge to distribute

data across nodes or introduce network overhead when data is

re-partitioned between fast and slow machines.

In this paper, we attack the performance heterogeneity

problem in MapReduce clusters from a different angle. We

believe that perfect load balancing or uniform task execution

speed can be realized if the amount of data processed at

heterogeneous machines matches their respective capabilities.

To this end, we propose FlexMap, a new map execution engine

for MapReduce to create elastic map tasks with different sizes.

This allows MapReduce clusters to run heterogeneous (big

and small) tasks on heterogeneous (fast and slow) machines.

FlexMap breaks the designs in current MapReduce to attain

elasticity: 1) map tasks have uniform inputs and 2) map tasks
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are statically bound to their inputs. FlexMap centers on two

new designs: 1) multi-block execution (MBE) and 2) late

task binding (LTB) to enable elastic tasks. MBE allows map

tasks to start with a input size (e.g., 8MB) and independently

grow to the optimal data size that matches the host machine’s

capability. Once the optimal task size is determined, LTB

creates tasks using local blocks on the node to maintain data

locality. We also optimize reduce scheduling to adapt to the

heterogeneous computation in the map phase.
FlexMap is transparent to users and does not require

any change to the existing MapReduce jobs. It continuously

measures the efficiency of map task execution beginning

with a small size and automatically determines the minimum

task size that avoids high JVM startup overhead. FlexMap

assigns the minimum task size to the slowest machine(s)

and tasks on faster machines are proportionally larger based

on their performance relative to the slowest machine. We

implemented FlexMap in Hadoop-2.6.0 (a.k.a., YARN) and

evaluated its performance on three MapReduce clusters: a 12-

node heterogeneous cluster, a 20-node cluster in a university

cloud, and a 40-node multi-tenant cluster. We compared our

approach with stack Hadoop and a recently proposed skew

mitigation approach SkewTune [16]. Experimental results with

the Purdue MapReduce Benchmark suite (PUMA) [18] show

that FlexMap reduce job completion time by as much as 40%

compared to stock Hadoop and 30% to SkewTune.
The rest of this paper is organized as follows. Section II

introduces the background of YARN, discusses existing issues

and presents a motivating example. Section III elaborates on

FlexMap’s architecture and key designs. Section IV presents

evaluation results. Related work is presented in Section V. We

conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe the basics of MapReduce

in the context of Apache YARN and show how automatic

parallelization with homogeneous tasks causes severe perfor-

mance degradation in heterogeneous environments. We further

demonstrate that task size has complex implications for job

performance, load balancing, and resource utilization.

A. MapReduce Execution
MapReduce execution is divided into two functions: map

and reduce. The map function takes the input data and pro-

duces a list of intermediate key/value pairs. The intermediate

values associated with the same key are grouped together and

passed to the same reduce function via shuffle, an all-map-

to-all-reduce communication phase. MapReduce partitions the

input data into even-sized splits and stores them on a dis-

tributed file system (HDFS) throughout the cluster. Each input

split corresponds to a map task and the split size matches the

block size in the HDFS. The default block size is 64 MB. Each

split/block is replicated on multiple nodes for fault tolerance.

Map tasks are statically bound to their input splits. When a

worker node has computational resources, it preferably runs

map tasks which have replicas of input splits stored on the

node to preserve data locality. If no local splits are available,

map tasks that have splits on remote nodes will be launched.

TABLE I
THE HARDWARE CONFIGURATION OF A HETEROGENEOUS CLUSTER

Machine model CPU model Memory Disk Number

PowerEdge T320 Intel Sandy Bridge 2.2GHz 24GB 1TB 2

PowerEdge T430 Intel Sandy Bridge 2.3GHz 128GB 1TB 1

PowerEdge T110 Intel Nehalem 3.2GHz 16GB 1TB 2

OPTIPLEX 990 Intel Core 2 3.4GHz 8GB 1TB 7
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Fig. 1. Map task runtime of wordcount in heterogeneous clusters.

B. Degraded MapReduce Performance due to Heterogeneity

We evaluated the performance of the wordcount benchmark

in two heterogeneous environments, a physical cluster com-

posed of 12 machines with multiple generations of hardware

and a 20-node virtual cluster in our university cloud. Machine

types for physical cluster are listed in Table I.

Figure 1 (a) shows that hardware heterogeneity caused sig-

nificant imbalance between individual map tasks. The slowest

map task ran as much as twice longer than the fastest task.

The imbalance between map tasks was exacerbated in the

virtual cluster, where interference from other VMs caused

large performance disparity between MapReduce nodes. As

shown in Figure 1 (b), about 20% of the map tasks experienced

slowdowns in the cloud and were 5x slower than the faster

tasks. Although YARN implements the state-of-art LATE

scheduling algorithm [12] for speculative Execution, perfor-

mance heterogeneity still incurred more than 50% of runtime

slowdown on the physical cluster compared to that on a same-

sized homogeneous cluster containing only slow machines.

While we were unable to measure wordcount performance

on the virtual cluster in an interference-free environment, we

expect the overall slowdown to be even greater than that on

the physical cluster. Similar results were also observed in [14].

Analysis We attribute the root causes of load imbalance to

uniform map sizes and the static binding of input splits and

map tasks. Since in MapReduce, containers are granted based

on their embedded locality information. Figure 2 illustrates

how homogeneous map tasks can make load balancing inef-

fective and lead to idleness in the cluster. We assume that

there are three machines, two slow and one fast nodes, in

the cluster. The ratio of the machine capacities is 1:1:3. The

default replication factor of 3 is used. In such a small cluster,

every node stores the entire input data. Ideally, perfect load

balancing guarantees that the amount of data processed at each

machine is proportional to its respective capacity. However, as

shown in Figure 2, the number of tasks completed (denoted by

dotted rectangles) is 1:1:2. Although the fast node has access

to all input data, it is unable to process data proportional to

its capacity. The culprit is that map tasks have fixed sizes and

static bindings to input splits. For example, because the first
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Fig. 2. Uniform map task size and static input binding limits the effectiveness
of load balancing in MapReduce. The shapes denote the replicas of different
splits and the dotted rectangles represent the containers that run map tasks.

two splits (denoted as the solid cycle and rectangle in Figure 2)

are being processed at the two slow nodes, the fast node is

unable to process their replicas even it has sufficient capacity.

Speculative execution can possibly mitigate stragglers due

to a few slow machines, but it is not a reliable solution to load

imbalance. As discussed in [12], speculation can fail in many

scenarios. First, speculation is not effective if there are more

slow machines than fast machines, no matter how fast these

machines are. There lack sufficient containers to launch all

speculative copies. Second, for MapReduce jobs with multiple

waves of map tasks, speculation only occurs at the last wave.

It is likely that the stragglers on slow machines have made

considerable progress and are not eligible for speculation.

These findings motivated us to develop a new mechanism to

addressing performance heterogeneity in MapReduce cluster.

We believe that tasks running on heterogeneous machines

should take different amount of input data.

C. Implications of Map Task Size

Since map tasks are statically bound to input splits, the

block size in HDFS determines the size of a task. As discussed

earlier, fine-grained tasks help mitigate load imbalance due to

performance heterogeneity but incur high parallel overhead.

It is challenging to strike a balance between efficiency and

load balance in parallel computing. To quantitatively study the

implications of map task sizes in heterogeneous environments,

we ran wordcount on the 20-node virtual cluster and compared

the variance of map runtimes using the default 64MB and fine-

grained 8MB block sizes. The larger the variance between task

execution times, the higher degree of load imbalance. Figure 3

(a) shows the probability density function (PDF) of normalized

map execution time under different block sizes. As shown in

the figure, small task size (i.e., 8MB) resulted in low runtime

variance and most task execution time fall in the range of 0.3-

0.5. In contrast, larger block size (i.e., 64MB) led to heavy

tails in runtime distribution and large variance between task

execution times. The results suggest that fine-grained tasks be

more resilient to performance heterogeneity as more work or

a large number of small tasks can be load balanced onto fast

machines, which leads to uniform and short execution times.

The overall MapReduce performance is the result of com-

plex interplays between task granularity and performance

heterogeneity. Small tasks helps load balancing but incurs high

overhead; large tasks enable efficient execution, though suffer

load imbalance. We quantify task productivity by calculating

the ratio of effective task runtime and total task runtime:

Productivity =
Effective runtime

Total runtime
, (1)

where effective runtime refers to the period since a map task

starts to read input from HDFS until it finishes writing inter-

mediate results back to disk. The total runtime includes task

execution overhead, such as YARN container allocation time

and JVM startup time. Productivity measures the efficiency of

map computation given fixed execution overhead. We further

use efficiency of the map phase to quantify load imbalance:

Efficiency =
Serial runtime

Map phase runtime× # of available containers
. (2)

Because the map phase does not require any synchronizations

between map tasks, inefficiency is mainly due to load imbal-

ance. We approximate jobs’ serial runtime using the sum of all

map tasks. We estimate the runtime of the map phase as the

time between the first container starts and the last container

that runs a map task stops in the cluster. The map phase

runtime also includes the execution overhead due to container

and JVM startup. Given the same task size, the overhead and

number of containers are fixed. Thus, high efficiency indicates

good balance.

We first ran wordcount on a homogeneous cluster and stud-

ied the relationship between task size, job completion time,

and task productivity. Figure 3 (b) and (c) show that small task

sizes incurred significant overhead with a productivity as low

as 0.28 (i.e., 8MB). A low productivity indicated that most task

runtime was dominated to container and JVM startup time.

However, large task size is more susceptible to heterogeneity

induced imbalance. Figure 3 (d) shows the job completion

time and efficiency on a 6-node heterogeneous cluster. By

comparing Figure 3 (b) and (d), we can see that heterogeneity

inflicted significant performance slowdown at each task size

and the slowdown was mainly due to dropped efficiency at

each size.

Figure 3 (d) shows that, in a heterogeneous environment, job

completion time initially dropped as task size increased, sug-

gesting that improved productivity outweighed load imbalance

(i.e., low efficiency). Further increasing task size led to de-

graded performance when load imbalance dominated. Through

these experiments, we had two key findings on improving

MapReduce performance in heterogeneous environments:

• Load balancing should be performed at fine granularity

to mitigate performance heterogeneity but tasks should

be run at coarse granularity to avoid execution overhead.

• The optimal task size depends on the interplay between

the execution overhead, such as container and JVM

startup time, the computation needed by a particular job,

and the degree of performance heterogeneity.

[Summary] The existing homogeneous map task model in

MapReduce fails to simultaneously satisfy the requirements

of load balancing and execution efficiency in heterogeneous

environments. Further, it is unable to exploit the data redun-

dancy (i.e., replicas of the same HDFS block) available on

MapReduce clusters to address heterogeneity.

III. FLEXMAP DESIGN

The key idea of FlexMap is to launch heterogeneous tasks

with different sizes in the map phase to match the processing

capability of machines. All machines in the cluster start with
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Fig. 3. Map task size has important implications for job performance and efficiency. (a) Small tasks are more resilient to performance heterogeneity; (b)-(d)
small tasks incur high execution overhead and job efficiency measures the overall load balance in MapReduce clusters.

the same fine-grained map size with the basic block unit (BU),

i.e., 8MB, and grow their task sizes independently. Map tasks

grow based on two criteria: 1) vertical growth according to

task productivity and 2) horizontal growth proportional to ma-

chine speed. This design achieves load balancing by assigning

different task sizes to heterogeneous machines, which realizes

load differentiation at steps as fine as a basic BU, and avoids

high execution overhead of running small tasks.

A. Architecture Overview

FlexMap centers on the design of two new mechanisms:

multi-block execution (MBE) and late task binding (LTB) to

enable elastic map tasks:

• Multi-block execution realizes elastic tasks by dynam-

ically changing the number of BUs in map tasks’ input

splits. With the new MBE engine, map tasks take an array

of BUs as input.

• Late task binding allows map tasks to be created at

the time of job submission, but delays the input-to-task

binding to when tasks are dispatched to worker nodes.

It maximally preserves data locality in heterogeneous

environments.

Figure 4 shows the architecture of FlexMap. FlexMap aug-

ments the MapReduce Application Master(AM) with three

new components: DataProvision (DP), SpeedMonitor (SM),

and late task binding (LTB). To support elastic map tasks,

worker nodes are equipped with multi-block execution (MBE).

The augmented framework works as follows: upon receiving

a job submission, 1) AM initializes a large number of map

templates each using one basic BU (i.e., 8 MB block) as input;

2) AM requests containers for these tasks from the Resource

Manager(RM). These containers embed resource demands

but lack locality information; 3) RM grants containers to

AM when they become available. The granted containers are

bound to particular nodes; 4) given a container, AM estimates

the speed of the host node of the container using SM and

calculates the task size using DP. Based on the task size, LTB

creates a real map task and its input split contains a sequence

of basic BUs which are provisioned from the container’s host

node; 5) the created elastic map task is dispatched to the

corresponding node; 6) worker nodes periodically update their

speed to SM through heartbeat. When all BUs of a job have

been provisioned, AM stops creating new map tasks.

Fig. 4. The architecture of FlexMap in a YARN cluster.

B. Multi-block Execution

Multi-block execution engine is inherited from the tradi-

tional MapReduce execution engine but is able to process

multiple blocks at once. The existing map execution engine has

two constraints: 1) a map is bound to and can only process

one block; 2) the task (block) size is defined in the cluster

configuration file and cannot be changed during job execution.

MBE replaces the original map execution engine and re-

defines the input split as an array of BUs. A BU is the smallest

unit in task size changes and we empirically set it to 8 MB.

The size of a map is determined by the number of elements

(or BUs) in the input split array. MBE does not require any

changes to user program but needs minor modifications to the

existing map task interface. First, map tasks are modified to

continuously read BUs until reaching the end of the input split

array. Second, MBE breaks the calculation of task progress in

MapReduce, which tracks how far the map has progressed

through the input split. With MBE, progress calculation is

based on the aggregate size of all BUs in the array.

C. Late Task Binding

Two major changes in AM are needed to support LTB.

Traditional MapReduce binds individual map tasks to different

HDFS blocks, one map per block, when a job is submitted.

Such locality information is embedded in container requests.

When a container is granted by RM, the map task that meets

the locality constraint will be dispatched to the container and

execute on the corresponding worker node. LTB breaks the

stated map execution flow and delays the creation of map tasks

to when a container is granted, from where task size can be

determined based on the speed of the machine hosting the
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container. The first change is to the job submission step. LTB

divides a job’s input file to even-sized BUs (i.e., 8MB blocks)

and creates a large number of fine-grained map, each is bound

to one BU. These tasks are templates from which elastic map

tasks will be created. Not all the task templates will eventually

turn into real map tasks. If all BUs from a job are processed,

unused map templates will be discarded. Based on the map

templates, AM requests a large number of containers and these

containers do not have locality constraints.

The second change is to the map dispatch step. Traditional

MapReduce simply dispatches map to an affiliated container.

In contrast, LTB needs to create a real map task from a

template before dispatching the task. As discussed earlier, the

new map task engine MBE takes an array of BUs as the

input split. Given a granted container, LTB is responsible for

constructing the input split and forming a map task based

on the speed of the machine that hosts the container. We

will discuss the algorithms that determine the task size in

Section III-E. The key challenge lies in preserving data locality

in the newly created map task. Given a granted container

and a task size of n BUs, LTB maximizes data locality by

constructing the input split from BUs that have replicas on

the machine hosting the container.

LTB maintains two HashMaps in AM to trace the locality

information of unprocessed BUs of a job. The NodeToBlock
hash map takes a node ID and outputs a list of BUs locally

stored on the node. The BlockToNode hash map contains

an inverse mapping from a BU ID to a list of nodes that

store the replicas of the BU. To construct an n-BU map task,

LTB obtains a list of BUs from NodeToBlock using the

container’s node ID. For each BU in the list, LTB looks up

the node ID that stores a replica of the BU in BlockToNode
and deletes the BU from the corresponding entry indexed by

the node ID in NodeToBlock. As such, LTB guarantees

that a BU will only be processed by one map task. This

process is repeated for n times until an input split is formed.

LTB ensures mutual exclusive access to both hash maps in

case of multiple mappers being simultaneously created. If the

container’s hosting node has less than n BUs available, LTB

chooses BUs remotely stored on other nodes to satisfy the n-

BU task size requirement. LTB follows a heuristic to select

remote BUs from nodes that have most unprocessed BUs.

D. Monitoring Node Speed

We use input processing speed (IPS) to measure the capacity

of worker nodes. It is defined as:

IPS =
HDFS BYTES READ

currentTime− taskStartTime
, (3)

where HDFS BYTES READ is the amount of data that has

been processed in the task’s input split and the denominator is

the task’s current runtime since it was started. Each container

reports its IPS to AM through heartbeat, whose period is

empirically set to 5 seconds. IPS alone can not accurately

measure node speed as some records in the input split are

more expensive to process than others, leading to varying IPS.

We use the average of 5 IPSes reported by containers on the

same node to measure machine speed. As such, data skewness

Algorithm 1 Dynamic map task sizing

1: Variable: Node i; Current task size on the ith node mi; Node
list L; Size of the block unit b; Size unit on the ith node si.

2: /* Initialize task size and size unit to one BU, i.e., 8MB */
3: for each node i in list L do
4: mi = si = b
5: end for
6: /* Grow task size to mitigate execution overhead */
7: function VERTICAL SCALING(i)
8: if get productivity(i) < FAST_LIMIT then
9: si = si ∗ 2

10: else if get productivity(i) < LINEAR_LIMIT then
11: si = si + b
12: end if
13: end function
14: /* Set task size proportional to relative machine speed */
15: function HORIZONTAL SCALING(i)
16: j = get slowest node()
17: mi = si ∗ get speed(i)

get speed(j)

18: end function

is mitigated across multiple containers. We use a sequence

number to identify heartbeat messages from different rounds

and calculate the average IPS from the same round of heart-

beat. The SpeedMonitor exposes a new interface getSpeed
in AM that returns the average IPSes on individual machines.

The relative machine speeds are used to determine the map

sizes on these machines.

E. Heterogeneity-aware Map Sizing

Small tasks are more resilient to performance heterogeneity

but incur high overhead, while large tasks cause significant

load imbalance. Multi-block execution and late task binding

enable MapReduce to run map tasks with variable sizes.

The objectives are to balance load across nodes at fine

granularity but run coarse-grained map tasks to avoid high

overhead. To this end, FlexMap begins with fine-grained tasks

and automatically grows task size according to execution

overhead and relative machine speed. FlexMap devises verti-
cal scaling and horizontal scaling to determine the optimal

size for mitigating overhead and addressing heterogeneity,

respectively. Algorithm 1 shows the dynamic map task sizing

algorithm. Map begins with a size of one BU (i.e., 8MB) and

grows in two directions. We assume that map tasks run in

multiple waves, which gives us the opportunity to evaluate

various map sizes.

First, the map size grows vertically and independently on

each machine. We define size unit (SU) as the step for map

size change for each wave. Vertical scaling aims to quickly

determine the map size that leads to highly efficient execu-

tion. We use productivity defined in Section II-C to measure

execution efficiency. Vertical scaling includes two phases: fast
scaling and linear scaling. If map task productivity is lower

than FAST_LIMIT, size unit is doubled at each wave (line

8-9) to quickly jump small sizes causing inefficiency. After

that, task size is incremented by one BU at each wave (line

10-11). If productivity goes beyond LINEAR_LIMIT, tasks

stop growing. We set FAST_LIMIT and LINEAR_LIMIT to

0.8 and 0.9, respectively. Second, FlexMap adjusts map sizes
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horizontally across machines based on their relative speeds.

FlexMap normalizes a machine’s relative speed to that of the

slowest machine. Speed is measured by the IPS rate reported

by individual nodes. Then, the map size at particular wave

equals to the size unit at the wave times the relative speed

(line 17). Note that each machine can grow at different speeds,

i.e., different values of size unit. This is to ensure that slow

machines, whose size unit grows slowly in vertical scaling,

do not prevent fast nodes from growing quickly. Through this

way, for small input size with only a few waves, the straggler

will not be exacerbated by slow machines, while straggler will

be mitigated by dynamic map sizing for large input size.

F. Optimizing Reduce Scheduling

Reduce tasks fetch intermediate results generated by map

tasks through an all-to-all shuffle phase. If data is distributed

evenly among nodes, there is no locality for a reduce task as

each reducer gets data from every mapper. In a heterogeneous

environment, FlexMap assigns more data on fast machines,

creating skewness in the distribution of intermediate results

in the cluster. By default, intermediate results are partitioned

evenly among reducers. As such, if reduce tasks are evenly dis-

patched to heterogeneous nodes, not only can slow machines

delay the entire reduce phase due to one-wave execution, but

also incur significant inter-machine network traffic.

To leverage the skewness created by FlexMap on intermedi-

ate data, we optimize reduce scheduling by dispatching more

reducers to fast machines. Ideally, a reduce task should be

scheduled on a machine that stores most of its needed data

to avoid inter-machine shuffling. However, unlike mappers

whose data-to-machine affinity is fixed upon job submission,

reducers’ input distribution is not easily known unless an

expensive cluster-wide intermediate result scan is performed.

We devise a simple yet effective reduce optimization. Each

node has a bias for dispatching reducers. FlexMap normalizes

machine capacity to the range of (0, 1] (denoted as ci) with

the fastest machine being speed 1. The reducer bias of node i
is set to c2i . When deciding which node to schedule a reducer,

FlexMap generates a random number in range (0, 1] and

randomly picks a node i. If the random number follows in

(0, c2i ], dispatch the reducer onto this node. If not, repeat

the process until a node is found to run the reducer. This

design ensures that more reducers will be dispatched onto

faster nodes.

G. Implementation

We have implemented FlexMap on top of YARN. The

implementation was based on Hadoop-2.6.0 and consisted of

about 2500 lines of Java code. SpeedMonitor was implemented

at the AM as a standalone process. The heartbeat communi-

cations between the AM and worker nodes were implemented

using RPC. Java class ElasticMapTask extends the default

MapTask and Hadoop was modified to use the new map

task interface when a job is submitted. The new map class

provides functions to read an array of blocks in the input split.

To support late task binding, we implemented a setBlock
interface for map tasks. When the task size is determined,

a mapper calls setBlock to expand its input split. To

dynamically set mapper size when YARN containers become

available, we modified RMContainerAllocator to signal

JobImpl the availability of new containers. JobImpl then

calls the dynamic map sizing algorithm (Algorithm 1) to

determine the corresponding mapper size given the locality

of the container.

IV. EVALUATION

In this section, we evaluate FlexMap on three heterogeneous

environments: 1) a 12-node physical cluster that consists of

three types of machines; 2) a 20-node virtual cluster in our

university cloud; and 3) a larger scale 40-node cluster running

multi-tenant workloads.

A. Experimental Settings

Platform settings Table I lists the hardware configurations of

the three types of machines in the physical cluster. The virtual

cluster ran 8 HP BL460c G6 blade servers interconnected with

10Gbps Ethernet. Each server was equipped with 2-way Intel

quad-core Xeon E5530 CPUs and 64GB memory. VMware

vSphere 5.1 was used to provide the server virtualization.

Each virtual node was configured with 4 vCPUs and 4GB

memory. The multi-tenant cluster consisted of 40 nodes,

each was equipped with two Intel Xeon E5-2640 CPUs and

128GB memory. These servers were connected with 10 Gbps

Ethernet.

MapReduce settings We deployed Hadoop version 2.6.0

(a.k.a., YARN) on these clusters and each node ran Ubuntu

14.10. In each cluster, one node ran as the Resource Manager

and NameNode. The remaining nodes were worker nodes

for HDFS and MapReduce computation. We used two HDFS

block sizes: the default 64MB and the industry recommended

128MB. If not otherwise stated, the replication factor for each

HDFS block was set to the default 3. FlexMap used a basic

block unit of 8MB as the starting size of all mappers.

Comparison We compare FlexMap with stock Hadoop and a

recently proposed skew mitigation approach: SkewTune [16].

SkewTune parallelizes a straggler task by repartitioning and

redistributing its input data across all available nodes. It

assumes all slave nodes have the same processing capability.

However, in physical and virtual heterogeneous clusters, the

node capability varies across the cluster. Further, in virtual

cluster, hotspots may change during the job execution, making

it hard to identify a straggler.

Workloads We used the PUMA benchmark suite [18] as the

evaluation workload. Table II shows the benchmark configu-

rations. As the three clusters differ in size, we scaled the input

sizes of the benchmarks to match the size of the clusters. We

used two input sizes: small and large. The small input was

used for the small scale physical and virtual clusters while the

large input was for the 40-node cluster. These benchmarks had

realistic input data from TeraGen, Wikipedia, and Netflix.

B. Reducing Job Completion Time

In this subsection, we study how effective FlexMap is in

reducing job completion time (JCT). As we can see from
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Fig. 5. FlexMap significantly outperformed stock Hadoop in job performance in two heterogeneous environments.
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Fig. 6. FlexMap improves job efficiency in two heterogeneous environments.

TABLE II
PUMA BENCHMARK DETAILS

Benchmark Input Size(GB) Input Data

wordcount (WC) 20(small) 256(large) Wikipedia

inverted-index (II) 20(small) 256(large) Wikipedia

term-vector (TV) 10(small) 256(large) Wikipedia

grep (GR) 20(small) 256(large) Wikipedia

kmeans (KM) 10(small) 256(large) Netflix data, k=6

histogram-movies (HM) 10(small) 128(large) Netflix data

histogram-ratings (HR) 10(small) 128(large) Netflix data

tera-sort (TS) 10(small) 128(large) TeraGen

Figure 5, for Map-heavy benchmarks, such as wordcount,
grep, and histogram-ratings, FlexMap outperformed the best

performing settings in stock Hadoop by 18.9%, 19.5% and

48.1%, respectively in the physical cluster. FlexMap achieved

even more better performance in the virtual cluster, winning

over stock Hadoop in wordcount,grep and histogram-ratings
by 49%, 51.1% and 52.2%, respectively.

The results indicate that a larger mapper size always led to

worse performance in heterogeneous environments. The culprit

is that stock Hadoop is unaware of performance heterogeneity

and assigns considerable amount of data to slow nodes. Thus,

the larger the task size, more data being processed on slow

nodes, which causes more performance loss. We will show in

Section IV-E, FlexMap can have much larger tasks but only

ran them on fast machines.

We also observed that SkewTune only improved stock

Hadoop by 5% to 10% for both physical cluster and virtual

cluster. That’s because SkewTune assumes each node has

similar processing capability and it can only deal with data

skew with a few stragglers. But in our physical cluster and

virtual cluster, slow nodes may accounts for nearly 50% of

total nodes.

Another observation is that, on average, FlexMap achieved

a larger margin of performance gain on the virtual cluster

compared with that in the physical cluster. The average

performance gain due to FlexMap in the virtual cluster was

more than 43% while the average gain in the physical cluster

was 22.2%. The key difference between the physical and

virtual clusters is that performance heterogeneity in the vir-

tual cluster is dynamic and the capacity gap between fast

and slow machines is more significant. Thus, there is more

room for FlexMap to create elastic tasks and address the

heterogeneity. Note that FlexMap only marginally improved

the performance of tera-sort in both environments and even

degraded the performance of inverted-index in the physical

cluster. These applications are dominated by the reduce phase,

thereby leaving little room for performance improvement at the

map phase. The reduce optimization in FlexMap requires that

the intermediate results generated by mappers have skewed

distribution on the cluster.

Further, FlexMap inevitably incurs overhead, which is the

major reason behind the degraded performance of inverted-
index in the physical cluster. To determine the optimal task

size in heterogeneous environments, FlexMap starts with small

tasks and grows task sizes based on feedbacks from previous

task waves. As such, MapReduce jobs inevitably spend some

time running with suboptimal mapper sizes. However, experi-

mental results in Figure 5 (a) and (b) show that the benefit of

FlexMap in addressing heterogeneity outweighed its overhead

in most workloads.

C. Improving Job Efficiency

As discussed in Section II-C, MapReduce jobs do not

require synchronizations at the map phase. Thus, with coarse-

grained tasks, the inefficiency mostly comes from load im-

balance between mappers. In this subsection, we show that

FlexMap not only reduces job completion time, but also

significantly improves load balancing in heterogeneous en-

vironments. We use the metric of job efficiency (defined in

Section II-C as equation (2)) to measure load balance.

Figure 6 (a) and (b) show the job efficiency of various

benchmarks in the physical and virtual cluster, respectively.

From the figures, we can see that for workloads that are

dominated by the map phase, such as wordcount, grep, and
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Fig. 7. The changes in map task size and productivity during the execution of histogram-ratings in two heterogeneous environments.

histograms-ratings, FlexMap had 17.2%, 15.2% and 41.7%

higher efficiency than stock Hadoop in the physical cluster.

Similarly, FlexMap outperformed stock Hadoop by 33.13%,

42.7%, and 48.4% for these workloads in the virtual cluster.

The same results over SkewTune is 14.6%, 14.3% in physical

cluster while 25.4%, 36.4% and 28.5% in virtual cluster. It also

shows that SkewTune can not only optimize job performance

but also perform low efficiency in a highly heterogeneous

cluster. As discussed earlier, small tasks lead to high efficiency

but inflict significant performance degradations in MapReduce

jobs. In contrast, FlexMap simultaneously optimizes perfor-

mance and efficiency, suggesting that improving load balance

is crucial to MapReduce performance in heterogeneous envi-

ronments.

As shown in Figure 5, larger task size (i.e., 128MB v.s.,

64MB) always leads to worse performance. The conclusion

does not extend to job efficiency, which mainly measures the

skewness in mapper execution time. Figure 6 (b) shows that

larger task size (i.e., 128MB) led to higher efficiency than

smaller task size (i.e., 64MB) in the virtual cluster. A possible

reason is that fewer larger tasks ran on fewer number of virtual

nodes, thereby suffering less interference in the cloud. Similar

to our observations in Figure 5, FlexMap was less effective

in improving job efficiency for inverted-index and tera-sort as

their computation was dominated by the reduce phase.

D. Overhead

Since individual cluster nodes grow their task sizes indepen-

dently, FlexMap’s overhead is mainly due to vertical scaling,

during which map tasks run with suboptimal sizes. To quantify

the overhead, we ran wordcount on a 6-node homogeneous

cluster and compared the performance of FlexMap with that in

stock Hadoop. On the homogeneous cluster, horizontal scaling

was effectively disabled. As wordcount has relatively uniform

record distribution in its input, each node grow task sizes at

similar speeds. Results show that FlexMap incurs negligible

5% performance penalty compared to stock Hadoop. Thus, in

environments with significant performance heterogeneity, the

benefit of FlexMap is likely to outweigh its overhead.

E. Dynamic Mapper Sizing

It is interesting to study how FlexMap achieved the im-

provement and how task sizes changed during MapReduce

execution. Figure 7 shows the changes in mapper size and

productivity for the histogram-ratings benchmark in the phys-

ical and virtual clusters. Task productivity is defined in Sec-

tion II-C as equation (1). It measures the portion of mapper

runtime that is truly spent in the map computation. The

higher the productivity, the lower the map execution overhead,

including YARN container and JVM startup time. We recorded

mapper size changes at the AM and calculated their respective

productivities. We used a simple performance probe to identify

the fastest and slowest node in the physical and virtual clusters.

Figure 7 (a) and (b) plot the task size and productivity

in the physical cluster. The x-axis shows the progress of the

entire map phase. Starting with the fine-grained task size, i.e.,

8MB, it took almost 40% of the map phase time before the

first wave of mappers finished. After the first-wave feed back

was obtained, both fast and slow nodes grow their mapper

sizes. Fast node grew task size at a faster speed than the slow

node did. At the completion of each mapper wave, not only

was the size unit on each node doubled, the fast node also

increased task size in proportion to its relative speed to the

slowest node. As a result, the fast node was able to quickly

attain high productivity in a few waves. The slow node never

grew its task size to high productivity before the map phase

completed. This suggests that FlexMap was able to assign

more data to fast nodes in this heterogeneous cluster. Finally,

the optimal task sizes determined by FlexMap for histogram-
ratings were 32 BUs (or 32 ∗ 8 = 256 MB) and 8 BUs (or

8 ∗ 8 = 64MB) for the fast and slow nodes, respectively. Note

that the optimal task size for the fast machine was larger than

the 128MB block size in stock Hadoop. It suggests that large

task size does not necessarily cause performance degradation

in heterogeneous environments. The key is to match the
amount of computation to machine capability.

The performance discrepancy between fast and slow nodes

was more significant on the virtual cluster. As shown in

Figure 7 (c) and (d), the final task size of the slow node

was 2 BUs compared to 64 BUs for the fast node. One can

infer that the slow node, which had considerable interference,

did not contribute much to the overall job completion. In

stock Hadoop, homogeneous mappers running on such slow

nodes can greatly delay the overall job completion. Speculative

execution is unlikely to be efficient or even effective. Specu-

lation can only be triggered by the lacking of task progress on

slow nodes, which not only incurs repeated computation but

may also miss the best timing for load balancing. In the next

subsection, we show that speculation is effective if a cluster

1085



contains a few slow machines. In contrast, FlexMap promptly

identified the performance difference between machines and

pro-actively assigned more work to fast machines.

F. Results on a Large Scale Multi-tenant Cluster

It is important to evaluate the effectiveness of FlexMap at a

larger scale. First, on small clusters, there exists considerable

data redundancy on each worker node. FlexMap can easily

construct large tasks from local HDFS blocks. For example,

with a replication factor of 3, each node stores 25% of the job

input on a 12-node cluster 1. Ideally, only 4 fast machines are

needed to complete the job and data locality can be preserved.

In such an environment, FlexMap is likely to outperform

stock Hadoop. However, as cluster size increases, FlexMap

may need to access remote BUs to construct a large mapper.

Second, it is interesting to study how effective FlexMap is as

the number of slow machines in the cluster increases.

We created performance 5%, 10%, 20% and 40% hetero-

geneity by co-running CPU-intensive background jobs on the

40-nodes cluster. This setting emulates a multi-tenant environ-

ment in which a varying number of co-running users create a

heterogeneous environment for a foreground MapReduce job.

Stock Hadoop with speculation enabled achieved similar

performance compared to FlexMap in Figure 8 (a). Speculation

is effective in addressing a few faulty or slow nodes. As

the portion of slow machines increased, the performance of

Hadoop with and without speculation converged. It suggests

that speculation alone is not an effective approach to attaining

load balancing in heterogeneous environments. As shown in

Figure 8 (a) - (d), FlexMap outperformed stock Hadoop when

there were few slow machines and the performance gain

expanded when more machines were slowed down. FlexMap

was able to reduce job completion time by as much as 40%

compared to Hadoop. Similar trends can also be observed

for SkewTune, SkewTune can alleviate skew when there were

small amount of stragglers, while its performance approached

to stock Hadoop when slow machines increased. One excep-

tion is inverted-index in Figure 8 (a), for which FlexMap had

worse performance than stock Hadoop. It again confirms that

FlexMap incurs overhead and the cost of expanding task sizes

can outweigh its benefit in load balance. Remote BU access

seemed not to be an issue as FlexMap’s gain did not plummet

as the portion of slow nodes increased. 10 Gbps Ethernet could

have played a role in bridging the performance gap between

local and remote data access.

G. Discussion

Extensibility Since MapReduce model has been widely ap-

plied, our approach, matching task input data with machine

capacities, can be also extended to other platforms. For

example, Spark [9] which extends MapReduce with more

flexible tasks organizations and communication patterns could

possibly benefit from our proposed FlexMap. Since each Spark

task(resides in executor) forms its processing data from local

1Assume job input size to be 1 and replicas are uniformly distributed on
worker nodes. Thus, each node has access to 3

12
= 25% of the job input.

input and shuffled data. Similar to Hadoop, its local input data

also reads from HDFS in forms of data blocks and accounts

for largest part of processing data(We found less than 5% of

data was shuffled from other tasks in Spark machine learning

applications). We believe the stragglers will be exacerbated

during iterations.
Map-heavy Workloads Previous research [19] on production

traces has showed that Map-heavy workloads are dominant.

30% of jobs are map only, and thus have 0 shuffle data.

For 70% of jobs, its shuffle data is only 10% of its input

data, which is regarded as map-heavy jobs. So FlexMap can

significantly benefit production heterogeneous Hadoop cluster.

V. RELATED WORK

There exist studies that addressed straggler tasks caused by

heterogeneity in Hadoop clusters. Zaharia et al., [12] were

the first work to point out and address the shortcomings

of MapReduce in heterogeneous environments. The authors

observed that the built-in stragglers identification mechanism

does not work correctly in heterogeneous environments. They

proposed better techniques for identifying, prioritizing, and

scheduling speculative tasks. Tarazu [14] found that remote

map tasks on fast machines will greatly increase the network

traffic. These traffic may compete with shuffle and result in

performance degradation. The authors addressed this issue

by performing communication-aware load balancing to avoid

bursty network traffic. PIKACHU [15] extended Tarazu by

implementing a new key/value partitioning scheme and further

improved the performance of Hadoop in heterogeneous clus-

ters. These studies mainly focused on optimizing communica-

tions in the reduce phase. In contrast, FlexMap identifies the

inefficiencies at the map phase in heterogeneous environments

and is complementary to the reduce-based optimizations.
There is also research that mitigates data skewness.

SkewReudce [17] alleviated computational skew by balancing

data distribution across nodes using a user-define cost function.

[20] addresses reduce data skew. SkewTune [16] repartitioned

the data of stragglers to take the advantage of idle slots freed

by short tasks. However, unlike our approach that provision

data to task before the task is dispatched, these approaches

require extra I/O operations for data partitioning, which may

exacerbate performance interference and increase the network

traffic. There are some other work that addressed skewness

from different perspectives [21] [22]. Scarlett [21] proposed

a framework that replicates blocks based on their popularity.

By accurately predicting file popularity, Scarlett can minimize

the interference of running jobs co-hosted on the same cluster.

[22] tackled the problem of performance prediction with

progress indicator of MapReduce application when facing

data skewness. [23] tries to optimize the start up overhead

for each splits by task sampling. [24] proposes a model to

optimize cost and MapReduce performance in heterogeneous

cloud environments. [25] proposes a shuffle-on-write service

for lower shuffle delay.
Another group of work focused on improving MapReduce

performance in the cloud. AROMA [26] is a machine learning

based approach to optimize resource allocation for MapRe-

duce jobs in the cloud. FlexSlot [27] mitigated performance
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Fig. 8. Normalized job completion time (JCT) in a 40-node multi-tenant cluster with a varying number of slow machines.

interference in the cloud by dynamically changing the number

and size of execution slots. Bu et al., proposed interference

and locality-aware task scheduling in shared cloud environ-

ments [13]. However, these approaches focus on VM manage-

ment and cannot be easily extended to Big Data frameworks.

VI. CONCLUSIONS

Optimizing MapReduce performance in heterogeneous en-

vironments has been a challenging problem. In this work, we

focus on improving the task execution at the map phase by

dynamically provision map tasks to match the distinct machine

capacity in a heterogeneous cluster. To this end, we design

FlexMap, to enable elastic map tasks in MapReduce. FlexMap

achieves fine-grained load balancing at the granularity of block

unit and avoids high execution overhead using coarse-grained

map tasks. Experimental results on three heterogeneous clus-

ters with representative workloads show its effectiveness in

reducing job completion time and improving overall efficiency.
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