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Abstract—Cloud elasticity allows dynamic resource provision-
ing in concert with actual application demands. Feedback control
approaches have been applied with success to resource allocation
in physical servers. However, cloud dynamics make the design
of an accurate and stable resource controller more challenging,
especially when response time is considered as the measured
output. Response time is highly dependent on the characteristics
of workload and sensitive to cloud dynamics. To address the chal-
lenges, we extend a self-tuning fuzzy control (STFC) approach,
originally developed for response time assurance in web servers
to resource allocation in virtualized environments. We introduce
mechanisms for adaptive output amplification and flexible rule
selection in the STFC approach for better adaptability and
stability. Based on the STFC, we further design a two-layer
QoS provisioning framework, DynaQoS, that supports adaptive
multi-objective resource allocation and service differentiation.
We implement a prototype of DynaQoS on a Xen-based cloud
testbed. Experimental results on an E-Commerce benchmark
show that STFC outperforms popular controllers such as Kalman
filter, ARMA and adaptive PI by at least 16% and 37% under
both static and dynamic workloads, respectively. Further results
with multiple control objectives and service classes demonstrate
the effectiveness of DynaQoS in performance-power control and
service differentiation.

I. INTRODUCTION

As server virtualization grows increasingly popular and
mature, hosting enterprise applications in a cloud has be-
come an attractive solution for scalability and cost-efficiency.
Applications running within virtual machines (VM) have on-
demand access to compute resources in response to increased
application loads. On the other hand, virtual resources can
be maintained at a minimal level during off-peak periods
in order to reduce cost. Thus, virtual machines should be
dynamically provisioned to match actual application demands,
rather than the peak one. However, these demands are difficult
to estimate due to time-varying and diverse workload. More
importantly, client-perceived quality-of-service (QoS) should
still be maintained in the presence of background dynamic
resource provisioning. These observations call for an effective
approach that automates resource allocation for cloud users.

Regulatory control is a promising method for resource
allocation, in which a feedback controller enforces service-
level objectives (SLO) while minimizing the resources re-
quired. More importantly, if properly designed, this type of
control can provide predictable performance with theoretical
stability guarantees. In general, a feedback controller applies

the control input to a target system in order to regulate the
measured output to the value of a desired output [5].

There are many control approaches that have been applied
with success to resource allocation in physical servers; see [1],
[12], [18], [8], [10] for examples. Recent studies have focused
on the application of control approaches for the allocation
of virtualized resources in clouds [11], [24], [7], [14], [13].
The cloud adds new challenges to the QoS-oriented resource
allocation, in addition to workload dynamics. Different from
physical servers, a virtual server may see a varying capacity
in the cloud. The dynamics in the capacity can be due to the
uncertainties in resource scheduling, opportunistic use of addi-
tional market-based resources(e.g. Amazon spot instances [2])
or even the rogue behavior of malicious users [29].

Many existing work used indirect metrics such as workload
arrival rate [11], [24] and CPU utilization [7], [14], instead
of response time as the measured output. These work relied
on the assumption that there are always static relationships
between the metrics and response time. The relationships
are usually determined either by industry practice or offline
testing. Although easier to control, the use of indirect metrics
may not be effective in a dynamic cloud environment. In
Section II, we show that when the CPU utilization is 80%,
the response times of an E-Commerce benchmark can have as
large as 150% variations with different capacities. Therefore,
with dynamic capacity, resource utilization is not readily trans-
lated to application-level performance and models obtained
under one capacity setting are likely to be inaccurate for other
settings. In practice, response time is a good measure of client-
perceived QoS. However, response times behave nonlinearly
with respect to resource allocations and are highly dependent
on the characteristics of workload, as well as server capacity.
This nonlinearity poses challenges to design a stable and
accurate controller.

To address the issue of the lack of an accurate server model,
the work in [7], [13] applied adaptive control approaches
based on model approximation. However, these approaches
pose limitations on how fast the workload and the system
behavior can change [30]. In [27], we developed a two-
layer self-tuning fuzzy control (STFC) approach for QoS
assurance in web servers with respect to response time. In this
paper, we extend the STFC approach to resource allocation in
virtualized environments by introducing an extra self-tuning
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output amplification and flexible rule selection mechanism.
In comparison with other popular controllers, STFC shows
better adaptability and stability. Based on the STFC, we further
design a two-layer QoS provisioning framework, DynaQoS,
that supports adaptive multi-objective resource allocation and
service differentiation.

To evaluate the performance of STFC and the DynaQoS
framework, we built a cloud testbed based on a Xen environ-
ment. We conducted experiments to allocate CPU resources
to VM clusters running the TPC-W [22] E-Commerce bench-
mark. For comparison with STFC, we also implemented three
popular controllers within the DynaQoS framework: a model-
independent adaptive PI controller and two controllers based
on local models approximation: Kalman filter and ARMA
controllers. Experimental results show that, STFC outper-
formed the closest competitor by 16% and 37% under static
and dynamic workloads, respectively. The output amplification
reduces the settling time to 3 control intervals and the flexible
rule selection improves the stability. Further results on simulta-
neous control of performance and power show that, DynaQoS
was able to find a balance between conflicting objectives. In
service differentiation, DynaQoS guaranteed the performance
of the premium class and provided better service to the basic
class outperforming a popular differentiation policy.

The rest of this paper is organized as follows. Section II
discusses the challenges in automatic cloud resource manage-
ment. Section III and Section IV elaborate the key designs
and implementation of DynaQoS, respectively. Section V gives
experimental results. Related work is presented in Section VI.
We conclude this paper in Section VII.

II. BACKGROUND AND MOTIVATION

To build a resource controller realizing a high-level ob-
jective, a mathematical model that captures the relationship
between the allocated resource and the high-level metric is
necessary. Given the model, any deviation of the high-level
metric from the desired value can be corrected by applying
adjustment in the resource allocation. However, the determi-
nation of the system model in a dynamic cloud environment
is not trivial. Workload and cloud dynamics can possibly
render prior system models invalid and result in poor control
performance.

1) Uncertainties in resource scheduling: In [3], the authors
showed that time-sharing of CPU resources in multiple VMs
can provide much more predictable performance than I/O
sharing. With advances in multi-core technologies, modern
processors are able to embed a number of CPU cores on a
single socket. To achieve thread-level parallelism with lower
energy cost, heterogeneous CPU architecture and on-chip
hardware hyperthreading has gained popularity in modern
CPU design. Despite their benefits, they pose significant
challenges in VM resource management. “Big” cores are more
powerful than “small” cores and hardware threads have distinct
performance dependent on whether their sibling threads are
executing or not. Current Virtual Machine Monitors such as
VMware and Xen, do not consider the underlying architectural
differences in VM CPU scheduling. Cloud users may observe
different CPU capacities when scheduled with “big” or “small”
cores; or with hardware threads from busy or idle cores.

Consider a virtual cluster consisting of 4 VMs executing
a mapreduce job to classify approximately 20000 documents
into 20 different newsgroups on on a DELL server with 12
CPU cores. Each physical core has two hardware threads
which can be scheduled simultaneously. The default CPU
scheduling in the Xen hypervisor, referred to CPU UNPIN,
allows the two threads from the same core to be sched-
uled together. In comparison, we experimented with another
scheduling scheme, CPU PIN, which ensures that no hard-
ware threads from the same core are scheduled at the same
time. It guarantees that each scheduled hardware thread gets
the full processing capacity on a core. The experimental results
shows that the CPU PIN scheduling reduced the execution
time by as large as 37% (reduced from 918.3 second to 668.5
second). This reveals a significant variation of CPU capacity
under the same nominal resource allocation.

2) Opportunistic use of variable resources: Besides the
uncertainties underlying cloud systems, the dynamics in VMs’
capacity can also come from market-based accesses to ad-
ditional compute capacity. Amazon Elastic Compute Cloud
(EC2) provides Spot Instances [2] as a complementation to
On-demand Instances and Reserved Instances. Different from
the other two, Spot Instances make use of unused Amazon
EC2 capacity and are charged a much lower spot price. Cloud
users bid on spare capacity and run Spot Instances as long
as their bids exceed the spot price. Spot price changes with
the supply and demand and the instances whose owner’s bids
are below current spot price will be terminated. If hosted
applications are resilient to nondeterministic capacity additions
and removals, mixing reserved capacity (i.e. on-demand or
reserved instances) with transient capacity (i.e. spot instances)
will be a cost-effective way for time-varying workload and
limited budget.

However, the nondeterminism in compute capacity poses
significant challenges in modeling resource to application
performance. Figure 1 plots the application performance of
TPC-W against the resource utilization (i.e. CPU utilization)
under different capacities. We threw 500 shopping clients
to the TPC-W virtual cluster and created different levels of
capacities by adding or removing VMs from the virtual cluster.
For example, a total number of 4 VMs, each with one core,
is equavilant to a capacity of 4-core. As shown in Figure 1,
the relationship between application performance and the CPU
utilization changes with capacity. When the CPU utilization
is 80%, both response time (Figure 1(a)) and throughput
(Figure 1(b)) show as large as 150% variations with different
capacities. With dynamic capacity, resource utilization is not
readily translated to application performance. System models
obtained under one capacity setting are likely to be inaccurate
for other settings. Without an accurate system identification,
control-based resource allocation suffers poor performance.

III. THE DYNAQOS FRAMEWORK

In this section, we present the design of DynaQoS, a
prototype of the fuzzy control-based VM resource allocation.

A. Design of DynaQoS
As shown in Figure 2, DynaQoS is composed of two layers

of controllers. The first layer is a group of self-tuning fuzzy



 400

 800

 1200

 1600

 2000

 60  70  80  90  100

R
es

po
ns

e 
tim

e 
(m

s)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(a) Response time

 0

 50

 100

 150

 200

 250

 60  70  80  90  100

Th
ro

ug
hp

ut
 (r

eq
\s

)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(b) Throughput

Fig. 1. Different resource-performance relationship due to dynamic capacity.

controllers (STFC) that control individual objectives. During
each control interval, a STFC queries the corresponding QoS
profile manager for the reference value of the controlled
metric. A QoS monitor periodically reports the achieved value
of the metric. The metrics to be controlled can be conventional
application-level performance metrics such as response time or
throughput; or any user-defined high-level metrics, we show an
example of such metrics in Section V. In a cloud environment,
more interesting control can be the control of leasing expenses
(based on variable resource prices) towards a target of leasing
budget, or the control of VM level power consumption below
a per VM budget [9]. The STFC takes the difference between
the reference value and the achieved one as well as the change
of the error as its input and outputs a resource request to the
second layer gain scheduler.

When there are multiple control objectives, the second
layer gain scheduler aggregates the resource requests from
individual STFCs and forms a unified one to be submitted
to the cloud resource management API. The aggregation of
individual requests is based on the weights (gain) of each
STFC in the determination of the final request. The gains
are dynamically adjusted according to the control error of
STFCs. Service differentiation is necessary if multiple service
classes exist and the aggregated resource demand is beyond the
available capacity. We define multi-level objectives in the QoS
profile manager for each service class. If resource contention
is detected and it can not be resolved for a certain number
of control intervals, the class with lowest priority modifies its
control objective to the next level.

B. The Self-tuning Fuzzy Controller

Due to workload and cloud dynamics, the relationship
between allocated capacity and received service quality ex-
hibits considerable nonlinearities. The relationship can often
be linearized at fixed operating points. It is well known that
the linear approximation of a nonlinear system is accurate
only within the neighborhood of the operating point. Abrupt
changes in workload traffics and the nondeterminism in VM
capacity can possibly make the simple linearization inappro-
priate. Instead of modeling the system in mathematical equa-
tions, fuzzy control employs the control rules of conditional
linguistic statements on the relationship of allocated resource
and the high-level objectives [6]. The fuzzy control rules are
able to embed human expert’s experiences and the rule base
is easily updated by adding new knowledge. There are works
that applied fuzzy control to QoS guarantees in web server [27]
and computer networks [4] with success.
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Fig. 2. The structure of the DynaQoS framework.

Figure 3 illustrates the structure of the Self-tuning Fuzzy
Controller. It consists of three components, namely the fuzzy
logic controller, the scaling-factor controller and the output
amplifier. The resource allocated in control interval k + 1,
denoted by u(k + 1), is adjusted according to its error e(k)
(i.e., the normalized difference between the reference value
and the achieved one) and change of error Δe(k) in previous
control interval k using a set of control rules embeded in the
fuzzy logic controller. e(k) and Δe(k) are calculated using
the reference value r(k) and the observed value y(k). For the
stability of the control system, we define the normalized error
e(k) in a range of [−1, 1]:

e(k) =

{
r(k)−y(k)

r(k) 0 ≤ y(k) ≤ 2r(k);

−1 y(k) > 2r(k).

Based on these, the controller calculates resource adjustment
Δu(k) for next control interval. The calculated resource
adjustment is then fed into the next layer gain scheduler.

The fuzzy logic controller contains four building blocks.
The actual fuzzy logic is implemented as a set of If-Then
rules about quantified control knowledge about how to adjust
the allocation according to e(k) and Δe(k). The fuzzification
interface converts controller inputs into certainties in numeric
values of the input membership functions. The inference mech-
anism activates the rule-base and applies fuzzy rules according
to the fuzzified inputs and generates the fuzzy conclusions
for the defuzzification interface. The defuzzification interface
converts fuzzy conclusions into the change of allocation in
numeric value.

The STFC is built on the static fuzzy logic controller by
adding the self-tuning scaling factors and the output amplifier.
There are three scaling factors: input factors Ke and KΔe,
output factor α and output amplifier KΔu. The change of
input scaling factors changes the connection of input values
to suitable rules, The change of output scaling factor and the
amplifier together adjust the amplitude of the control input.
The actual inputs of the fuzzy logic controller are |Ke|e(k) and
|KΔe|Δe(k). Thus, the resource allocated to the VM during
management interval k + 1 is

u(k + 1) = u(k) + α|KΔu|Δu(k) =

∫
αKΔuΔu(k)dk.

1) Design of the rule base: The design objective is to
translate human expert’s knowledge into a set of control rules
to control the resource allocation without a model of the
dynamic cloud environment. In the fuzzy logic controller,
the control rules are defined using linguistic variables. For
brevity, linguistic variables “e(k)”, “Δe(k)”, and “Δu(k)”
are used to describe e(k), Δe(k), and Δu(k), respectively.
The linguistic variables assume linguistic values NL(negative
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large), NM (negative medium), NS (negative small), ZE
(zero), PS (positive small), PM (positive medium), and PL
(positive large).

Figure 4(a) gives an simple illustration of typical control
effect. In this figure, we identify five zones with different
characteristics. Zone 1 and 3 are characterized with opposite
signs of e(k) and Δe(k), in which the error is self-correcting
and the achieved value is moving toward the reference value.
Thus, Δu(k) needs to be set either to speed up or to slow
down current trend. Zone 2 and 4 are characterized with
the same signs of e(k) and Δe(k), in which the error is
not self-correcting and the achieved value is moving away
from the reference value. Therefore, Δu(k) should be set
to reverse current trend. Zone 5 is characterized with rather
small magnitudes of e(k) and Δe(k). Therefore, the system
is at a steady state and Δu(k) should be set to maintain
current state and correct small deviations from the reference
value.The resulted control rules are summarized in Figure 4(b).
For example, when “e(k)” and “Δe(k)” are NL and PS,
“Δu(k)” is set to PM .

2) Fuzzification, inference and defuzzification: We take
the same design for the membership function and inference
mechanism from our previous work; see [27] for details.

3) Design of the self-tuning controller: The fuzzy logic
controller only defines the basic control rules according to the
inputs of e(k) and Δe(k). It outputs the sign and magnitude of
the allocation adjustment Δu(k). With cloud dynamics, there
could be a lot of fluctuations in the control effect. To achieve
accurate, responsive and stable control, the following practical
issues should be addressed:

1) When there are abrupt workload or capacity changes,
the control should be responsive enough to correct the
resource discrepency within a small number of steps.

2) When there are considerable fluctuations in the control
effect, it may be due to two reasons. The fluctuations
may come from the inaccuracies of the controller that
incurs control overshooting; or it may be due to the pro-
cess delay [19] of resource allocation. A process delay
is the time between the change of resource allocation
and the actual adjustment effect can be observed in ap-
plication performance. Both problems can be alleviated
by decreasing the control magnitude or prolonging the
control interval to stabilize the control effect.

To address the above issues, we design the self-tuning con-
troller to have adaptive output magnitude and flexible control
rules. The self-tuning features are realized by dynamically
changing the input, output scaling factors and the output
amplifier. The output scaling facotr α and the output amplifier
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Fig. 4. Design of the fuzzy control rules.

KΔu(k) together determine the magnitude of the allocation
adjustment. In our previous work [27], we used another level
of fuzzy controller to adjust the output scaling factor α.
However, the output Δu(k) of the fuzzy logic controller is
within the range of [−1, 1]. The change of α has limited effect
on the magnitude of the control output. To overcome abrupt
workload and capacity changes, the magnitude needs to be
changed dynamically based on current conditions. We preserve
the adaptive controller of α as in [27] and add a self-tuning
output amplifier. The amplifier implements heuristic control
knowledge as follows:

KΔu(k) = | c
2
· e(k)|,

where c is the current allocation for a specific resource. For
example, c can be the cap value of the CPU allocation in
a Xen platform. The amplifier follows a heuristic rule that
the maximum resource adjustment should not exceed half of
current capacity for stability and should be proportional to the
control error for adaptability. Note that the direction of the
adjustment is still determined by the fuzzy logic.

To address the problem of process delay and control in-
accuracies, fuzzy control rules also need to be tuned based
on current conditions. Recall that the actual inputs of the
fuzzy logic are Kee(k) and KΔeΔe(k), Ke and KΔe together
determine which membership functions or control rules are to
be activated. As shown in Figure 4(b), small values of Ke and
KΔe activate rules in the center of the rule table, such as the
rules in Zone 5; large values are likely to trigger rules like PL
and NL. Observations in the control of real plants suggest that
it is often desirable to decrease the control magnitude during
fluctuations. Thus, we define Ke and KΔe as:

Ke(k + 1) = (1− γ)Ke(k) + γe(k),

KΔe(k + 1) = (1− γ)KΔe(k)− γΔe(k),

where γ is a discount factor that gives more weight on the
observance of recent e(k) and Δe(k) while still taking history
experiences into consideration. We empirically set γ to 0.8
in the experiments. In Figure 4(a), we can see that, during
fluctuations the trajectory of control is likely to follow Zone
1 → Zone 2 → Zone 3 → Zone 4. If the pattern is repeated
many times, fluctuations exist and e(k) shows as a series of
positive and negative values. Gradually, Ke would converge
to a small value close to zero, which triggers rules with
small or zero magnitude. When the control effect stabilized,
if the achieved control deviates from the reference value, Ke

will quickly restore to a larger value accumulating e(k) with
same signs. The self-tuning scheme works similarly for Δe(k)
except that Δe(k) has the same sign during fluctuations and a



subtraction is used to compensate consecutive Δe(k). The self-
tuning of the control rules also helps mitigate process delays
by generating a sequence of small or zero actuations for more
stable control.

C. Scheduling multiple objectives

There exist many control problems in which the consider-
ation of multiple objectives is required, and these objectives
may conflict with each other. In cloud computing, a cloud
user may want to keep the application level response time
and throughput in certain ranges that satisfy SLA objectives.
However, the user may be simultaneously required to maintain
the power consumption of his or her applications to be below
a specified bound. The Gain schedule component in the
DynaQoS framework implements a weighted scheduling algo-
rithm that synthesizes the outputs from individual STFCs with
different objectives. The resulted output is the final resource
adjustment request submitted to the cloud resource manage-
ment. Given individual STFC’s outputs Δu1(k), . . . ,Δun(k)
and the corresponding errors e1(k), . . . , en(k) as inputs, the
synthesized adjustment Δu(k) is defined as

Δu(k) =

n∑
i=1

Δui(k) · wi,

where wi =
|ei(k)|∑n

j=1
|ej(k)| .

We assume that there always exists a control solution for
the multiple-objective control problem. The gain scheduling
algorithm depends on the careful selection of the reference
values by the cloud user. If a control solution exists, the
algorithm applies dynamic weights to individual STFCs based
on their control errors. In the extreme case, the multiple-
objective control degrades to a single-objective control, if one
objective is satisfied generating near zero control errors.

D. Realizing service differentiation

Service differentiation is desirable when the aggregated
resource demand of multiple service classes is beyond the limit
of allocated resources. Although cloud systems allow prompt
allocation of resources in response to the increase in client
traffic, there are still cases that the total demand can temporally
exceeds available capacity. First, the cloud user who owns
the cloud application may run out of budget preventing him
adding more capacity during a spike load. Second, applications
running on the market-based cloud resources may see capacity
fluctuations due to the supply and demand of the dynamic
capacity. For example, Amazon EC2 users may choose to host
applications on a cluster of VMs containing both reserved
and spot instances. The spot instances will be terminated if
the spot prices exceed the users’ bids resulting in a reduction
in the total capacity. Finally, complications in cloud resource
scheduling and performance interference also contribute to the
variation of capacity. For example, results in Section II show
approximately 40% variations in application performance due
to scheduling dynamics; the authors in [29] also demonstrated
possible CPU cycle stealing between cloud users.

To provide QoS guarantees, we consider the service differ-
entiation to be initiated by individual service classes. When

resource contentions are detected, the service class with a
lower priority would adapt its SLO (e.g. a response time target)
to a lower level. By setting different control objectives, the
premium class will receive more resources than the basic class
while the basic class avoids starvation maintaining a degraded
level of service. We enforce strict priorities between classes.
That is the class with a higher priority adapts to a lower level
only when the lower priority classes have reached their mini-
mum service levels. To detect resource contentions, DynaQoS
follows a simple heuristic rules tracking the statistics of the
control performance. If DynaQoS sees a predefined number
of serious SLO violations (i.e. Δe(k) < 0 and |Δe(k)| > ε)
for a certain level of class and the resource adjustment did
not correct the control errors (i.e. Δu(k) > 0), classes with
lower priorities would start to adapt to a lower level. Classes
at different ranks have the tolerance of different numbers of
violations, which ensures that clients with lower priorities will
always degrade before the high priority clients. For example,
the premium class may only tolerate 10 consecutive violations
while the basic class can bear up to 30. When the capacity is
limited, the basic class would release the resource first.

IV. SYSTEM IMPLEMENTATION

A. Cloud applications

We selected the TPC-W [22] benchmark as the hosted
cloud application for the evaluation of DynaQoS. TPC-W is
an E-Commerce benchmark that models after an online book
store, which is CPU-intensive and has the database tier as the
bottleneck. We employed a three-tier cluster implementation
of TPC-W, which consists of an Apache web server (version
1.3.11) and a group of Tomcat (version 5.5.20) application and
MySQL (version 5.0.45) database servers. We put the Apache
and all the Tomcat servers into one VM forming a unified
front-end, and replicated the MySQL server into a number
of DB VMs, one MySQL per VM. The DB virtual server
farm was further divided into several virtual clusters, each of
which was dedicated to a service class. The apache web server
accepts and classifies client requests into different classes. It
assigns requests from different classes to different DB virtual
clusters. We modified the Apache web server to exam the
content of the requests and assign different port numbers to
different classes. Based on the port number, Apache module
mod_jk redirects the requests to corresponding tomcat work-
load balancers which are responsible for individual virtual
clusters. The tomcat balancers dispatch the requests within
the virtual cluster in a round-robin manner. There may be
consistency issues if the requests from a same client session
write to different DB VMs. In this paper, we focus on the
evaluation of DynaQoS in resource allocations and leave the
issues to future work. To avoid consistency problems, we used
read primary browsing mix in TPC-W as the client workload.

We empirically determined that the DB tier was the
bottleneck tier under the browsing workload and focused on
the CPU allocation to the DB clusters. There are two ways to
change the allocation to a DB virtual cluster. One is to change
the number of DB VMs in a cluster and the tomcat balancer
handles the join and leave of cluster members. Another
approach is to have a fixed number of DB VMs and change the



CPU allocations to individual VMs. To evaluate DynaQoS in
fine-grained resource allocation, we took the second approach.

B. Testbed

Our testbed consists of a virtual server, client and NFS
servers. The physical machines for virtual hosting were two
DELL servers with two Intel Xeon X5650 CPUs and 32 GB
memory. Each CPU has 6 cores with hyperthreading enabled
resulting a total capacity of 24 logical CPUs. The front-end
and back-end DB VMs were hosted on separate machines. We
configured the front-end VM with 8 core and 4 GB memory.
The DB VMs, each with 4 core and 2 GB memory, resided on
the other machine. We used a number of client machines each
with 8 cores and 8 GB memory to generate workload for the
TPC-W. The NFS server used a RAID5 partition to serve the
VM disk images. We used Xen version 4.0 as our virtualization
environment. dom0 and guest VMs were running Linux kernel
2.6.32 and 2.6.18, respectively. All the severs were connected
by Gigabit Ethernet network.

C. Implementation of DynaQoS

QoS monitor. We consider the client-perceived response
time as the measure of application-level performance. We
modified the TPC-W’s workload generator to maintain a log
of finished requests. A small utility program parses the log to
calculate the average response time for every control interval.

QoS profile manager. Each service class works with a QoS
profile manager to determine the control objective. The control
objectives are specified in terms of a set of desired response
times with different levels. For service differentiation, the pro-
file manager also sets the number of SLO violations that can
be tolerated by a class before a target adaptation is initiated.
For the service differentiation experiment in Section V-C,
we considered two classes: Premium and Basic. They both
have three levels of SLO, {1s, 5s, 10s}, and with adaptation
thresholds: 10 and 30 violations, respectively.

Self-tuning fuzzy controller. STFC has been implemented
as a set user-level daemons in the virtual host (i.e. dom0 in
a Xen environment). It takes the measured application-level
performance (from QoS monitor) and the performance objec-
tive (QoS profile manager) as input and outputs the resource
adjustment to Xen’s management interface. If multiple control
objectives exist, two or more STFCs form a unified request.
The control interval is set to 30 seconds for all the experiments.

CPU resource allocation. CPU resources are allocated to
each DB VM via Xen Credit Scheduler in terms of cap values.
A cap value represents the upper limit of CPU time can be
consumed by a VM in percentage. For a virtual cluster with
4 VMs and each with 4 cores, the CPU allocation can be in
the range of [1, 1600]. The CPU time is allocated to individual
virtual clusters. We assume good load balancing by the Tomcat
balancer, thus distribute CPU cap values uniformly within the
cluster. All VMs are given the same weight during allocation.

V. EXPERIMENTAL RESULTS

A. Comparing STFC to other popular control methods

Experiments are designed to study the efficacy of DynaQoS
in the determination of proper CPU allocations under both

static and dynamic workloads. We have also implemented
three popular controllers within the DynaQoS framework:

Kalman filer [7] is a data processing method that uses a
series of measurement with noises to produce values closer
to the true values of the measurement. It is used in [7]
to track the utilization of CPU and allocate CPU resources
correspondingly to maintain the utilization to a specific value.

Adaptive proportional integral (PI) [14] directly tracks the
error of the measured response time and the target and adjusts
the CPU allocation to minimize the error. The gains of the
proportional and integral parts are set to | c2 · e(k)|, similarly
as the STFC, to allow adaptive control.

Auto-regressive-moving-average (ARMA) [13] builds a local
linear relationship between the allocated CPU resource and
the response time with recently collected samples. If response
time deviates from the target value, the controller computes the
allocation that corrects the error based on the obtained model.
The controller is configured to use a second-order ARMA
model with a window size of 20.

To measure the performance of DynaQoS, we define a
metric, relative deviation R(e), based on root-mean square
error:

R(e) =

√∑n
k=1 e(k)

2/n

r(k)
.

The smaller the R(e), the more the achieved response time
concentrates near the target value and better the controller’s
performance. To compare the performance of different con-
trollers, we take the performance of STFC as a baseline and
define the performance difference between STFC and other
controller as:

PerfDiff =
R(e)other −R(e)STFC

R(e)STFC
.

Response times behave nonlinearly with respect to resource
allocations especially when the system is in a busy state.
We selected the set point of all the controllers to be 1
second except that we followed the controller in [7] and
set the Kalman filter’s set point to be 90% CPU utilization,
which translates to approximately the 1-second response time
under the capacity of 16 cores. In this experiment, we only
considered one service class with one virtual cluster. The
virtual cluster had 4 DB VMs each with 4 VCPUs and its
initial capacity was set to 6 cores (a cap of 600).

Figure 5(a) plots the response times of different control
methods with static TPC-W workload. The workload was set
to 200 browsing clients, each with a mean think time of 1
second. From Figure 5(a), we observe that, all the control
methods except ARMA can bring the response time close
to the 1-second target, but with different deviations. ARMA
requires a local model to predict the proper CPU allocation,
thus whenever a deviation from the target is detected it needs
several control intervals to build a new model. Figure V-B
draws the performance difference of other controllers relative
to STFC. STFC outperformed all other controllers by at least
16% with adaptive-PI as the closest competitor.

We are also interested in the adaptability of the controllers
under dynamic workload. We instrumented the workload
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Fig. 5. Performance comparison of STFC, Kalman filer, Adaptive-PI and ARMA.

generators of TPC-W to change client traffic levels at run-
time. The workload generator reads dynamic traffic levels
from a trace file, which models after the real Internet traffic
pattern [21]. Figure 5(b) plots the response times in a 90-
minute period in which the number of clients was changed
every 30 intervals. We started with 100 clients and set the
client numbers at the 60th, 90th, 120th and 150th interval to
be 200, 300, 200 and 100, respectively. From Figure 5(b), we
observe that, ARMA performed worst among the controllers
with a large number of SLO violations. Kalman filter was
not responsive to the workload change and failed to bring the
response time back to the 1-second target before the workload
changed again. Both of STFC and adaptive-PI successfully
maintained the response times around the target. Figure 5(b)
also suggests that STFC is more responsive to the workload
change with an average settling time of 3 intervals. In contrast,
adaptive-PI had an average settling time of 6 intervals. Fig-
ure V-B reveals that STFC outperformed adaptive-PI by 37%
in terms of relative deviation. It is expected that Kalman filter
and ARMA incurred large deviations.

To better understand the performance of the controllers un-
der dynamic workload, we also plot the actual CPU allocations
(i.e. cap values) in Figure 5(c). It shows that Kalman filter
is not responsive to the workload change and ARMA is too
sensitive to the dynamics. We believe that these two methods
can be tuned to fit the system better. However, controllers
based on local model approximation impose limitation on how
fast workloads can change. Both STFC and adaptive-PI do
not assume any models of the underlying system, and were
able to adjust the CPU allocations properly. In Figure 5(c),
we find that, STFC maintains more stable CPU allocations
during the period between the workload changes (e.g. between
60th and 90th intervals). This explains the more stable control
performance of STFC in Figure V-B and is due to the flexible
control rule selection in STFC.

B. Scheduling multiple objectives

In the previous experiment, we set the control objective pre-
cisely at 1-second response time. In many problems, relaxing
the “point” control objectives to some suboptimal “regions” is

also acceptable. This observation makes the simultaneous con-
trol of multiple objectives feasible and of practical importance.
DynaQoS applies gain scheduling to balance the trade-off
between conflicting objectives. In this experiment, we study
the simultaneous control of conflicting objectives, application
performance and power within the DynaQoS framework.

We assume that individual cloud users are allocated a
power budget to limit the power consumption of their appli-
cations. There are existing work performed VM-level power
measurement with success [9] and we believe that VM-level
power budgeting is desirable in future data centers. In this
experiment, we tested with only one cloud user and consider
the system-wide power as the VM’s consumption. The system-
wide power consumption is measured with a WattsUp Pro
power meter. The meter records the power consumption every
second and we calculate the average power value for each
control interval (i.e. 30 second). The more the CPU resources
the smaller the response times but the larger the power
consumption. The set points were set to 1 second and 250
watt for the response time and power budget, respectively.

Figure 7 plots the response time and power consumption
during the control. Before the 30th interval, the cloud appli-
cation contributed most to the power consumption and there
existed a balance point that generating acceptable perfor-
mance for both objectives. DynaQoS successfully identified
the balance point and stabilize the response time and power
consumption at approximately 800ms and 190w, respectively.
Starting the 30th interval, we launched background jobs in the
host consuming considerable power. In this way, we emulate
the circumstances in which some other jobs belonging to the
same cloud user eat a lot of power and the user needs to
limit the power usage by the cloud application. From the
figure, we can see that the combined power consumption
immediately exceeded and budget and DynaQoS was able to
contain the consumption within the budget by reducing the
CPU allocation to the cloud application. When the response
time or the power deviated from the target, DynaQoS give
more weight to the corresponding STFC. With current settings
of the objectives, DynaQoS was able to brought both response
time and power close to their targets with stable performance.
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Once the background jobs ended, DynaQoS returned back to
the (800ms, 190w) balance point.

C. Service differentiation

In this section, we investigate the effectiveness of DynaQoS
in providing differentiated services to two client classes, Pre-
mium and Basic. DynaQoS applies target adaptation if resource
contention is detected. We compare the target adaptation of
DynaQoS to a strict differentiation policy (STRICT), that is to
guarantee the CPU allocation of the premium class and provide
best-effort service to the basic class. To prevent resource
starvation of the basic class, we reserve 2-core’s capacity to
the basic class’s virtual cluster. We configured the two classes
each with a cluster of 4 DB VMs. Each cluster had 16 VCPUs
and can use up to 16 physical CPU resources in theory. The
client concurrency levels were set to 200 browsing clients for
both classes and resulted in an aggregate CPU demand of
approximately 20 CPUs. The server hosting the virtual clusters
has a capability of 24 CPUs, thus no service differentiation is
needed if the virtual clusters can use the CPU resource freely.
We emulated the change in the CPU capacity by restricting
the 32 VCPUs of the clusters to the first 12 physical CPUs at
the 20th interval. This effectively reduced CPU capacity to 12
CPUs. As discussed in Section II-1, the capacity change due
to scheduling dynamics is possible in current cloud platforms.
More importantly, the change in the actual CPU capacity may
not be reflected in the nominal CPU allocations.

In Figure 8, we compare DynaQoS’s target adaptation with
the STRICT policy. We implemented two variations of the
STRICT policy, one with the knowledge of the exact value of
the new capacity (STRICT w/ info), one without (STRICT w/o
info). As shown in Figure 8, DynaQoS was able to detect the
resource contention at the 32th interval because the premium
class had seen 10 serious violations in the response time. It
triggered the basic class’s target adaptation to the next level,
5 second. The performance of both classes stabilized at the
50th interval. The premium class succeeded to maintain the
1-second target and the basic class achieved a response time
close to its new target. After we increased the capacity at the
60th interval, DynaQoS took 10 intervals to detect the change
and reset the target of the basic class back to 1 second. In
contrast, STRICT w/o info policy failed to detect the capacity
change and did not enforce service differentiation.

In Figure 8, we also observe that, with the new capacity
information (i.e. 12 CPU), STRICT w/ info was able to
guarantee the performance of the premium class. But the basic
class suffered a 10-second response time compared to 5-second
in DynaQoS. An examination of the actual CPU allocation
during the contention period revealed that the basic class
achieved a 5-second level performance because it obtained
more CPU resources than in the STRICT w/ info policy.
During the contention, DynaQoS kept increase the allocation
of both classes until the targets were met. The aggregated CPU
allocation in terms of cap values can be beyond the actual
capacity (12 CPU). It is equivalent to a work-conserving mode
but with bounded allocation to the basic class for the purpose
of differentiation. Different from DynaQoS, STRICT w/ info
enforces that the total allocation is not beyond 12 CPU and
the basic class only got an allocation of 2 CPU or whatever
was left by the premium class. The non-work-conserving mode
in STRICT w/ info policy wasted some CPU time which can
otherwise be used by the basic class.

VI. RELATED WORK

Provisioning of QoS guarantees has been an active research
topic. Early work focused on provisioning service guaran-
tees or differentiation under fixed capacity. Methods such as
queuing-theoretic analysis, traditional feedback control and
adaptive control have been studied extensively. In [23], the
authors assumed a G/G/1 queuing model to guide to resource
allocation so that a desired request latency was achieved.
However, this approach depends on the parameter estimation
of the model, which is difficult to obtain without understanding
the system internals. Due to the absence of the knowledge
of underlying systems, traditional linear feedback control was
applied to control the resource allocation in web servers [1],
[12], [18]. Because the behavior of a web server changes
continuously, the performance of the linear feedback control is
limited. More recent work applied adaptive control [8], [10]
and machine learning [17], [20] to address the issue of the
lack of an accurate server model. Although these approaches
provide better performance than non-adaptive feedback ap-
proaches, they did not address the problem of process delay
which is inherent in most resource allocation problems. Our
previous work [27] used an adaptive fuzzy control approach
without the assumption of a server model to explicitly address



the process delay in resource allocation.
With the proliferation of virtualization technologies, the

subjects of traditional resource allocation become virtual ma-
chines. The resource allocation problems usually come with
constraints defined on application-level QoS or system-level
power consumption or both. To automate the resource alloca-
tion, regulatory control-based and model-based optimization
methods have been studied in literature. Padala et al. [14]
proposed an adaptive proportional controller to regulate the
CPU utilization to 80%. Kalyvianaki et al. [7] used a Kalman
filter controller to track the CPU utilization and adaptively
maintained the utilization to 60%. Our work does not assume
any relationship between the utilization and the application-
level performance. DynaQoS directly regulates response times
to a desired value.

More work falls into the category of model-based opti-
mization. The system models are determined either by sys-
tem identification [26], [25] or moving average-based local
linearization [11], [24], [13]. The authors in [26], [25] ob-
tained the model parameters by applying least squares method
to offline collected data. The work in [11], [24] employed
Kalman filters in the construction of an request arrival rate
model. Padala et al. [13] applied an ARMA method to build
a local model of resource and application-level performance.
System identification can be difficult in some complex systems
and models obtained may not be applied to a different system.
Methods based on local linearization may not be effective un-
der the workload with large and abrupt fluctuations. Our fuzzy
control-based approach does not rely on the understanding of
underlying systems and deals with nonlinearities.

There are also existing work focusing on model-independent
resource allocation. Xu et al. [28] adopted a fuzzy control
approach to mapping application profiles to resource demands.
The adaptability of the controller is realized by updating
fuzzy rules using offline clustering algorithms. Our work
is different in that STFC directly operates on the control
error and the change of the error. It avoids the expensive
computation of fuzzy rules for adaptability. Rao et al. [16],
[15] used reinforcement learning for autonomous resource
allocation with discrete steps. In contrast, DynaQoS is capable
of allocating resource in a much finer granularity.

VII. CONCLUSION

In this paper, we have proposed a response time-based fuzzy
control approach for the allocation of virtualized resources.
We develop a self-tuning fuzzy controller with adaptive output
amplification and flexible rule selection. Based on the fuzzy
controller, we further design a two-layer QoS provisioning
framework, DynaQoS, that supports adaptive multi-objective
resource allocation and service differentiation. Experiments
on a Xen-based cloud testbed and an E-Commerce bench-
mark show that the fuzzy controller outperformed three pop-
ular controllers for CPU resource allocation. DynaQoS also
demonstrated its effectiveness in the simultaneous control of
performance and power and service differentiation.
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