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Abstract—With the explosive growth of smartphones and
cloud computing, mobile cloud, which leverages cloud resource
to boost the performance of mobile applications, becomes attrac-
tive. Many efforts have been made to improve the performance
and reduce energy consumption of mobile devices by offloading
computational codes to the cloud. However, the offloading cost
caused by the cloud platform has been ignored for many years.
In this paper, we propose Rattrap, a lightweight cloud platform
which improves the offloading performance from cloud side. To
achieve such goals, we analyze the characteristics of typical of-
floading workloads and design our platform solution accordingly.
Rattrap develops a new runtime environment, Cloud Android
Container, for mobile computation offloading, replacing heavy-
weight virtual machines (VMs). Our design exploits the idea
of running operating systems with differential kernel features
inside containers with driver extensions, which partially breaks
the limitation of OS-level virtualization. With proposed resource
sharing and code cache mechanism, Rattrap fundamentally
improves the offloading performance. Our evaluation shows
that Rattrap not only reduces the startup time of runtime
environments and shows an average speedup of 16x, but also
saves a large amount of system resources such as 75% memory
footprint and at least 79% disk capacity. Moreover, Rattrap
improves offloading response by as high as 63% over the cloud
platform based on VM, and thus saving the battery life.

I. INTRODUCTION

Mobile cloud computing, which offloads computation on

mobile devices to a cloud platform, can enable execution

of computationally intensive applications on mobile devices

with enhanced user experience.The challenges lie in how to

seamlessly integrate mobile runtime environments into cloud

platforms and how to perform mobile computation offloading

in a cost-effective manner. Existing work mainly focused on

the design of code offloading frameworks and addressed the

issues of code partitioning, offloading decision and method-

ology. The design of a cloud platform to support mobile

computation offloading has largely been ignored. Previous

studies assumed that computation from the cloud is ubiquitous

and always ready to use.

Many practical issues arise when building a real mobile

cloud. The cloud should provide on-demand execution en-

vironments for mobile computation codes, e.g., the Android

mobile OS. Many offloading studies [1–4] used virtual ma-

chines (VMs) to host mobile OS in the cloud. Hardware

virtualization allows different guest OSes to co-exist in the

cloud platform. The main drawbacks of using VMs in mobile

cloud are the long VM startup time and high virtualization

overhead. Interactivity and mobility are the keys to the

success of mobile cloud computing, but heavyweight VM

solutions cannot meet these requirements [5, 6]. Though pre-

starting VMs can reduce the VM startup time, it would

inevitably incur high resource cost because the number of

offloading requests is probably large [4].

OS-level virtualization, a.k.a, container-based virtualization

[7–10] has recently attracted much attention due to its near-

native performance and low virtualization overhead. Build-

ing a mobile cloud using container-based virtualization is

a promising idea, but presents several challenges. First, the

container must run the same OS as the host. Much effort

is needed to customize a container to support mobile apps.

Second, OS containers offer less isolation between mobile

OSes, making it possible to exploit optimizations between

mobile apps to further improve performance. However, there

lacks a comprehensive study of offloading performance to

guide the optimizations.

In this paper, we address the above two challenges and

design Rattrap, a mobile offloading cloud platform based on

OS containers. To support the execution of mobile apps in

the cloud, we develop Cloud Android Container, a mobile

OS environment built directly on general purpose server OS.

We perform a comprehensive study of offloading perfor-

mance in representative mobile workloads, which motivates

the development of two optimizations for mobile offloading:

shared resource layer between multiple apps and mobile

code cache. Experimental results using LXC container and

Android apps show significant performance improvement on

code offloading compared to VM-based cloud platforms. The

startup time of the mobile OS is reduced from more than 28s

using VMs to less than 2s with Cloud Android Container.

Our container-based cloud saves as much as 75% memory

footprint and at lease 79% disk usage by hosting the mobile

OS in the cloud. Moreover, the performance of code execution

has been improved by as much as 40%. In summary, this

paper makes the following contributions:

• We discuss the behaviors of mobile cloud applications,

characterize representative offloading workloads, and

summarize the problems current cloud platform faces.

These provide the guidelines of how to make the cloud

side better serve offloading requests.
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• We devise the idea of dynamically extending the host

OS kernel with mobile OS drivers and make the mobile

cloud platform based on OS-level virtualization come

true. By implementing drivers for various kernel features,

containers can run certain different OSes, which partially

breaks the kernel limitation of OS-level virtualization.

• With containers running mobile environments, we pro-

pose a set of techniques to improve its efficiency, in-

cluding customization of mobile OS, sharing common

resources, and code cache mechanisms, which makes our

work no longer a simple code runtime environment.

II. BACKGROUND

A. Basic Offloading Mechanism

With the rise of mobile cloud computing, the idea of

offloading computation has been a research hotspot for a long

time. Unlike existing mobile applications which run locally

and directly request data from content providers, mobile

devices can offload parts of the workloads to the cloud,

making cloud a powerful worker to process computation

tasks. Generally, a basic offloading system [2, 3, 11–14]

is composed of two parts. The client side runs on mobile

devices, which controls offloading computational code to the

cloud when needed. The cloud side is responsible for handling

offloading requests and provides runtime environments.

Much research effort has been duplicating mobile runtime

environments in the cloud to support offloading. To achieve

this, many frameworks [2, 3] leverage the virtualization

technology, namely mobile OS virtual machine. The cloud

platforms in these frameworks have nearly the same runtime

environments as mobile devices, which makes it straightfor-

ward to run mobile code on the cloud side. However, to use

a VM instance, the cloud has to install and boot a guest OS

in the VM, which incurs substantial delay. For example, a

Standard Medium instance (m1.medium) on Amazon EC2 has

an average setup time of 28.4 seconds, which is undesirable

for mobile requests. Therefore, on-demand deploying VMs is

an expensive operation and not suitable for real-time mobile

offloading [6].

B. OS-level Virtualization

While the traditional system virtualization provides strong

fault isolation, OS-level virtualization is much more efficient,

especially for server consolidation. Containers, as the cen-

ter of OS-level virtualization, have recently emerged as a

lightweight alternative to hypervisor-based virtualization [15].

Unlike virtual machines, containers usually imposes much

less overhead, since they share the host OS kernel and do

not suffer the overhead of resource virtualization.

Unfortunately, the requirement of sharing host OS kernel

makes OS-level virtualization unsuitable for mobile cloud, as

general purpose OSes are incompatible with the mobile OS

and does not support running mobile code. This limitation is

a vital challenge of designing a container-based platform for

mobile cloud computing.

III. WORKLOAD ANALYSIS

In this section, we perform a characterization of benchmark

applications in used in previous mobile offloading research,

and discuss the problems of existing cloud platforms based on

VM. As will be discussed later in Section IV, these findings

about offloading workloads motivated our system design.

A. Experiment Setup

In this series of experiments, four representative Android

applications of four different categories, which have been

widely adopted by previous researches [1, 12–14], are used

as our benchmark workloads.

• Image tools are the most common benchmarks used

in previous researches and represent the computation-

intensive workloads with file transfer. OCR (Optical

Character Recognition) is based on the Google Tesseract

library whose real computation is implemented with Java

Native Interface (JNI) code written in C++.

• Games interact with user continually, representing work-

loads with intensive network communications. Chess-

Game is an Android port of the CuckooChess Engine

which ranks top 200 in Computer Chess Rating Lists

40/401.

• Anti-Virus has been adopted increasingly since the rapid

malware emergence. VirusScan checks the target with

virus database search and spawns more I/O requests than

other benchmarks.

• Mathematical tools, like Linpack, are implemented in

ordinary Android Java. They are often used to represent

pure computation.

The client applications run on 5 Android devices and use

the Java reflection techniques to enable the offloading of

computation codes. The mobile code runtime environments

on the cloud is based on Android-x86 [16] VM. More details

about experimental settings, like the configuration of cloud

servers, can be found in Section VI.

B. Performance Penalty of Runtime Preparation

As described in [6], the key reason that existing cloud

approaches are not suitable for mobile cloud applications is

the unacceptable long startup time of VMs. In this section, we

adopt all 4 workloads and evaluate how runtime preparation

affects the performance. The experiment is performed with

stable LAN WiFi, in which we suppose the best network

environment is provided and take no account of the instability

of network.

We divide the process of offloading into 4 phases. Com-

putation Execution is the pure execution stage of offloaded

tasks on the cloud. Runtime Preparation is the setup phase for

mobile code runtime after the offloading requests arrive. Net-

work Connection is the process of establishing a connection

between mobile devices and cloud resources. Data Transfer

is the time spent to transfer necessary data for offloading

tasks. Figure 1 shows phase details and offloading speedups of

1http://www.computerchess.org.uk/ccrl/4040/
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(d) Linpack

Fig. 1. Phase details and offloading speedups when running different
workloads with the existing cloud platform. The first 20 offloading requests
are investigated.
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Fig. 2. System load in offloading process of different applications.

different workloads. Offloading speedup refers to the ratio of

local execution time and offloading response time. When off-

loading speedup is larger than 1, code offloading outperforms

local execution; otherwise, we call it an offloading failure.

Observation 1: Through Figure 1, it is clearly observed

that each VM encounters a serious offloading failure for the

first request, which is caused by the long runtime preparation.

Each time a new code execution environment is needed, off-

loading requests have to face the cold start of cloud runtime.

Since the cloud platform is based on Android-x86 VM, which

is a relatively heavyweight resource model, the startup time

usually lasts even longer than the pure computation time. This

leads to poor user experience of mobile apps.

Implication 1: In light of the above, we believe that

the long startup time of VMs with mobile OS causes the

performance degradation at the beginning stage of offloading

requests. Pre-loading VMs is an intuitive way to mitigate such

offloading failures, but it will inevitably reduce the server

resource utilization and increase the complexity of the system.

Leveraging a lightweight and fast-boot cloud resource model

may change the game.
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Fig. 3. Composition of migrated data with different workloads.

C. Cloud Server Load

In this subsection, we analyze the impact of offloading

on cloud server load in previous experiments, and discuss

the properties of offloading tasks. Figure 2 describes the

timeline graphs (with one second granularity) of CPU and

I/O utilization on the cloud server.

Observation 2: During the boot of VMs (0-30s), the server

loads show similarities between different workloads. After the

stage of runtime preparation, offloading tasks are handled and

the CPU load increases to 100% once new request arrives. In

ChessGame, the computation are relatively small, leading to

the high fluctuation in the CPU load.

In terms of system I/O load, after the startup, it appears an

I/O increase for a short period of time because of receiving

mobile codes and loading them into runtime by ClassLoader2.

After this, workloads show different I/O loads. OCR and

VirusScan, which demand more migrated data for execution,

incur short-term I/O boosts when requests arrive. In contrast,

other workloads call for few data transfer and bring about

small I/O loads.

Implication 2: The experiment results suggest that most of

offloading tasks are computation-intensive jobs initially and

followed by a short-term I/O-bound phase. Considering the

performance loss caused by VMs, especially the overhead

of I/O virtualization, the cloud platform should take both

computing performance and I/O performance as the priorities

of performance improvement.

D. Duplicate Code Transfer

We now look into data transfer in the process of offloading.

From Figure 1, we notice that the first computational task in

VM comes with significantly more data transfer time, because

the new runtime lacks the mobile code to be executed. To

understand whether all migrated data is necessary, we evaluate

the composition of migrated data of each Android VM on

cloud, as shown in Figure 3. The migrated data includes

mobile codes to be executed, files and parameters that specify

offloading tasks and control messages managing offloading

procedures. Since our offloading framework is based on Java

reflection, the mobile codes in the experiment are app files.

Observation 3: Through Figure 3, it is clearly observed

that in the process of offloading, the transmission of the same

2http://developer.android.com/reference/java/lang/ClassLoader.html

125



mobile codes occurs in every VM. This is because VMs are

completely isolated and clients have to push mobile codes into

each one of them. For workloads which require no additional

file transfer, like ChessGame and Linpack, the mobile code

accounts for more than 50% of migrated data. The duplicate

code transfer causes the long data transfer time every time a

new VM is started. We also find that the migrated data size of

single request is relatively small due to the limit on network

bandwidth of mobile devices.

Implication 3: The duplicate data transfer in existing

frameworks is inefficient and ideally the same mobile code

should be transferred only once. One way to solve this

problem would be to build the mobile code cache mechanism.

E. Redundancy of Mobile Environments

In this experiment, we carefully profile which part of the

mobile OS is essential, and which part is less important or

even unnecessary to offloading. After the experiments above

are finished, we check the last access time of each part of

Android OS and try to find which files are never used during

the offloading process.

Observation 4: We find out that 771MB out of 1.1GB files

(68.4% of the entire OS) are never accessed by offloaded

codes, which are composed of unnecessary modules and

libraries. Most of them are for the hardware of mobile devices,

like Camera support and sensor driver. We also notice that

the same /system folder occupies 985MB space (87.4% of the

entire OS) in each Android VM. This means offloading codes

of different applications probably only require a uniform

runtime environment on the cloud, while it exists serious

redundancy with current cloud platforms.

Implication 4: According to the observation above, it

seems to be unwise to run an entire mobile OS in VMs

separately. By removing the unnecessary parts and sharing

the system libraries, we can improve the disk utilization of

code runtime environment and make it more lightweight.

IV. SYSTEM DESIGN

Through the above observations and implications, we con-

clude that existing cloud platforms cannot serve mobile com-

putation offloading well. In this section, we describe Rattrap,

a new lightweight cloud platform for mobile computation

offloading.

A. Overview

Based on previous analysis of typical mobile workloads,

we design the cloud platform with four primary goals: (1)

keep the deployment of code runtime environments fast, (2)

eliminate redundancy and overlap of mobile environments, (3)

minimize performance overhead in the cloud, and (4) reduce

duplicate code transfer.

Figure 4 provides an overview of Rattrap’s system archi-

tecture. We use Android as the mobile environment since

our prototype implementation is based on it. On the cloud

side, Rattrap mainly consists of 4 components: Cloud Android

Container provides the execution environments for mobile
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Fig. 4. Overview of Rattrap architecture.

code; Shared Resource Layer packs the shared resources of

containers to avoid redundancy and improve performance;

App Warehouse implements the code cache mechanism to

get rid of duplicate data transfer; and Request-based Access

Controller secures the cloud platform.

In what follows, we will present, in details, the design of

above core components in Rattrap and handle the following

challenges:

• How to deal with the gap between the host OS and

Android? This is the key step to ensure that Cloud

Android Container actually works on the cloud (§IV-B1).

• How to adapt Android boot process for container boot

and make it as fast as possible? This work means

changing Android startup procedures from device envi-

ronments to container environments, while guaranteeing

the efficiency (§IV-B2).

• How to construct the appropriate OS for mobile com-

putation offloading? Rattrap employs a subset of entire

Android OS as the runtime environments, just enough to

support mobile computation offloading (§IV-B3).

• How to eliminate redundant storage and manage the

common resources among containers? Shared Resource

Layer considerably reduces the size of single container

by sharing common files, and boosts I/O performance

with sharing offloading I/O (§IV-C).

• How to implement mobile code cache mechanism? With

App Warehouse, code cache takes charge of indexing and

fetching executed codes for arrived offloading requests

(§IV-D).

Note that some other components are designed to en-

sure Rattrap function normally: Dispatcher handles the new

arrived offloading requests and allocates execution envi-

ronments for them; Container DB stores information of

Cloud Android Containers as basis of resource management;
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Fig. 5. To solve the kernel incompatibility problem, Android Container
Driver dynamically extends the initial kernel with Android drivers.

Request-based Access Controller remedies the deficiency of

container’s lightweight isolation mechanism; and Monitor

& Scheduler conducts resource scheduling at process-level,

rather than at VM-level in existing platforms.

B. Cloud Android Container

The code runtime environment is one of the most im-

portant part in Rattrap. With OS-level virtualization, Rattrap

introduces a novel environment, Cloud Android Container,

to replace Android VM to support mobile code execution.

Each Cloud Android Container holds individual Android OS

and has its own process space, root file system and network

resources. To conduct Cloud Android Container and guarantee

the efficiency, we carry out 3 primary designs as follows.

1) Android Container Driver: Containers share OS kernel

interfaces with little overhead, but are unable to support

multiple kernels (in our case, Android kernel and Linux

kernel). The kernel restriction has significantly weaken the

generality of containers and we propose Android Container

Driver to solve this problem in Rattrap.

Android kernel is considered as a special version of the

mainstream Linux kernel, with additional drivers including

Alarm (Real Time Clock based alarm for timer messages),

Binder (Android interprocess communication mechanism),

Logger (lightweight RAM log driver) and so on. In official

Android, these drivers are built directly into the kernel since

they are essential as soon as devices boot. To enable the

features, we have to integrate this part of drivers with host

OS kernel on the cloud and recompile it, which leads to

poor expandability. Fortunately, in our case, Android OS is

running inside containers, which means Android drivers are

unnecessary until Cloud Android Containers are started. That

is to say, Android kernel features will not have to be built-in

drivers.

Therefore, we propose Android Container Driver, the ker-

nel module package which contains specific Android drivers

to dynamically extend the running kernel for container envi-

ronments. In stead of linking drivers statically to the kernel,

Android Container Driver implements Android features in the

form of loadable kernel modules. The cloud is able to support

Cloud Android Container by simply loading modules when-

ever necessary, which ensures easy transformation between

common cloud platforms and Rattrap.

Figure 5 describes the Binder driver model in Android

Container Driver as an example. Like other Android kernel

drivers, Binder is a pseudo driver which has no corresponding

physical device. Pseudo drivers are not hardware-related and

thus our implementation of Android Container Driver will

work for all hardware platforms. The pseudo devices (e.g.,

/dev/binder) are initiated only when Android Container

Driver is loaded, resulting in kernel extension without rebuild-

ing or rebooting cloud servers. With the extended kernel, mo-

bile applications inside containers are able to make Android-

specific system calls. As will be mentioned in Section IV-C,

Android drivers are shared among containers. We leverage

device namespace [17] to implement device isolation and

multiplexing for Alarm, Binder and Logger. The workflow of

device namespace framework is modified to adapt to Rattrap

since it is originally designed to operate with mobile devices

instead of cloud.

More importantly, Android Container Driver proposes the

idea of running operating systems (e.g., Chrome OS [18],

embedded Linux) with differential kernel features in cloud

containers. By implementing the kernel differences as driver

modules, the cloud platform will be able to dynamically

support containers running multiple Linux-based operating

systems and the reconstruction of cloud platforms is quite

simple without interfering native server applications. Mean-

while, it also delivers flexibility and efficiency. In particular,

the extended drivers are only included when certain containers

are started, and unloaded when they are no longer needed to

avoid wasting memory. This usage model enhances the flex-

ibility of containers and partially breaks the kernel limitation

of OS-level virtualization.

2) Android Boot in Cloud Android Container: Android

boot process is another concern in Rattrap, since we focus

on its adaptation to cloud container environments and try to

reduce the latency caused by container startup. Android in

mobile devices works on flash memory and its boot process

relies on the RAMDisk-based images. Thus, Android OS

boots quite differently from existing operating systems which

can directly start in containers. To enable Android in Cloud

Android Containers, Rattrap modifies its startup sequence so

that instead of loading kernel and ramdisk in boot process,

the preprocessing is accomplished before we start containers.

Figure 6 compares the boot process in mobile devices

and in containers. Android device takes 4 steps to finish

booting, while Cloud Android Container boot jumps directly

to the “terminus”. In particular, there are three important

differences, as in the gray box. First, bootloader loads Android

OS after its power-on self-tests, but does no exist in Cloud

Android Containers. Instead of loading kernel, containers

directly acquire kernel functions by sharing the host OS

kernel. Second, mounting root file system is normally handled

by the kernel initialization, while we construct the file system

according to initrd.img before starting a Cloud Android

Container. Containers are populated with Android rootfs and

start directly by executing /init. Third, /init is the

beginning of user-space processes and starts Zygote which

then initializes core system services. In order to make the

init process work in Rattrap and optimize the boot time, we
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Fig. 6. Android device boot vs. Cloud Android Container boot.

modify the original init process.

3) Customized OS for Offloading: Our analysis (§III-E)

shows that only 31.6% of the entire Android OS is actually

needed for processing offloading requests. To keep Cloud

Android Containers lightweight and avoid wasting cloud re-

sources, Rattrap customizes the composition of OS to replace

the original Android as the mobile cloud environment. Unlike

the official version of Android, the customized OS here

is designed to support offloaded codes only and has much

smaller size. Employing the customized OS makes Cloud

Android Container more lightweight, without affecting the

computational performance.

Specifically, mobile OS in Rattrap behaves as a computing

environment which is quite different from the one on a

smartphone. First, plenty of system components are taken

away since they are worthless here. Apart from the kernel

drivers we mentioned in Section IV-B1, most of Android

drivers are for hardware devices, like Camera and Bluetooth,

which are unnecessary for offloading requests and occupy

big space. In our profiling with Android 4.4 (Kitkat), the

redundancies mainly include 20 built-in Android apps, 197

shared library files (.so), 4372 kernel modules (.ko) and

396 firmware libraries (.bin). Besides, the customized OS

works in a totally new mode, without system UI, telephony,

user interact and many other features. Some of the features

are central services of Android’s architecture, especially the

rendering and display part, and simply removing them will

most certainly cause a crash. The customized OS solves the

problem by restraining calls for these services. When the

invocation is inevitable, we fake the key interfaces with direct

returns so that the system will not find the absences.

C. Shared Resource Layer

Shared Resource Layer is designed to handle two problems.

First, our analysis (§III-E) describes that overlapping exists

between different runtime environments, and sharing this part

of OS can avoid waste of disk space. Second, as discussed

in Section III-C, disk I/O is also important for offloading

requests besides computation. So, Rattrap proposes Sharing

Offloading I/O and markedly improves I/O performance.

Containers often use layered file system to support system

images and COW (copy-on-write) at the file system level, like

Docker [19] combined with AUFS [20] (Another Union File

System). Based on this, Shared Resource Layer is built to take

care of common data and share them between Cloud Android

Containers. In Rattrap, the system libraries stripped by our

OS customization are the main components of shared data.

By eliminating duplication of these files, the size of a single

Cloud Android Container becomes about 50 times smaller.

Fig. 7. Rattrap implements Sharing Offloading I/O layer with in-memory
file system.

Android drivers in kernel extension are also shared resources,

because even with their necessity, only a few offloading

codes interact with them, making it meaningless to provide

exclusive drivers for individual Cloud Android Container.

Moreover, Rattrap implements the offloading I/O layer with

in-memory file system to boost its performance. We define

offloading I/O as the I/O operations executed by offloaded

codes, mainly related to transferred files. The introduction of

in-memory file system is based on two reasons. First, migrated

data in offloading is one-time deal, making the volatility

of in-memory file system no longer a concern. “Burn after

reading” keeps the size of in-memory file system small and

ensures privacy protection. Second, the design presents an

interesting tradeoff between I/O performance and memory

footprint. Fortunately, offloading requests usually have no

large file transmission (§III-D), meaning that the data size

in offloading I/O layer is relatively small. With minor extra

footprints, Rattrap can conduct offloading I/O in memory.

Figure 7a describes that existing containers handle I/O

operation inside their own layer, namely Exclusive Offloading

I/O. However, this design goes against the integration of

in-memory file system, since separating offloaded data in

multiple Cloud Android Containers makes it difficult to build

the in-memory layer. To solve this problem, Rattrap puts

offloading file objects in one shared layer instead of inside

multiple container top layers. Figure 7b illustrates this design,

as we called Sharing Offloading I/O. The combination of

in-memory file system and Sharing Offloading I/O makes

Rattrap very efficient, especially for workloads with more I/O

operations.

D. App Warehouse and Mobile Code Cache

To solve the problem of duplicate code transfer (§III-D), we

implement the App Warehouse in Rattrap to manage offloaded

codes from different mobile apps. Figure 8 describes the

mobile code cache mechanism based on App Warehouse.

In Rattrap, the code transfer happens when the application

sends its first offloading request, once and for all. Then, App

Warehouse will preserve the code and maintain a cache table

with the code information. After that, offloading tasks of

same operations will have same Reference and look for

codes from App Warehouse by AID, rather than deliver them

again. Moreover, the cache table contains additional mapping

relationships between mobile codes and Cloud Android Con-

tainers (CID). With these information, the Dispatcher tends
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Fig. 8. Mobile Code Cache Mechanism

to allocate offloading tasks to the Cloud Android Container

where requests from the same application have been executed

before, which saves the time for loading codes. By caching

mobile codes, Rattrap significantly reduces the migrated data

size, and thus reduces the energy consumption of mobile

devices and users communication costs.

E. Security Discussion

In mobile cloud environment, the cloud server running

offloaded codes may serve different apps (like Cloudlet [21]).

If one of the offloaded apps carries virus or malware, it would

cause serious security problems to all of the users. Besides, al-

though container-based runtime is more lightweight, it is less

robust since OS-level virtualization is a lightweight isolation

mechanism [7]. What’s more, our shared-based architecture

(Shared Resource Layer and App Storehouse) is likely to be

used by malicious codes.

All of the above risks make us to provide an additional

security guard, Request-based Access Controller, for Rat-

trap. It automatically analyzes the offloading requests with

information received and generates the permission table for

them. Offloading requests from the same application share one

permission table, which means the analysis happens only once

for each mobile app. This controller works by filtering every

workflow that comes out of the Cloud Android Container and

records the violation of permission checks. When the number

of violations reaches the threshold, offloading requests from

this app will be blocked.

V. IMPLEMENTATION

We implement the prototype of Rattrap on our server

machines. Each server contains 2 six-core Intel Xeon X5650

2.66Ghz CPUs with 16GB of DRAM and 300GB HDD,

running Ubuntu 15.04. The original cloud server can be

extended to Rattrap by simply loading Android Container

Driver, without kernel recompiling or any operating system

modification. Compared with traditional Android VMs, we

implement Cloud Android Container based on Linux Contain-

er (LXC) [10] as the mobile code runtime environments. We

choose LXC as our virtualization solution because it has been

widely used in production environments and its derivative,

Docker, is the most popular container technology at present.

The modifications of Android drivers are based on Linux

Kernel 3.18.0. As we mentioned above, the driver isolation

and multiplexing is based on device namespace [17]. Since the

device namespace patch is based on Android kernel, efforts

are made to integrate device namespace into Linux kernel

and make it work with cloud servers. The construction of

Cloud Android Container and customization of Android OS

are based on a self-built Android-x86 4.4 r2 image which

we consider most stable version by then. In our prototype

implementation, tmpfs is used as the in-memory file system

for sharing offloading I/O.

The clients run on Android devices equipped with both

WiFi and cellular network (3G/4G) connections. Rattrap

leaves the offloading details in clients to existing offloading

frameworks and only cares about the cloud side. The power

consumption measurement is based on PowerTutor [22].

The source code of Rattrap is publicly available online at

https://github.com/CGCL-codes/Rattrap.

VI. EVALUATION

A. Experiment Setup

All experiments are run on server machines mentioned in

Section V. In our experiments, we compare Rattrap with two

other cloud platforms as baseline systems:

• VM-based Cloud Platform: The current cloud platform

whose code runtime environment is usually based on

Android-x86 [16] running in VirtualBox. Each Android-

x86 VM is configured to run with 1 vCPU and 512MB

of memory.

• Rattrap(W/O): Rattrap without optimizing the Cloud

Android Container, meaning we only replace VM with

Container and employ NO OS optimization, shared re-

source design and code cache mechanism.

We still use the typical offloading workloads introduced

in Section III as our benchmarks and evaluate Rattrap in 4

mobile scenarios:

• LAN WiFi: Mobile devices and the cloud server are in

the same LAN, stable and fast.

• WAN WiFi: WAN WiFi has about 60ms latency con-

necting the cloud server through public IP, but stable.

• 3G: 3G is used for Internet access, unstable, with high la-

tency and limited bandwidth, whose upstream bandwidth

is 0.38Mbps and downstream bandwidth is 0.09Mbps.

• 4G: 4G gets better network conditions than 3G, but less

stable than WiFi since the change of context, whose up-

stream bandwidth is 48.97Mbps and downstream band-

width is 7.64Mbps.

B. Runtime System Comparison

Before introducing mobile cloud applications, we compare

Cloud Android Container in Rattrap with Android VM in the

traditional cloud platform. We look at several primary factors

to evaluate the code runtime environments. Table I shows a

portion of our results, where CAC represents Cloud Android

Container.

We test the setup time by capturing the time it takes for

runtime environments to finish startup and be connected to

the Dispatcher. By introducing OS-level virtualization, Cloud

Android Container without optimization can still achieve
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TABLE I
OVERHEADS OF CODE RUNTIME ENVIRONMENTS

Code Runtime Setup

Time

Memory

Footprint

CPU Al-

location

Disk

Usage

Android VM 28.72s 512MB 1vCPU 1.1GB

CAC (non-optimized) 6.80s 128MB 1vCPU 1.02GB

CAC 1.75s 96MB 1vCPU 7.1MB

TABLE II
TOTAL NUMBER OF DATA TRANSMITTED WITH DIFFERENT BENCHMARKS

Workload
Download (KB) Upload (KB)

Rattrap W/O VM Rattrap W/O VM

OCR 154 152 152 29440 34233 35047

Chess 34 34 34 4788 14011 13301

VirusScan 1738 1582 1572 91973 99375 98895

Linpack 11 11 11 169 776 705
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Fig. 9. Average performance of offloading requests.

4.22x speedup of preparation time. With our optimization of

Android boot, the speedup of setup time becomes much more

significant (16.41x).

The memory footprint is actually from the configuration

we specified before the runtime starts. Android VM requires

at least 256MB of memory and is recommended to run with

512MB of memory. We allocate 128MB of memory to each

Cloud Android Container without optimization, because we

observe that the maximum memory usage in the offloading

process is 110.56MB and it happens when the container boots.

Similarly, the initial memory for the optimized Cloud Android

Container is 96MB since its maximum memory usage is

96.35MB.

As for the disk usage, since we provide common system

libraries through Shared Resource Layer, a single Cloud

Android Container occupies less than 7.1MB, while the size

of entire Android OS in containers or VMs is around 1GB.

C. Performance for Different Applications

In this section, we evaluate the performance difference

between Rattrap and traditional cloud platforms with different

workloads. To eliminate the impact of network connection,

we run mobile apps in LAN WiFi. In order to model the

user behavior, for each set of experiment, we use 5 Android

devices running offloading workloads, and the same inflow of

requests is used for both Rattrap and VM-based cloud.
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Fig. 10. Average power consumption of offloading requests in various
network scenarios.

Figure 9 shows the average performance of offloading

requests in different workloads. We observe that the aver-

age runtime preparation time improves 4.14-4.71x with Rat-

trap(W/O) and 16.29-16.98x with Rattrap, which significantly

influences the total execution time of offloading requests.

The data transfer time also achieves speedups from 1.17x to

2.04x with Rattrap, while Rattrap(W/O) gets no improvement

since it has no code cache mechanism. Table II shows the

total migrated data size in different workloads with Rattrap,

Rattrap(W/O) and VM-based cloud. We can see the upload

data size is obviously decreased by leveraging Rattrap, which

indicates the importance of our code cache mechanism. To

be noted, we notice that OCR and VirusScan have small app

size compared to their parameter data size, which makes the

improvements inconspicuous.

As for the pure computation time, we observe that Rat-

trap(W/O) already achieves 1.02-1.13x speedups since Cloud

Android Container gets rid of the hardware virtualization

overhead. Meanwhile, Rattrap gets even better performance

(1.05x-1.40x speedups) and most of these advantages benefit

from the sharing offloading I/O. The performance speedups

for pure computation codes, like Linpack, is relatively small,

since VM introduces not much overhead and leaves Rattrap

little room for improvements. The behavior of VirusScan is

quite different from other applications. According to our anal-

ysis in Section III, VirusScan introduces more I/O operations

and thus achieves a higher speedup since containers get better

I/O performance than VM-based platforms, while Rattrap

improves further by introducing in-memory file system.

D. Power Consumption in Different Network Scenarios

In this section, we evaluate how Rattrap saves more battery

power in various network scenarios. To achieve fair com-

parison, at runtime we record the network conditions and

application states of offloading tasks with Rattrap, and then

we replay these requests for the other two baseline systems.

The power consumption results are shown in Figure 10.

The consumed energy is normalized to the one when running

the workload apps entirely on the mobile devices. It is clearly
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observed that, in most cases, mobile computation offloading

can extend battery life markedly, especially for workloads

without additional file transmissions, like ChessGame and

Linpack. Besides, we have three observations from the results.

First, Figure 10 shows that both Rattrap and Rattrap(W/O)

can save more energy for mobile devices than existing cloud

platforms. This indicates that Cloud Android Container short-

ens the cloud response and thus extends the battery life.

However, Rattrap(W/O) has limited improvements since it

can not benefit from the code cache and the mobile OS

optimization.

Second, we notice that compared with VM-based cloud

platforms, Rattrap outperforms VM by 1.37x with Chess-

Game, while it is less superior with VirusScan (1.13x) and

Linpack (1.15x). The differences are caused by the properties

of workloads. Offloading requests from ChessGame have less

computation and thus the profit from runtime preparation

accounts for higher share of energy savings than Linpack.

On the other hand, the power consumed by file transmissions

in VirusScan is considerable and unavoidable, and thus de-

presses the energy efficiency of Rattrap.

Third, from Figure 10(a) we find that Rattrap outperforms

VM by 1.22x while the average improvement drops when the

network gets worse. This means that for OCR, as network

conditions become poorer, the gap of power consumption

between VM-based solutions and Rattrap becomes smaller.

We observe similar phenomena in VirusScan, but not in other

workloads. The reason is that with the rise of latencies and

the decrease of network bandwidth, the offloading bottleneck

for workloads which require additional files is no longer

the computation performance but the long-time file transfer,

which is not improved in Rattrap. This means for offloading

requests with a lot of file transmissions, Rattrap’s energy-

saving advantage is affected by the network conditions.

E. Performance with Trace-based Simulation

In this section, we use trace-based simulation to evaluate

the performance of Rattrap further. The trace data is from

the Livelab dataset [23]. The dataset consists of real-world

app access traces, and we simulate offloading requests with

these timestamps of access records as the start time. For fair

comparison, we use a separate experiment to obtain the local

execution time for calculating speedup.

With various workloads, the speedup distributions of Rat-

trap, Rattrap(W/O) and VM-based cloud platforms present a

good similarity. Without loss of generality, we just present the

CDF of speedups for ChessGame with our trace simulation, as

shown in Figure 11. Our evaluation shows that Rattrap always

achieves better speedups. For example, 54.0% of offloading

requests with Rattrap get higher speedup than 3.0x, while

the result is 50.8% for Rattrap(W/O) and only 11.5% for the

VM-based cloud platform.

In addition, we also find an interesting detail in the ex-

periments. Compared with Rattrap(W/O), Rattrap is slightly

dominant for offloading requests with speedup higher than

2.0x, since offloaded code of ChessGame is more like pure
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Fig. 11. Rattrap improvements with real-world access traces.

computation and the improvement of Rattrap is not so obvi-

ous. On the other hand, we observe that Rattrap handles off-

loading failures much better than other two baseline systems.

Specifically, Rattrap(W/O) fails to make 7.7% of requests

benefit from offloading, which is close to the VM-based cloud

platform (9.7%), while Rattrap’s offloading failure is only

1.3%. This is because the start time is less than 2s for Rattrap,

which is pretty close to just-in-time deployment of runtime

environments. Most of offloading requests do not have to

suffer from the long runtime preparation, which is the major

cause of offloading failure.

VII. RELATED WORK

To implement mobile computation offloading, many studies

have been conducted. MAUI [11] takes advantage of managed

code and provides method level code offloading for Microsoft

.NET applications. CloneCloud [2] and COMET [12] modify

Dalvik Virtual Machine to implement thread level offloading

without access to the program source code. ThinkAir [3]

customizes communications between cloud and devices in

application layer and thus requires additional code annota-

tions. These frameworks focus on implementation details of

offloading and employ plain VM to support offloaded codes.

Instead, some other related offloading systems run the cloud

side in the form of service or component and no longer needs

the mobile OS simulation. Zhang et al. [14] give Android ap-

plications computation offloading capability by automatically

app refactoring. Sapphire [13] builds its own offloading object

(Sapphire Object) and runtime kernel (Deployment Kernel) to

separate application logic from deployment code. However,

these frameworks require extra deployment efforts and their

runtime environments differs from that on mobile devices and

thus expose strict limitations on offloaded codes.

Closer to our concern, some researches enable improve-

ment on cloud side for offloading. CMCloud [1] is a novel

cost-effective cloud platform which detects potential QoS

failures by performance estimation and guarantees QoS re-

quirements by VM migration. COSMOS [4] introduces strate-

gies for cloud resource management and offloading decision,

attempting to sustain offloading at low cost. These works pay

more attention to resource allocation strategy, or concern more

about the cost-effective feature. Unlike efforts as discussed

above, Rattrap focuses not on management strategies but on

problems of the cloud platform itself.
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Container technology provides an alternative solution for

building cloud platforms. A great benefits brought by con-

tainer have been widely confirmed, including better system

efficiency than VMs [8], low-overhead process migration [7]

and so on. To make container technology more efficient and

secure, a lot of researches have been conducted recently.

For example, Slacker [15] optimizes the storage model to

accelerate container startup and Scone [24] secures containers

with Intel SGX. These works advance container technology

and our system may also benefit from them.

Some other efforts have been attempting to combine OS-

level virtualization with mobile usage. Cells [17] leverages

OS-level virtualization to run one foreground virtual phone

and multiple background phones in the same mobile device

with modest overhead. ParaDrop [25] proposes a multi-tenant

edge computing framework by dynamically installing third

party services with LXC on wireless gateways. Unlike them,

Rattrap attempts to introduce container for mobile OS and

aims to improve offloading performance from the cloud side.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present Rattrap, a lightweight container-

based cloud platform designed for mobile computation off-

loading. We observe that traditional virtual machine-based

cloud platform would incur significant overhead when deal-

ing with mobile cloud applications. Rattrap mitigates such

drawbacks by introducing OS-level virtualization to provide

execution environments for mobile codes and bringing in a

set of designs to conduct an efficient cloud platform. Our

evaluation of a Rattrap prototype shows that Rattrap can

significantly improve both the system performance and energy

efficiency for mobile computation offloading.

To broaden the applicability of our work, we plan on

making Rattrap available on public clouds, like Amazon EC2

[26], by building an open Amazon Machine Image (AMI). We

will also explore the possibility of Rattrap implemented on

Docker, which may bring about the real just-in-time provision

of Cloud Android Container. Moreover, we would like to find

more use cases for Cloud Android Container, like Internet of

Things (IoT), mobile app testing, etc.
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