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Abstract—Although cloud computing has gained sufficient
popularity recently, there are still some key impediments to
enterprise adoption. Cloud management is one of the top
challenges. The ability of on-the-fly partitioning hardware re-
sources into virtual machine(VM) instances facilitates elastic
computing environment to users. But the extra layer of resource
virtualization poses challenges on effective cloud management.
The factors of time-varying user demand, complicated interplay
between co-hosted VMs and the arbitrary deployment of multi-
tier applications make it difficult for administrators to plan
good VM configurations. In this paper, we propose a distributed
learning mechanism that facilitates self-adaptive virtual machines
resource provisioning. We treat cloud resource allocation as a
distributed learning task, in which each VM being a highly
autonomous agent submits resource requests according to its
own benefit. The mechanism evaluates the requests and replies
with feedbacks. We develop a reinforcement learning algorithm
with a highly efficient representation of experiences as the heart
of the VM side learning engine. We prototype the mechanism
and the distributed learning algorithm in an iBalloon system.
Experiment results on an Xen-based cloud testbed demonstrate
the effectiveness of iBalloon. The distributed VM agents are able
to reach near-optimal configuration decisions in 7 iteration steps
at no more than 5% performance cost. Most importantly, iBalloon
shows good scalability on resource allocation by scaling to 128
correlated VMs.

I. INTRODUCTION

One important offering of cloud computing is to deliver
computing Infrastructure-as-a-Service (IaaS). In this type of
cloud, raw hardware infrastructure, such as CPU, memory and
storage, is provided to users as an on-demand virtual server.
Aside from client-side reduced total cost of ownership due
to a usage-based payment scheme, a key benefit of IaaS for
cloud providers is the increased resource utilization in data
centers. Due to the high flexibility in adjusting virtual machine
(VM) capacity, cloud providers can consolidate traditional web
applications into a fewer number of physical servers given the
fact that the peak loads of individual applications have few
overlaps with each other [3].

In the case of IaaS, the performance of hosted applications
relies on effective management of VMs’ capacity. However,
the additional layer of resource abstraction introduces unique
requirements for the management. First, effective cloud man-
agement should be able to resize individual VMs in response to
the change of application demands. More importantly, besides
the objective of satisfying Service Level Agreement (SLA) of
individual applications, system-wide resource utilization ought

to be optimized. In addition, real-time requirements of pay-
per-use cloud computing for VM resource provisioning make
the problem even more challenging.

Although server virtualization helps realize performance
isolation to some extent, in practice, VMs still have chances
to interfere with each other. It is possible that one rogue
application could adversely affect the others [16], [6]. In [5],
the authors showed that for VM CPU scheduling alone, it
is already too complicated to determine the optimal param-
eter settings. Taking memory, I/O and network bandwidth
into provisioning will further complicate the problem. Time-
varying application demands add one more dimension to the
configuration task. Dynamics in incoming traffic can possibly
make prior good VM configurations no longer suitable and
result in significant performance degradation.

Furthermore, practical issues exist in fine-grained VM re-
source provisioning. By setting the management interval to
30 seconds, the authors in [20] observed that under sustained
resource demands, a VM needs minutes to get its performance
stabilize after memory reconfiguration. Similar delayed effect
can also be observed in CPU reconfiguration, partially due
to the backlog of requests in prior intervals. The difficulty
in evaluating the immediate output of management decisions
makes the modeling of application performance even harder.

From the standpoint of cloud users, exporting infrastructure
as a whole gives them more flexibility to select VM operating
systems (OS) and the hosted applications. But this poses new
challenges to underlaying VM management as well. Because
public IaaS providers assume no knowledge of the hosted
applications, VM clusters of different users may overlap on
physical servers. The overall VM deployment can show an de-
pendent topology with respect to resources on physical hosts.
The bottleneck of multi-tier applications can shift between
tiers either due to workload dynamics or mis-configurations
on one tier. Mis-configured VMs can possibly become rogue
ones affecting others. In the worst case, all nodes in the cloud
may be correlated and any mistake in the capacity management
of one VM may spread onto the entire cloud.

Our previous work [20] demonstrated the efficacy of rein-
forcement learning (RL)-based resource allocation in a cloud
environment. We applied a centralized RL approach to opti-
mize system-wide VM performance in one physical machine.
The RL agent operates on state spaces defined on co-running
VM configurations and employs neural network-based models



to map global VM configurations to system-wide performance.
Although effective on one host, the centralized management
can not be extended to a practical scale with a large number
of VMs. First, resource allocation is limited to one machine
and can not deal with virtual clusters spanning on multiple
hosts. Second, the complexity of training and maintaining the
models grows exponentially with the number of VMs, which is
prohibitively expensive expensive in a practical scale. Finally,
the models based on VM configurations are not robust to
workload dynamics.

In this paper, we address the issues and present a distributed
learning mechanism for cloud management. More specifically,
our contributions are as follows:

(1) Distributed learning mechanism. We treat VM re-
source allocation as a distributed learning task. Instead of
cloud resource providers, cloud users manage individual VM
capacity and submit resource requests based on application
demands. The host agent evaluates the aggregated requests on
one machine and gives feedback to individual VMs. Based on
the feedbacks, each VM learns its capacity management policy
accordingly. The distributed approach is scalable because the
complexity of the management is not affected by the number
of VMs and we rely on implicit coordination between VMs
belonging to the same virtual cluster.

(2) Self-adaptive capacity management We develop an
efficient reinforcement learning approach for the management
of individual VM capacity. The learning agent operates on a
VM’s running status which is defined on the utilization of mul-
tiple resources. We employ a Cerebellar Model Articulation
Controller-based Q table for continuous state representation.
The resulted RL approach is robust to workload changes
because state on low-level statistics accommodate workload
dynamics to a certain extent.

(3) Resource efficiency metric. We explicit optimize re-
source efficiency by introducing a metric to measure a VM’s
capacity settings. The metric synthesizes application perfor-
mance and resource utilization. When employed as feedbacks ,
it effectively punishes decisions that violate applications’ SLA
and gives users incentives to release unused resources.

(4) Design and implementation of iBalloon. Our prototype
implementation of the distributed learning mechanism, namely
iBalloon, demonstrated its effectiveness in a Xen-based cloud
testbed. iBalloon was able to find near optimal configurations
for a total number of 128 VMs on a 16-node closely correlated
cluster with no more than 5% of performance overhead . We
note that, there were reports in literature about the automatic
configuration of multiple VMs in a cluster of machines. This
is the first work that scales the auto-configuration of VMs to
a cluster of correlated nodes under work-conserving mode.

The rest of this paper is organized as follows. Section II
discusses the challenges in cloud management. Section III
and Section IV elaborate the key designs and implementation
of iBalloon, respectively. Section V and Section VI give
experiments settings and results. Related work is presented in
Section VII. We conclude this paper and discuss future works
in Section VIII.

II. CHALLENGES IN CLOUD MANAGEMENT

A. Complex Resource to Performance Relationship
In this work, we consider CPU, memory and I/O bandwidth

as the building blocks of a VM’s capacity. An accurate
resource to performance model is crucial to the design of
automatic capacity management. However, the workload and
cloud dynamics make the determination of the system model
challenging. The CPU(s) can be time-shared in fine-grain using
either work-conserving (WC) or non-work-conserving (NWC)
mode. The NWC mode ensures better performance isolation
but with possible waste of CPU cycles. We show in [19]
that NWC mode incurs considerable application performance
degradation compared to WC mode. Under NWC mode, there
is usually a simple (and often linear) relationship between CPU
resource and application performance. In contrast, WC mode
introduces uncertainties in modeling due to interferences be-
tween VMs. We take the challenge to consider WC mode in the
design of our capacity management. The relationship between
VM memory size and application performance exhibits consid-
erable nonlinearity. The performance drops dramatically when
memory size is smaller than an application’s system working
set size (WSS). However, WSS can not be accurately estimated
without application knowledge or guest OS instrumentation.
The impediment of mapping I/O resources to application
performance is due to the fact that I/O bandwidth requirement
is highly dependent on the characteristics of application and
the interference from the co-running VMs.

B. Issues of VM Reconfiguration
VM capacity management relies on precise operations that

set resources to desired values assuming the observation of the
instant reconfiguration effect. However, in fine-grained cloud
management, such as in [17], [20], within the management
interval the effect of a reconfiguration can not be correctly
perceived. The work in [20] showed up to 10 minutes delayed
time before a memory reconfiguration stabilizes. Similar phe-
nomenon was also observed in CPU.

We did tests measuring the dead time between a change in
VCPU and the time the performance stabilizes. A single TPC-
W DB tier was tested by changing its VCPU. Figure 1 plots
the application-level performance over time. Starting from 4
VCPUs, the VM was removed one VCPU every 5 minutes
until one was left at the time of the 15th minute. Then the
VCPU was added back one by one. At the 20th minute, the
number of VCPUs increased from 1 to 2. We observed a
delay time of more than 5 minutes before the response time
stabilized at the time of the 25th minute. The reason for
the delay was due to the resource contention caused by the
backlogged requests when there were more CPU available.
The VM took a few minutes to digest the congested requests.

C. Cluster Wide Correlation
In a public cloud, multi-tier applications spanning multiple

physical hosts require all tiers to be configured appropriately.
In most multi-tier applications, request processing involves
several stages at different tiers. These stages are usually
synchronous in the sense that one stage is blocked until the
completion of other stages on other tiers. Thus, the change of
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Fig. 1. Delayed effect of VCPU reconfiguration.
TABLE I

CONFIGURATION DEPENDENCIES OF MULTI-TIER VMS.

DB VCPU 1VCPU 2VCPU 3VCPU 4VCPU
APP MEM 790MB 600MB 320MB 290MB
APP CPU% 61% 47% 15% 10%

the capacity of one tier may affect the resource requirement
on other tiers. In Table I, we list the resource usage on the
front-end application tier of TPC-W as the CPU capacity of
the back-end tier changed. APP MEM refers to the minimum
memory size that prevents the application server from doing
significant swapping I/Os; APP CPU% denotes the measured
CPU utilization. The table suggests that, as the capacity of the
back-end tier increases, the demand for memory and CPU in
the front tier decreases considerably. An explanation is that
without prompt completion of requests at the back-end tier,
the front tier needs to spend resources for unfinished requests.
Therefore, any mistake in one VM’s capacity management
may spread to other hosts. In the worst case, all nodes in
cloud could be correlated by multi-tier applications.

In summary, the aforementioned challenges in cloud com-
puting brings unique requirements to VM capacity manage-
ment. (1) It should guarantee VM’s application-level perfor-
mance in the presence of complicated resource to performance
relationships. (2) It should appropriately resize the VMs in
response to time-varying resource demands. (3) It should be
able to work in an open cloud environment, without any
assumptions about VM membership and deployment topology.

III. THE DESIGN OF IBALLOON

A. Overview
We design iBalloon as a distributed management frame-

work, in which individual VMs initialize the capacity manage-
ment. iBalloon provides the hosted VMs with capacity direc-
tions as well as evaluative feedbacks. Once a VM is registered,
iBalloon maintains its application profile and history records
that can be analyzed for future capacity management. For bet-
ter portability and scalability, we decouple the functionality of
iBalloon into three components: Host-agent, App-agent
and Decision-maker.

Figure 2 illustrates the architecture of iBalloon as well as
its interactions with a VM. Host-agent, one per physical
machine, is responsible for allocating the host’s hardware
resource to VMs and gives feedback. App-agent maintains
application SLA profiles and reports run-time application
performance. Decision-maker hosts a learning agent for
each VM for automatic capacity management. We make two
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Fig. 2. The architecture and working flow of iBalloon. (1) The VM reports
running status. (2) Decision-maker replies with a capacity suggestion.
(3) The VM submits the resource request. (4) Host-agent synchronously
collects all VMs’ requests, reconfigures VM resources and sleeps for a
management interval. (5)-(6) Host-agent queries App-agent for VMs’
application-level performance. (7)-(8) Host-agent calculates and sends
the feedback. (9) The VM wraps the information about this interaction and
reports to Decision-maker. (10) Decision-maker updates the capacity
management policy for this VM accordingly.

assumptions on the self-adaptive VM capacity management.
First, capacity decisions are made based on VM running status.
Second, a VM relies on the feedback signals, which evaluates
previous capacity management decisions, to revise the policy
currently employed by its learning agent.

The assumptions together define the VM capacity manage-
ment task as an autonomous learning process in an interactive
environment. The framework is general in the sense that
various learning algorithms can be incorporated. Although the
efficacy or the efficiency of the capacity management may be
compromised, the complexity of the management task does not
grow exponentially with the number of VMs or the number of
resources. After a VM submits its SLA profile to App-agent
and registers with Host-agent and Decision-maker,
iBalloon works as illustrated in Figure 2. iBalloon considers
the VM capacity to be multidimensional, including CPU,
memory and I/O bandwidth. This is one of the earliest works
that consider these three types of resources together. A VM’s
capacity can be changed by altering the VCPU number,
memory size and I/O bandwidth. The management operation to
one VM is defined as the combination of three meta operations
on each resource: increase, decrease and nop.

B. Key Designs

1) VM Running Status: VM running status has a direct
impact on management decisions. A running status should
provide insights into the resource usage of the VM, from which
constrained or over-provisioned resource can be inferred. We
define the VM running status as a vector of four tuples.

(ucpu, uio, umem, uswap),

where ucpu, uio, umem, uswap denote the utilization of CPU,
I/O, memory and disk swap, respectively. As discussed above,
memory utilization can not be trivially determined. We turn to
guest OS reported metric to calculate umem(See Section IV
for details). Since disk swapping activities are closely related
to memory usage, adding uswap to the running status provides
insights into memory idleness and pressure.

2) Feedback Signal: The feedback signal ought to explicitly
punish resource allocations that lead to degraded application
performance, and meanwhile encouraging a free-up of unused
capacity. It also acts as an arbiter when resource are contented.



We define a real-valued reward as the feedback. Whenever
there is a conflict in the aggregated resource demand, e.g.
the available memory becomes less than the total requested
memory, iBalloon set the reward to −1 (penalty) for the VMs
that require an increase in the resource and a reward of 0
(neural) to other VMs. In this way, some of the conflicted
VMs may back-off leading to contention relaxation. Note
that, although conflicted VMs may give up previous requests,
Decision-maker will suggest a second best plan, which
may be the best solution to the resource contention.

When there is no conflict on resources, the reward directly
reflects application performance and resource efficiency. We
define the reward as a ratio of yield to cost:

reward =
yield

cost
,

where yield = Y (x1, x2, . . . , xm) =

∑m

i=1
y(xi)

m ,

y(xi) =


1 if xi satisfies its SLA;

e
−p∗(|

xi−x
′
i

x
′
i

|)
− 1 otherwise,

and cost = 1+

∑n

i=1
(1−uk

i )
1
k

n . Note that the metric yield is a
summarized gain over m performance metrics x1, x2, · · · , xm.
The utility function y(xi) decays when metric xi violates its
performance objective x

′

i in SLA. cost is calculated as the
summarized utility based on n utilization status u1, u2, · · · , un.
Both the utility functions decay under the control of the decay
factors of p and k, respectively. We consider throughput and
response time as the performance metrics and ucpu, uio, umem,
uswap as the utilization metrics. The reward punishes any
capacity setting that violates the SLA and gives incentives to
high resource efficiency.

3) Self-adaptive Learning Engine: At the heart of iBalloon
is a self-adaptive learning agent responsible for each VM’s
capacity management. Reinforcement learning is concerned
with how an agent ought to take actions in a dynamic
environment so as to maximize a long term reward [24]. It
fits naturally within iBalloon’s feedback driven, interactive
framework. RL offers opportunities for highly autonomous and
adaptive capacity management in cloud dynamics. It assumes
no priori knowledge about the VM’s running environment. It
is able to capture the delayed effect of reconfigurations to a
large extent.

A RL problem is usually modeled as a Markov Decision
Process (MDP). Formally, for a set of environment states S
and a set of actions A, the MDP is defined by the transition
probability Pa(s, s

′) = Pr(st+1 = s′|st = s, at = a) and
an immediate reward function R = E[rt+1|st = s, at =
a, st+1 = s′]. At each step t, the agent perceives its current
state st ∈ S and the available action set A(st). By taking
action at ∈ A(st), the agent transits to the next state st+1 and
receives an immediate reward rt+1 from the environment. The
value function of taking action a in state s can be defined as:

Q(s, a) = E{
∞∑
k=0

γkrt+k+1|st = s, at = a},

),,,( swapmemiocpu uuuu

∑
),( asQ

Memory table

Fig. 3. CMAC-based Q table.

where 0 ≤ γ < 1 is a discount factor helping Q(s, a)’s
convergence. The optimal policy is as simple as: always select
the action a that maximizes the value function Q(s, a) at
state s. Finding the optimal policy is equivalent to obtain an
estimation of Q(s, a) which approximates its actual value. The
estimate of Q(s, a) can be updated each time an interaction
(st, at, rt+1) is finished:

Q(st, at) = Q(st, at)+α∗[rt+1+γ∗Q(st+1, at+1)−Q(st, at)],

where α is the learning rate. The interactions consist of
exploitations and explorations. Exploitation is to follow the
policy obtained so far; in contrast, exploration is the selection
of random actions to capture the change of environment so
as to refine the existing policy. We follow the ε-greedy policy
to design the RL agent. With a small probability ε, the agent
picks up a random action, and follows the best policy it has
found for the rest of the time.

In VM capacity management, the state s corresponds to
the VM’s running status and action a is the management
operation. For example, the action a can show in the form
of (nop, increase, decrease), which indicates an increase in
the VM’s memory size and a decrease in I/O bandwidth.
Actions in continuous space remains an open research problem
in the RL field, we limit the RL agent to discrete actions.
The actions are discretized by setting steps on each resource
instead. VCPU is incremented or decremented by one at a
time and memory is reconfigured in a step of 256MB. I/O
bandwidth is changed by a step of 0.5MB.

The requirement of autonomy in VM capacity management
poses two key questions on the design of the RL engine. First,
how to overcome the scalability and adaptability problems
in RL? Second, how would the multiple RL agents, each
of which represents a VM, coordinate and optimize system-
wide performance. We answer the questions by designing the
VM capacity management agent as a distributed RL agent
with a highly efficient representation of the Q table. Unlike,
multi-agent RL, in which each agent needs to maintain other
competing agents’ information, distributed RL does not have
explicit coordination scheme. Instead, it relies on the feedback
signals for coordination. For example, when resources are
contented, negative feedbacks help resolve the contention.
VMs belonging to the same application receive the same
feedback, which coordinates resource allocations in the vir-
tual cluster. An immediate benefit of distributed learning is
that the complexity of the learning problem does not grow



Algorithm 1 Update the CMAC-based Q value function
1: Input st, at, st+1, rt;
2: Initialize δ = 0;
3: I[at][0] = get index(st);
4: Q(st, at) =

∑j≤num tilings

j=1
Q[I[at][j]];

5: at+1 = get next action(st+1);
6: I[at+1][0] = get index(st+1);
7: Q(st+1, at+1) =

∑j≤num tilings

j=1
Q[I[at+1][j]];

8: δ = rt −Q(st, at + γ ∗Q(st+1, at+1));
9: for i = 0; i < num tilings; i++ do

10: /*If SLA violated, enable fast adaptation*/
11: if rt < 0 then
12: θ[I[at][i]]+ = (1.0/num tilings) ∗ δ;
13: else
14: θ[I[at][i]]+ = (α/num tilings) ∗ δ;
15: end if
16: end for

exponentially with the number of VMs.
The VM running status is naturally defined in a multi-

dimensional continuous space. Although we limit the actions
to be discrete operations, the state itself can render the
Q value function intractable. Due to its critical impact on
the learning performance, there are many studies on the Q
function representation [24], [25]. We carefully reviewed these
works and decided to borrow the design in the Cerebellar
Model Articulation Controller (CMAC) [2] to represent the Q
function. It maintains multiple coarse-grained Q tables or so-
called tiles, each of which is shifted by a random offset with
respect to each other. With CMAC, we can achieve higher
resolution in the Q table with less cost. For example, if each
status input (an element in the status vector) is discretized
to five intervals (a resolution of 20%), 32 tiles will give a
resolution less than 1% (20%/32). The total size of the Q
tables is reduced to 32 ∗ 54 compared to the size of 1004 if
plain look-up table is used. In CMAC, the actual Q table is
stored in a one-dimensional memory table and each cell in the
table stores a weight value. Figure 3 illustrates the architecture
of a one-dimensional CMAC. The VM running status listed
in Figure 3 is only for illustration purpose. The state needs to
work with a four-dimensional CMAC. Given a state s, CMAC
uses a hash function, which takes a pair of state and action as
input, to generate indexes for the (s, a) pair. CMAC uses the
indexes to access the memory cells and calculates Q(s, a) as
the sum of the weights in these cells.

One advantage of CMAC is its efficiency in handling limited
data. Similar VM states will generate CMAC indexes with
a large overlap. Thus, updates to one state can generalize
to the others, leading to accelerated RL learning process.
One update of the CMAC-based Q table only needs 6.5
milliseconds in our testbed, in comparison with the 50-second
update time in a multi-layer neural network [20]. Once a VM
finishes an iteration, it submits the four-tuple (st, at, st+1, rt)
to Decision-maker. Then the corresponding RL agent
updates the VM’s Q table using Algorithm 1. In the algorithm,
we further enhanced the CMAC-based Q table with fast
adaptation when SLA violated. We set the learning rate α to 1
whenever receives a negative penalty. This ensures that “bad”
news travels faster than good news allowing the learning agent
quickly response to the performance violation.

IV. IMPLEMENTATION

iBalloon has been implemented as a set of user-level dae-
mons in guest and host OSes. The communication between
the host and guest VMs is carried out through an inter-domain
channel. In our Xen-based testbed, we used Xenstore for the
host and guest information exchange. Xenstore is a centralized
configuration database that is accessible by all domains on
the same host. The domains who are involved in the com-
munication place ”watches” on a group of pre-defined keys
in the database. Whenever sender initializes a communication
by writing to the key, the receiver is notified and possibly
trigging a callback function. Upon a new VM joining a host,
Host-agent, one per machine, creates a new key under
the VM’s path in Xenstore. Host-agent launches a worker
thread for the VM and the worker ”watches” any change of the
key. Whenever a VM submits a resource request via the key,
the worker thread retrieves the request details and activates
the corresponding handler in dom0 to handle the request. The
VM receives the feedback from Host-agent in a similar
way.

We implemented resource allocation in dom0 in a syn-
chronous way. VMs send out resource requests in a fixed
interval (30 second in our experiments) and Host-agent
waits for all the VMs before satisfying any request. It is
often desirable to allow users to submit requests with dif-
ferent management intervals for flexibility and reliability in
resource allocation. We leave the extension of iBalloon to
asynchronous resource allocation in the future work. After
VMs and Host-agent agree on the resource allocations,
Host-agent modifies individual VMs’ configurations ac-
cordingly. We changed the memory size of the VM by
writing the new size to the domain’s memory/target key
in Xenstore. VCPU number was altered by turning on/off
individual CPUs via key cpu/CPUID/availability. For
I/O bandwidth control, we used command lsof to correlate
VMs’ virtual disks to processes and change the corresponding
processes’ bandwidth allocation via the Linux device-mapper
driver dm-ioband [27].
App-agent, one per host, maintains the hosted applica-

tion SLA profiles. In our experiments, it periodically queries
participant machines through standard socket communication
and reports application performance, such as throughput and
response time, to Host-agent. In a more practical sce-
nario, the application performance should be reported by a
third-party application monitoring tool instead of the clients.
iBalloon can be easily modified to integrate such tools. We
implemented the Decision-maker as a process residing in
each guest OS. The learning process is local to individual VMs
and incurs computation and storage overhead. The distributed
implementation of Decision-maker ensures that the scal-
ability of iBalloon is not limited by the number of VMs.
Quantitative comparison of the distributed implementation and
a centralized approach will be presented in Section VI-D.

We use xentop utility to report VM CPU utilization.
xentop is instrumented to redirect the utilization of each
VM to separate log files in the tmpfs folder /dev/shm
every second. A small utility program parses the logs and
calculates the average CPU utilization for every management



interval. The disk I/O utilization is calculated as a ratio of
achieved bandwidth to allocated bandwidth. The achieved the
bandwidth can be obtained by monitoring the disk activities
in /proc/PID/io. PID is the process number of a VM’s
virtual disk in dom0. The swap rate can also be collected in a
similar way. We consider memory utilization to be the guest
OS metric Active over memory size. The Active metric
in /proc/meminfo is a coarse estimate of actively used
memory size. However, it is lazily updated by guest kernel
especially during memory idle periods. We combine the guest
reported metric and swap rate for a better estimate of memory
usage. With explorations from the learning engine, iBalloon
has a better chance to reclaim idle memory without causing
significant swapping.

V. EXPERIMENT DESIGN

A. Methodology

To evaluate the efficacy of iBalloon, we attempt to answer
the following questions: (1) How well does iBalloon perform
in the case of single VM capacity management? Can the
learned policy be re-used to control a similar application or
on a different platform? (Section VI-B) (2) When there is
resource contention, can iBalloon properly distribute the con-
strained resource and optimize overall system performance?
(Section VI-C) (3) How is iBalloon’s scalability and overhead?
(Section VI-D) Before that, we evaluated the effectiveness
of the reward metric (Section VI-A). We selected three
representative server workloads as the hosted applications.
TPC-W [29] is an E-Commerce benchmark that models after
an online book store, which is primary CPU-intensive. It
consists of two tiers, i.e. the front-end application (APP) tier
and the back-end database (DB) tier. SPECweb [28] is a web
server benchmark suite that delivers dynamic web contents.
It is a CPU and network-intensive server application. TPC-
C [29] is an online transaction processing benchmark that
contains lightweight disk reads and sporadic heavy writes. Its
performance is sensitive to memory size and I/O bandwidth.

To create dynamic variations in resource demand, we in-
strumented the workload generators of TPC-W and TPC-C to
change client traffic level at run-time. The workload generator
reads the traffic level from a trace file, which models after the
real Internet traffic pattern [26]. We scaled down the Internet
traces to match the capacity of our platform.

B. Testbed Configurations

Two clusters of nodes were used for the experiments. The
first cluster (CIC100) is a shared research environment, which
consists of a total number of 22 DELL and SUN machines.
Each machine in CIC100 is equipped with 8 CPU cores and
8GB memory. The CPU and memory configurations limit the
number of VMs that can be consolidated on each machine.
Thus, we use CIC100 as a resource constrained cloud testbed
to verify iBalloon’s effectiveness for small scale capacity man-
agement. Once iBalloon gains enough experiences to make
decisions, we applied the learned policies to manage a large
number of VMs. CIC200 is a cluster of 16 DELL machines
dedicated to the cloud management project. Each node features
a configuration of 12 CPU cores (with hyperthreading enabled)

and 32 GB memory. In the scale-out testing, we deployed 64
TPC-W instances, i.e. a total number of 128 VMs on CIC200.
To generate sufficient client traffic to these VMs, all the nodes
in CIC100 were used to run client generators, with 3 copies
running on each node.

We used Xen version 4.0 as our virtualization environment.
dom0 and guest VMs were running Linux kernel 2.6.32 and
2.6.18, respectively. To enable on-the-fly reconfiguration of
CPU and memory, all the VMs were para-virtualized. The
VM disk images were stored locally on a second hard drive on
each host. We created the dm-ioband device mapper on the
partition containing the images to control the disk bandwidth.
For the benchmark applications, MySQL, Tomcat and Apache
were used for database, application and web servers.

VI. EXPERIMENTAL RESULTS

A. Evaluation of the Reward Metric

The reward metric synthesizes multi-dimensional applica-
tion performance and resource utilizations. We are interested
in how the reward signal guides the capacity management.
The decay rates p and k reflect how important it is for an
application to meet the performance objectives in its SLA and
how aggressive the user increase resource utilization even at
the risk of overload.

We decided to guarantee user satisfaction and assume risk
neutral users, and set p = 10 and k = 1. Figure 4 shows
how the reward reflect the status of VM capacity. In this
experiment, we varied the client traffic to occasionally exceed
the VM’s capacity. reward is calculated from the DB tier of
a TPC-W instance, with a fixed configuration of 3 VCPU,
2GB memory and 2 MB/s disk bandwidth. As shown in
Figure 4, when the load is light, performance objectives are
met. During this period, yield is set to 1 and cost dominates
the change of reward. As traffic increases, resource utilization
goes up incurring smaller cost. Similarly, reward drops
when traffic goes down because of the increase of the cost
factor. In contrast, when the VM becomes overloaded with
SLA violations, the factor of yield dominates reward by
imposing a large penalty. In conclusion, reward effectively
punishes performance violations and gives users incentives
to release unused resources. We also empirically determined
the learning rate and discount factor in [19]. For the rest of
this paper, we set the RL parameters to the following values:
ε = 0.1, α = 0.1, γ = 0.9.

B. Single Application Capacity Management

In its simplest form, iBalloon manages a single VM or
application’s capacity. In this subsection, we study its ef-
fectiveness in managing different types of applications with
distinct resource demands. The RL-based auto-configuration
can suffer from initial poor performance due to explorations
with the environment. To have a better understanding of the
performance of RL-based capacity management, we tested two
variations of iBalloon, one with an initialization of the man-
agement policy and one without. We denote them as iBalloon
w/ init and iBalloon w/o init, respectively. The initial policy
was obtained by running the application workload for 10
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Fig. 5. Response time under various reconfiguration strategies.

hours, during which iBalloon interacted with the environment
with only exploration actions.

Figure 5(a) and Figure 5(b) plot the performance of iBalloon
and its variations in a 5-hour run of the TPC-W and TPC-C
workloads. Note that during each experiment, the host was
dedicated to TPC-W or TPC-C, thus no resource contention
existed. In this simple setting, we can obtain the upper bound
and lower bound of iBalloon’s performance. The upper bound
is due to resource over-provisioning, which allocates more
than enough resource for the applications. The lower bound
performance was derived from a VM template whose capacity
is not changed during the test. We refer it as static. We
configured the VM template with 1 VCPU and 512 MB
memory in the experiment. If not otherwise specified, we
used the same template for all VM default configuration in
the remaining of this paper.

From Figure 5(a), we can see that, iBalloon achieved close
performance compared with over-provisioning. iBalloon w/o
init managed to keep almost 90% of the request below the
SLA response time threshold except that a few percent of
requests had wild response times. It suggests that, although
started with poor policies, iBalloon was able to quickly adapt
to good policies and maintained the performance at a stable
level. We attribute the good performance to the highly efficient
representation of the Q table. The CMAC-enhanced Q table
was able to generalize to the continuous state space with a
limited number of interactions. Not surprisingly, static’s poor
result again calls for appropriate VM capacity management.

As shown in Figure 5(b), iBalloon w/ init showed almost
optimal performance for TPC-C workload too. But without
policy initialization, iBalloon can only prevent around 80%
of the requests away from SLA violations; more than 15%
requests would have response times larger than 30 seconds.
This barely acceptable performance stresses the importance
of a good policy in more complicated environments. Unlike
CPU, memory sometimes shows unpredictable impact on
performance. The dead time due to the factor of memory is
much longer than CPU (10 minutes compared to 5 minutes in
our experiments). In this case, iBalloon needs a longer time to
obtain a good policy. Fortunately, the derived policy, which is
embedded in the Q table, can be possibly re-used to manage
similar applications.

Table II lists the application improvement if the learned

TABLE II
PERFORMANCE IMPROVEMENT DUE TO INITIAL POLICY LEARNED FROM

DIFFERENT APPLICATIONS AND CLOUD PLATFORMS.

Throughput Response time
Trained in TPC-W
Tested in SPECweb 40% 80%
Trained in CIC100
Tested in CIC200 20% 30%

management policies are applied to a different application
or to a different platform. The improvement is calculated
against the performance of iBalloon without an initial policy.
SPECweb [28] is a web server benchmark suite that contains
representative web workloads. The E-Commerce workload in
SPECweb is similar to TPC-W (CPU-intensive) except that
its performance is also sensitive to memory size. Results
in Table II suggest that the Q-table learned for TPC-W
also worked for SPECweb. An examination of iBalloon’s log
revealed that the learned policy was able to successfully match
CPU allocation to incoming traffic. A policy learned on cluster
CIC100 can also give more than 20% performance improve-
ment to the same TPC-W application on cluster CIC200. Given
the fact that the nodes in CIC100 and CIC200 have more
than 30% difference on CPU speed and disk bandwidth, we
conclude that iBalloon policies are applicable to heterogeneous
platforms across cloud systems.

The reward signal provides strong incentives to give up
unnecessary resources. In Figure 6, we plot the configuration
of VCPU, memory and I/O bandwidth of TPC-W, SPECweb
and TPC-C as client workload varied. Recall that we do not
have an accurate estimation of memory utilization. We rely on
the Active metric in meminfo and the swap rate to infer
memory idleness. The Apache web server used in SPECweb
periodically free unused httpd process thus memory usage
information in meminfo is more accurate. As shown in
Figure 6, with a 10-hour trained policy, iBalloon was able
to expand and shrink CPU and I/O bandwidth resources as
workload varied. As for memory, iBalloon was able to quickly
respond to memory pressure; it can release part of the unused
memory although not completely. The agreement in shapes of
each resource verifies the accuracy of the reward metric.

We note that the above results only show the performance
of iBalloon statistically. In practice, service providers concern
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Fig. 7. User-perceived performance under iBalloon.

more about user-perceived performance, because in production
systems, mistakes made by autonomous capacity management
can be prohibitively expensive. To test iBalloon’s ability
of determining the appropriate capacity online, we ran the
workload generators at full speed and reduced the VM’s
capacity every 15 management intervals. Figure VI-B plots
the client-perceived results in TPC-W and TPC-C. In both
experiments, iBalloon was configured with initial policies.
Each point in the figures represents the average of a 30-second
management interval. As shown in Figure 7(a), iBalloon is
able to promptly detect the mis-configurations and reconfigure
the VM to appropriate capacity. On average, throughput and
response time can be recovered within 7 management intervals.
Similar results can also be observed in Figure 7(b) except
that client-perceived response times have larger fluctuations
in TPC-C workload.

C. Coordination in Multiple Applications

iBalloon is designed as a distributed management frame-
work that handles multiple applications simultaneously. The
VMs rely on the feedback signals to form their capacity
management policy. Different from the case of a single ap-
plication, in which the feedback signal only depends on the
resource allocated to the hosting VM, in multiple application
hosting, the feedback signals also reflect possible performance
interferences between VMs.

We designed experiments to study iBalloon’s performance
in coordinating multiple applications. Same as above, iBalloon
was configured to manage only the DB tiers of TPC-W
workload. All the DB VMs were homogeneously hosted in
one physical host while the APP VMs were over-provisioned
on another node. The baseline VM capacity strategy is to
statically assign 4VCPU and 1GB memory to all the DB
VMs, which is considered to be over-provisioning for one VM.
iBalloon starts with a VM template, which has 1VCPU and
512MB memory. Figure 8 draws the performance of iBalloon
normalized to the baseline capacity strategy in a 5-hour test.
The workload to each TPC-W instances varied dynamically,
but the aggregated resource demand is beyond the capacity
of the machine that hosts the DB VMs. Figure 8 shows that,
as the number of the DB VMs increases, iBalloon gradually
beats the baseline in both throughput and response time.

An examination of the iBalloon logs revealed that iBalloon
suggested a smaller number of VCPUs for the DB VMs,
which possibly alleviated the contention for CPU. The base-
line strategy encouraged resource contention and resulted in
wasted work. In summary, iBalloon, driven by the feedback,
successfully coordinated competing VMs to use the resource
more efficiently.

D. Scalability and Overhead Analysis

We scaled iBalloon out to the large dedicated CIC200
cluster. We deployed 64 TPC-W instances, each with two
tiers, on the cluster. We randomly deployed the 128 VM on
the 16 nodes, assuming no topology information. To avoid
possible hotspot and load unbalancing, we make sure that each
node hosted 8 VMs, 4 APP and 4 DB tiers. We implemented
Decision-maker as distributed decision agents. The de-
ployment is challenge to autonomous capacity management
for two reasons. First, iBalloon ought to coordinate VMs on
different hosts, each of which runs its own resource alloca-
tion policy. The dependent relationships makes it harder to
orchestrate all the VMs. Second, consolidating APP (network-
intensive) tiers with DB (CPU-intensive) tiers onto the same
host poses challenges in finding the balanced configuration.

Figure 9 plots the average performance of 64 TPC-W
instances for a 10-hour test. In addition to iBalloon, we also
experimented with four other strategies. The optimal strategy
was obtained by tweaking the cluster manually. It turned out
that the setting: DB VM with 3VCPU,1GB memory and APP
VM with 1VCPU, 1GB memory delivered the best perfor-
mance. work-conserving scheme is similar to the baseline
in last subsection; it sets all VMs with fixed 4VCPU and
1GB memory. Adaptive proportional integral (PI) method [18]
directly tracks the error of the measured response time and the
SLO and adjusts resource allocations to minimize the error.
Auto-regressive-moving-average (ARMA) method [17] builds
a local linear relationship between allocated resources and
response time with recently collected samples, from which
the resource reconfiguration is calculated. The performance is
normalized to optimal. For throughput, higher is better; for
response time, lower is better.

From the figure, iBalloon achieved close throughput as
optimal while incurred 20% degradation on request latency.
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This is understandable because any change in a VM’s capacity,
especially memory reconfigurations, bring in unstable periods.
iBalloon outperformed work-conserving scheme by more than
20% in throughput. Although work-conserving had compro-
mised throughput, it achieved similar response time as optimal
because it did not perform any reconfigurations. adaptive-PI
and ARMA achieved similar throughput as iBalloon but with
more than 100% degradations on response time. These control
methods which are based either on system identification or
local linearization can suffer poor performance under both
workload and cloud dynamics. We conclude that iBalloon
scales to 128 VMs on a correlated cluster with near-optimal
application performance. In the next, we perform tests to
narrow down the overhead incurred on request latency.

In previous experiments, iBalloon incurred non-negligible
cost in response time. The cost was due to the real overhead
of iBalloon as well as the performance degradation caused
by the reconfiguration. To study the overhead incurred by
iBalloon, we repeated the experiment as in Section 9 except
that iBalloon operated on the VMs with optimal configurations
and reconfigurations were disabled in Host-agent. In this
setting, the overhead only comes from the interactions between
VMs and iBalloon. Figure 10 shows the overhead of iBalloon
with two different implementations of Decision-maker,
namely the centralized and the distributed implementations.
In the centralized approach, a designated server performs RL
algorithms for all the VMs. Again, the overhead is normalized
to the performance in the optimal scheme.

Figure 10 suggests that the centralized decision server
becomes the bottleneck with as much as 50% overhead on
request latency and 20% on throughput as the number of
VMs increases. In contrast, the distributed approach, which
computes capacity decisions on local VMs, incurred less
than 5% overhead on both response time and throughput.
To further confirm the limiting factor of centralized decision
server, we split the centralized decision work onto two separate
machines(denoted as Hierarchical) in the case of 128 VMs.
As shown in Figure 10, the overhead on request latency
reduces by more than a half. Additional experiments revealed
that computing the capacity management decisions locally
in VMs requires no more than 3% CPU resources for Q
computation and approximately 18MB of memory for Q table
storage. The resource overhead is insignificant compared to the
capacity of the VM template (1VCPU, 512MB). These results

conclude that iBalloon adds no more than 5% overhead to the
application performance with a manageable resource cost.

VII. RELATED WORK

Cloud computing allows cost-efficient server consolidation
to increase system utilization and reduce cost. Resource man-
agement of virtualized servers is an important and challenging
task, especially when dealing with fluctuating workloads and
performance interference. Traditional control theory and ma-
chine learning have been applied with success to the resource
allocation in physical servers; see [1], [14], [22], [11], [12],
[21] for examples. Recent work demonstrated the feasibility
of these methods to automatic virtualized resource allocation.

Early work [18], [23] focused on the tuning of the CPU
resource only. Padala, et al. employed a proportional con-
troller to allocate CPU shares to VM-based multi-tier applica-
tions [18]. This approach assumes non-work-conserving CPU
mode and no interference between co-hosted VMs, which
can lead to resource under-provisioning. Recent work [10]
enhanced traditional control theory with Kalman filters for
stability and adaptability. But the work remains under the
assumption of CPU allocation. The authors in [23] applied
domain knowledge guided regression analysis for CPU allo-
cation in database servers. The method is hardly applicable to
other applications in which domain knowledge is not available.

The allocation of memory is more challenging. The work
in [7] dynamically controlled the VM’s memory allocation
based on memory utilization. Their approach is application
specific, in which the Apache web server optimizes its memory
usage by freeing unused httpd processes. For other appli-
cations like MySQL database, the program tends to cache
data aggressively. The calculation of the memory utilization
for VMs hosting these applications is much more difficult.
Xen employs Self-Ballooning [15] to do dynamic memory
allocation. It estimates the VM’s memory requirement based
on OS-reported metric: Commited_AS. It is effective ex-
panding a VM under memory pressures, but not being able
to shrink the memory appropriately. More accurate estimation
of the actively used memory (i.e. the working set size) can be
obtained by either monitoring the disk I/O [9] or tracking the
memory miss curves [30]. However, these event-driven updates
of memory information can not promptly shrink the memory
size during memory idleness. Although, we have not found a
good way to estimate the VM’s working size, iBalloon relies



on a combination of performance metrics to decide memory
allocation. With more information on VMs’ business and past
trial-and-error experiences, iBalloon has the potential in more
accurate memory allocation.

Automatic allocation of multiple resources [17] or for
multiple objectives [13] poses challenges in the design of
the management scheme. Complicated relationship between
resource and performance makes the modeling of underly-
ing systems hard. Padala, et al. applied an auto-regressive-
moving-average (ARMA) model with success to represent the
allocation to application performance relationship. They used
a MIMO controller to automatically allocate CPU share and
I/O bandwidth to multiple VMs. However, the ARMA model
may not be effective under workload with large variations. Its
performance can also be affected by VM inferences.

Different from the above approaches in designing a self-
managed system, RL offers tremendous potential benefits in
autonomic computing. Recently, RL has been successfully
applied to automatic application parameter tuning [4], optimal
server allocation [25] and self-optimizing memory controller
design [8]. Autonomous resource management in cloud sys-
tems introduces unique requirements and challenges in RL-
based automation, due to dynamic resource demand, changing
topology and frequent VM interference. More importantly,
user-perceived quality of service should also be guaranteed.
The RL-based methods should be scalable and highly adaptive.
The authors in [20] attempted to apply RL in host-wide
VM resource management. They addressed the scalability and
adaptability issues using model-based RL. However, the com-
plexity of training and maintaining the models for the systems
under different scenarios becomes prohibitively expensive
when the number of VMs increases. In contrast, we design
resource allocation in a distributed fashion. In a distributed
learning process, iBalloon demonstrated a scalability up to 128
correlated VMs on 16 nodes under work-conserving mode.

VIII. CONCLUSION

In this work, we present iBalloon, a generic framework that
allows self-adaptive virtual machine resource provisioning.
The heart of iBalloon is the distributed reinforcement learning
agents that coordinate in dynamic environment. Our prototype
implementation of iBalloon, which uses a highly efficient
reinforcement learning algorithm as the learning, was able to
find the near optimal configurations for a total number of 128
VMs on a closely correlated cluster with no more than 5%
overhead on application throughput and response time.

Nevertheless, there are several limitations of this work. First,
the management operations are discrete and are in a relatively
coarse granularity. Second, the RL-based capacity manage-
ment still suffers from initial performance considerably. Future
work can extend iBalloon by combining control theory with
reinforcement learning. It offers opportunities for the control
theory to provide fine grained operations and stable initial
performance.
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