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Abstract—In this paper, we propose a self-boosted co-
scheduling(SBCO) algorithm to reduce synchronization latency
among consolidated virtual machines. Different from conven-
tional co-scheduling which requires all runnable sibling vCPUs
that are from the same VM to be scheduled at precisely the same
time, SBCO reorders all these sibling vCPUs threads coarsely at
the same level in their respective run queue, then schedules them
at the same time window, and maintains global fairness between
consolidated VMs. SBCO minimizes costly pCPU preemption
and preserves the flexibility of the dynamic mapping between
vCPUs and pCPUs. We have implemented SBCO in KVM and
conducted comprehensive evaluations with various workloads.
Results shows that SBCO is able to reduce the number of context
switches significantly and achieve overall performance improve
up to 10% compared with other competitors and improve up to
60% compared with the default scheduler.

I. INTRODUCTION

SMP VMs are ubiquitous in today’s scientific computing

clusters, modern data centers and cloud computing infras-

tructures. Public infrastructure-as-as-a-service (IaaS) providers

like Amazon’s EC2 provides extra large instances each with

as many as 16 virtual cores [1]. Though modern OSes can

be seamlessly running inside a VM with techniques like para

or full virtualization [25], [27] and endusers are able to run

their applications as if they are running on native OSes. Due to

resource contention, it is challenging to both improve resource

utilization and achieve overall the best performance when

consolidating many VMs together [21].

SMP VM blurs the distinction between a virtualized en-

vironment with multi-core vCPUs and a physical multi-

processor system, imposing a great challenge to vCPU

scheduling. Commodity OSes often use spin-locks for ex-

clusive access to shared code or data [23]. Such spin-locks

require running processes to frequently acquire and release

locks, while assuming only a short period of waiting time.

They save the latency cost in circumstances such as interrupt

service routines when yielding pCPU for context switch [22]

is needed. However, in a virtualized environment, it is hard

to keep the assumption when a vCPU is preempted while still

holding a spin-lock and at the same time another sibling vCPU

is still waiting for the spin-lock. Thus the sibling vCPU has to

wait until the preempted vCPU to be rescheduled and releases

the lock. Such switch between sibling vCPUs wastes large

amounts of CPU cycles(usually in the order of a few millisec-

onds) and causes severe performance degradation, particularly

when the waiting vCPU has been scheduled multiple times

before the release of the lock. Such phenomenon is unique

in multicore VM environments and often referred to as lock

holder preemption(LHP) [23].

To solve the LHP issue, one solution is to detect the lock

holder and avoid preemption. Lock holder could be detected

by instrumenting guest OS’s spin-lock primitives in para-

virtualization [23] or by leveraging hardware techniques [28].

Once lock holder is detected, hypervisor’s scheduler either

avoids preempting lock holder or delays the lock waiter for the

purpose of minimizing the synchronization latency [15]. This

lock holder detection and avoidance technique is beneficial to

the cases where spin-lock is infrequently involved. However,

it still requires either the change of the guest OS itself or the

support from low-level hardware. The lock holder detection

itself also cause VM’s response latency.

VM LHP issue could be addressed by co-scheduling [20],

[26]. In SMP VM co-scheduling, the sibling vCPUs are co-

scheduled on pCPUs simultaneously. This gives the guest OS

an illusion of running on a dedicated server with the same

number of processors. Co-scheduling improves performance

by facilitating prompt communication and reducing synchro-

nization delay between sibling vCPUs. For example, if one

vCPU A is spinning on a lock waiting for another vCPU

B to release the lock, co-scheduling A and B allows the

spinning vCPU A to proceed as soon as B releases the lock

without waiting for the preempted vCPU to get rescheduled.

A few recent work applied co-scheduling to SMP VMs run-

ning concurrent tasks [9], [24]. Such proactive solutions are

favorable to applications heavily relying on spin-lock and their

performance gain outweighs the overhead of co-scheduling.

However, co-scheduling often comes with side effects, such

as CPU utilization fragmentation, execution delay and priority

inversion [22]. These potential effects limit the massive use of

SMP VM co-scheduling.

In this paper, we propose a new approach called SBCO for

performance optimization in virtualized SMP environments.

SBCO inherits the advantages of traditional co-scheduling

such as minimizing synchronization latency and accelerating

communication between vCPUs without the side effects of

scheduling fragmentation and priority inversion. SBCO does

not force simultaneously co-scheduling all the sibling vCPUs.
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Instead, it re-adjusts the sibling vCPUs positions in their

respective run queues and facilitates sibling vCPUs to be

scheduled at the same time window. Specifically, SBCO first

dynamically adjusts the affinity between vCPUs and pCPUs

to prevent sibling vCPUs from being assigned to the same run

queue. By distributing sibling vCPUs evenly to different run

queues, it significantly reduces the chance of stacking sibling

vCPUs. Then through minimizing the scheduling distance of

sibling vCPUs defined in Section II-C, SBCO reduces the

maximal scheduling distance and further reduces synchro-

nization latency. We have implemented SBCO in KVM, and

performed extensive evaluations with both micro-benchmarks

and real-world workloads. The experimental results show that

SBCO can significantly reduce the number of vCPU context

switches and achieves an overall performance improvement by

more than 10%.

The rest of the paper is organized as follows. Section II-B

discusses the background and challenges of co-scheduling in

virtualized SMP environment and presents the motivations of

our approach. Section III presents the design of the SBCO

algorithm. The details of the implementations are introduced in

Section IV. Section V shows the fairness experimental results,

performance evaluation and scalability analysis of our SBCO

approach. Section VI discusses other related work. Section VII

concludes the paper with remarks on limitations and possible

future work.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss the common synchronization

mechanisms of SMP VM scheduling and the Lock Holder

Preemption phenomenon. Then, we elaborate the challenges

of SMP VM scheduling caused by virtualization abstraction

layer. Finally, we introduce a new concept called scheduling

distance, analyze its effect on synchronization latency and

present a few motivation examples for our new approach.

A. Background

The vCPUs of a SMP VM are usually attached to processes

or threads on a physical host and they execute codes by

direct code execution or instruction emulation [25]. vCPUs

are scheduled as processes or threads on a host OS. In a

parallel program, a lock primitive is widely used to provide

synchronization and guarantee atomic and consistent state

changes in a multiprocessor system. There are typically two

types of lock primitives: semaphore/mutex and spin-lock [20].

The former lock primitive blocks the running process until the

required resources or locks become available. The scheduler

swaps out the running process(unless specifically stated, we

use the term process, thread and task interchangeably) and

immediately schedules the next runnable process so as to avoid

wasting CPU cycles. It needs process context switches to wake

up the sleeping process, thus degrading system performance.

In contrast, spin-lock allows the thread waiting for the required

resource to keep occupying the processor and repeatedly check

the lock status. It works efficiently when synchronization only

takes a small amount of time(usually dozens of or hundreds

of microseconds). Because the lock efficiency directly affects

system performance and capability, spin-lock is widely used

in modern OSes.

Spin-lock poses challenges in SMP VM scheduling. It works

effectively in the cases that the lock holder only holds the lock

for a very short period of time and the target resources become

available soon. This is satisfied in physical environments

where OS itself has control over the resources and the way

of scheduling via determining whether or not to preempt out

a process. However, in a virtualized environment, it is the

virtual machine monitor(VMM) that retains ultimate control

of the resources and vCPUs scheduling usually based on time

slices. Thus the current spin-lock design may not be effecient.

For instance, if a vCPU is trying to acquire a spin-lock, it

has to wait until the preempted vCPU is scheduled back and

release the lock. Such phenomena, referred to as LHP issue,

significantly increases the lock holding time and may even

waste a vCPU’s time slice, especially in CPU over-committed

cases. The high vCPU contention from a preempted lock leads

to significant waste of CPU cycles [23].

B. Challenges

1) Dynamic vCPU affinity and vCPU stacking: A VM’s

vCPU affinity configuration is one of factors complicating

SMP VM scheduling. VMM usually does not distinguish

vCPUs from different VMs and the default scheduler often

employs a global load balance policy by scheduling processes

to less busy pCPUs [22]. Such policy keeps the balance

of utilization between different pCPUs because of no limit

of default affinity. The randomness of affinity is likely to

have one or more sibling vCPUs scheduled in the same

run queue. This is usually referred to as vCPU stacking

issue [22]. Though stacking of sibling vCPUs is a probability

type of issue, it greatly increases the lock synchronization

latency in a virtualized environment. If stacked sibling vCPUs

are competing for the same resource using spin-lock, the

sequential vCPU execution would waste significant amounts

of CPU cycles. The probability of stacking sibling vCPUs

in CPU intensive workload case was studied in [22]. Their

experimental results reveal that the chance of more than one

sibling vCPU in the same run queue reaches as high as 45%

when three CPU intensive VMs were consolidated on the same

server [22]. We further conducted complementary experiments

to examine the vCPU stacking issue with IO intensive and

CPU-I/O mixed workloads such as SPECjbb and Kernbench.

The details of these workloads are introduced in Section V-A.

We implemented an independent kernel thread to periodically

examine each pCPU run queue with an interval of one second.

Then, we ran an kernel compile benchmark and SPECjbb

in a number of VMs and counted the number of samples

when more than one vCPU sibling exists in the same run

queue. Table I shows the accumulated probability of stacking

vCPUs can be higher than 20% for both workloads. In the

case with three VMs, the probability can go beyond 42% with

the Kernbench workload. Stacking sibling vCPUs can greatly

increase the chance of having LHP issue. Such high stacking
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TABLE I
PROBABILITY OF STACKING SIBLING VCPUS

Apps 2 VMs 3VMs

SPECjbb 20.25% 31.63%

Kernbench 33.19% 42.84%
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Fig. 1. Cost of vCPU context switch w/ and w/o virtualization.

ratio can even break an illusion of synchronous progress of

vCPUs, which is expected from a guest OS [25]. Without

this illusion, synchronization latency significantly degrades

applications’ performance.

2) Costly vCPU context switch: Due to the fact that each

vCPU is associated with additional data structures to maintain

information like the status of virtual registers, scheduling a

vCPU thread causes uncertainties to the indirect cost [14],

[19]. Even if a vCPU thread is scheduled back to the original

pCPU, inside the guest VM, the vCPU may be serving a

different task, which results in invalidation of pCPU cache.

To evaluate the additional cost of context switching in a

virtualized environment, we ran a context switch micro bench-

mark [6] in a KVM guest VM and examine the average cost

of context switch and system call. As shown in Figure 1,

on average, vCPU context switch costs 2.5 to 3 times more

in a virtualized environment compared with the a physical

environment. Therefore, effective vCPU context switch is one

of the design goals of our SBCO approach.

C. The effect of scheduling distance

A commodity scheduler commonly splits up pCPU time

between runnable processes in a fine-grained way in the order

of nanosecond accurate time slices. Recall that sibling vCPUs

could be stacked in the same run queue of a pCPU. Let Prun

denote the current total number of processes in a run queue

and Tw be a process’s dynamic priority, also referred as the

weight. Twi is the weight of process i in a run queue. Let Smin

be sched min granularity, the minimum time a task will be

allowed to run on CPU before being forcibly preempted out.

Let Slatency be sched latency, the default scheduling period in

which all run queue processes are scheduled once. Smin and

S latency are configurable parameters in the default scheduler.

Tslice is the time slice of a process with the weight of Tw.

Assuming all the processes in a pCPU run queue have the

same weight, then each process also has the same time slice

Tslice. The actual scheduling period Tp, which is the total time

all run queue processes are scheduled once, is calculated in the

following formula. Tp is also the maximum time one process

has to wait until all other process to yield pCPU. For instance,

if a VM has two vCPUs A and B stacked in the same pCPU

run queue. Assuming A is at the front of the run queue and

B is at the tail of the run queue, in the worst CPU intensive

workload case, B has to wait for Tp after A gets the chance

to be scheduled.

Ptotal = Slatency/Smin;

Tp =

{
Slatency Prun ≤ Ptotal;

Prun ∗ Smin Otherwise.

Tslice = Tp ∗ (Tw/
n∑
1

Twi), i ∈ [1, Prun].

The scheduling time can be viewed as an axis with the time
to schedule a vCPU as the origin, and time slots when vCPUs

will be scheduled as scheduling ordinates. We define a VM’s

schedule distance as the maximal difference of sibling vCPUs’

scheduling ordinate. The latter is also the relative position

in pCPU run queues. As the illustration example shown in

Figure 2, VM1 and VM2 are running on a physical machine

with two pCPUs. At T0, both of VM1’s vCPUs are in a

pCPU’s run queue and are ready to run. Moreover, VM1’s

vCPU0 is the next candidate to be run on pCPU0 and will

be scheduled immediately when pCPU0 becomes available.

However, VM1’s vCPU1 is currently at the bottom of pCPU1’s

run queue and does not start to run until Tn. Let Pos(t)

denote process t’s position in its run queue and L(n) as the

length of pCPUn’s run queue. We define delta, also denoted as

D(VM1)in Figure 2, as the maximum difference of scheduling

distance disparity between sibling vCPUs as follows:

Pos(vCPU0) = 1;

Pos(vCPU1) = L(pCPU1);

delta = |Pos(vCPU0)− Pos(vCPU1)|.
Though vCPU1 is runnable in this case, if vCPU0 is waiting

for vCPU1 to release the lock, then vCPU0 has to wait for

pCPU1 to reschedule task vCPU1. At the same time, vCPU1

has to wait for processes before it to acquire pCPU, execute

for Tslice and then yield pCPU for reasons like waiting for IO

or using up its own time slice. The waiting time could be as

long as Tp in the worst case, which is often the order of tens

of milliseconds. Depending on the length of the run queue

and how long a task typically run before getting switched out

again, it can considerably degrade performance, especially in

the dense consolidation of CPU intensive workloads, in which

the average run queue size is usually large. A VM’s scheduling

distance can greatly increase synchronization latency even

if the sibling vCPUs are dispatched to different run queues

without stacking vCPU.

Dthreshold = α ∗Qsize, α ∈ (0, 1).

We investigated VM’s scheduling distance by running a
few VMs with the average run queue size as six and ten

respectively. We implemented an independent kernel thread

to periodically check each pCPU’s run queue and simply

count the cases that a vCPU is ready to be scheduled but
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Fig. 2. Scheduling distance sibling vCPUs.

TABLE II
PROBABILITY OF SCHEDULING DISTANCE EXCEEDS THE THRESHOLD

RQ size
Probability of exceeding Dthreshold

Kernbech Parsec

6 42.36% 40.75%

10 48.21% 45.13%

with one or more sibling vCPUs having Dthreshold distance

in the respective run queue. Dthreshold is equal to α times

of a pCPU run queue length, denoted as Qsize in the above

formula. Note that a big α value leads to large Dthreshold, and

less probability of exceeding the threshold. In contrast, a small

α may cause frequent adjustment for balancing sibling vCPUs.

We ran Kernbench and NPB benchmarks(refer to Section V-A

for detailed benchmark introduction) and computed the prob-

abilities for sibling vCPUs to exceed different Dthreshold. As

As shown in Table II, the probability of exceeding Dthreshold

with α as 2/3 is between 40% and 50% for both workloads

when the average run queue size is six and ten respectively.

The α parameter is dynamically configurable and its default

value is 2/3. To alleviate the synchronization latency problem

from the LHP issue, we propose SBCO which leverages the

scheduling distance information to make scheduling decisions.

III. SELF-BOOSTED CO-SCHEDULING

SBCO is designed to reduce costly vCPU context switch-

ing and shorten the synchronization latency caused by

spin-lock holder. It maintains a balance between a fast

vCPU with a large scheduling ordinate and a slow sibling

vCPU with a small scheduling ordinate. We try to answer the

following questions when designing SBCO. 1) How to avoid

stacking sibling vCPUs? 2) How to flexibly balance a fast

vCPU and a slow sibling vCPU? 3) How to avoid forcibly

preemption and reduce vCPU context switches? 4) How to

control SBCO’s overhead while keeping its efficiency? In this

section, we elaborate the design details, and discuss a few

optimization techniques of the design.

A. Extending red black tree

In existing Completely Fair Scheduler(CFS) scheduler, each

pCPU has an independent run queue. All the processes in a

pCPU run queue are managed with a self-balanced binary

search tree called read black tree(RB tree) [2]. The process

with the smallest vruntime (virtual runtime in nanosec-

onds), which corresponds to the left most node in the RB

tree, is chosen by the scheduler as the next candidate to run.

�������		
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(b) extended red black tree with index

Fig. 3. Scheduling distance in a cfs run queue.

The default RB tree is constructed starting from the arrival of

the first process in a run queue. New processes with smaller

vruntime will be placed before the left most child and the

tree will rotate itself to keep balanced. When a process finishes

running, its vruntime with the total execution time weighted

by its priority is updated. Once a process leaves its run queue,

the associated node will be removed from the RB tree of that

run queue and the RB tree will also rotate to keep balanced.

The default RB tree does not maintain processes’ relative

positions in a run queue. Instead, it simply sorts processes

according to their vruntime. Therefore, it involves RB tree

traversal in order to calculate how many processes in a run

queue are ahead of a process, which is contradicting to the

simple but efficient design philosophy of scheduler design.

We solve this dilemma by extending the default RB tree data

structure by adding RB index when constructing a RB tree.

The RB index of a RB tree node is defined as the total

number of nodes in the left child sub-tree of this node. We

summarize all the terms we mentioned as following:

RB index: The total number of nodes in the left child sub-

tree of a node in a RB tree. It is updated with RB tree balance

rotation when there is a node added into or removed from a

run queue.

Scheduling ordinate: A vCPU process’s position in its run

queue. It reflects the maximum number of processes ahead

before a process gets scheduled.

Scheduling distance: The difference between of the fastest

vCPU’s scheduling ordinate and the slowest vCPU’s

scheduling ordinate in a VM. Figure 3(a) gives a

snapshot of a pCPU run queue. To demonstrate the RB tree

of a run queue, we run a four vCPUs KVM VM with CPU

intensive workloads to keep all vCPUs busy. Meanwhile, we

ran a four threads application(cpuhog) on the host machine

to represent non-vCPU threads in the pCPU run queue. In

reality, these non-vCPU threads could be kernel threads or
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Algorithm 1 SBCO Main Algorithm

1: procedure SBCO(VOID)
2: a← leftmost task inRB tree
3: n← a
4: if Task a is a vCPU task then
5: orda← SCHED ORDINATE(a)
6: for all Task t’s sibling task b do
7: if Task b’s dirty flag is set then
8: continue
9: end if

10: ordb← SCHED ORDINATE(b)
11: delta← abs(orda- ordb)
12: if delta ≥ Dthreshold then
13: n← Task a′s successor in the run queue
14: SCHED BLANCE(t, b)
15: break
16: end if
17: end for
18: end if
19: return n
20: end procedure

any applications running together with a VM hypervisor. All

the processes’s information, including process name(command

column), process id(pid column), virtual runtime(vruntime

column) and parent process’s virtual runtime, are listed in the

figure. All the vCPUs in a KVM VM have the same process

name(qemu-kvm) . Based on the virtual runtime relationship

between child process and parent process in the figure, a RB

tree is constructed in Figure 3(b). The RB index column in

Figure 3(a) and each number in the small circles in Figure 3(b)

represents the total number of nodes in the left child sub-tree of

a process. Based on RB index, scheduling ordinate
of a task in its run queue is calculated by Algorithm III-B

and printed out in the right most column in Figure 3(a) and in

the brackets under each tree node in Figure 3(b). The details

of complexity analysis and performance considerations are

provided in the following subsections.

B. SBCO Algorithm

Algorithm 1 shows the pseudo code of SBCO. For each

scheduling period, SBCO first chooses a task with the smallest

vruntime in a run queue as the default candidate to run (line

2). If the current candidate is a vCPU process, which is implied

by the process’s name, SBCO then calculates this vCPU’s

scheduling ordinate (line 5), iterates other sibling vCPUs to

identify if there is any runnable sibling vCPU with large

scheduling distance and decide if it is necessary to balance

the fast and slow sibling vCPUs. If the scheduling distance

between two sibling vCPUs, calculated in line 11, exceeds

the Dthreshold, which indicates the candidate vCPU runs too

fast, then there is a need to enforce adjustment to delay the

fast vCPU and speed up the slow one(line 13). As a result,

the previously selected candidate vCPU, the default left most

node, is no longer the next task to run. Instead, the scheduler

chooses the candidate’s next successor process in the RB tree

to run.

Note that each vCPU process is guaranteed one time to be

scheduled in a scheduling period Tp, defined in Section II-C,

we design two approaches to eliminate repetitive adjustment

on one vCPU and ensure each vCPU being scheduled once

in Tp respectively. First, we mark those sibling vCPUs that

have been already adjusted as dirty. This dirty tag aims to

prevent a vCPU thread from repeatedly yielding its pCPU. The

adjustment is realized as follows: the vCPU with the smallest

scheduling ordinate lends certain amount of vruntime to

the sibling vCPU with largest scheduling ordinate, causing

both move towards the center of their respective run queues.

When the scheduler decides a task to run, it first checks a

vCPU’s dirty tag and it will not re-balance with the sib-

ling vCPU marked as dirty. Second, as shown in function

SCHED_DISPATCH, each VM’s sibling vCPUs are dispatched

to different pCPU run queues, preventing them from the

stacking issue. But we let the default load balancing to take

over the control of the mapping between a pCPUs and a

vCPUs. This still maintains the physical resources utilization

efficiency.

C. Performance Considerations

We have following design considerations to minimize the

overhead of SBCO: 1) maintain the RB index for each vCPU.

2) set dirty tag for balanced vCPUs. 3) maintain a debt list

for the adjustment between sibling vCPUs. In the following

section, we analyze these design considerations and their

tradeoff.

RB index. Instead of directly keep each vCPU process’s

scheduling ordination in pCPU run queues, SBCO seamlessly

inserts RB index information into the existing tree structure.

Due to the fact that each vCPU process is swapped in to or be

swapped out from a run queue frequently during the execution,

the scheduling ordinate of a vCPU is constantly updated with

the change of its position in its resident run queue. There

are two advantages to introduce RB index. First, RB index

can be used to efficiently calculate the scheduling ordinate.

As show in function SCHED ORDINATE in Algorithm 2, the

calculation of a vCPU’s scheduling ordinate only involves RB

tree traversal from root to vCPU’s corresponding node and

the complexity is bounded to O(log(n)). Second, a vCPU’s

RB index is updated dynamically with the RB tree rotation.

This update only involves the change of the nodes on the path

from root to the node. The additional cost on operating RB

index is only limited to assigning value to the rb index in the

data structure without any extra lock.

Debt list. It is very costly for the scheduler to hold the

locks of two run queues while changing one of them, such as

migrating processes. In order to avoid locking two run queues

at the same time when conducting the adjustment, we maintain

an independent debt list for each pCPU run queue. Therefore,

changing a debt list does not require to acquire that run queue’s

lock. As shown in function SCHED_BLANCE in Algorithm 2,

when balancing task Ta and Tb, Ta’s vruntime is adjusted and

its location in its tree is updated immediately. However, Tb’s

vruntime and location are recorded in the associated pCPU

debt list temporarily. The change is delayed to the time when

the scheduler needs to choose a process from Tb’s resident
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Algorithm 2 SBCO balance and RB ordinate algorithm

1: procedure SCHED DISPATCH(Ta)
2: cpus← all pCPUs
3: if Ta is a vCPU then
4: for all Task t’s sibling task b do
5: cpu occupied← b′s pCPU
6: cpus← cpus− cpu occupied
7: end for
8: end if
9: return cpus

10: end procedure

11: procedure SCHED BLANCE(Ta, Tb)
12: if Ta is clean then
13: Adjust T ′

as vruntime
14: Reposition Ta in itsRB tree
15: Update the debit list of T ′

bs run queue
16: end if
17: end procedure

18: procedure SCHED ORDINATE(Ta)
19: parent← T ′

as parent task in rb tree
20: n← RBindexTa

21: while parent �= null do
22: if Ta is parent′s right child then
23: n← n+RBindexparent + 1
24: end if
25: Ta ← parent
26: parent← T ′

as parent
27: end while
28: return n
29: end procedure

pCPU run queue. As a result, the actual balancing is conducted

in two different times, which avoids locking two run queue

simultaneously. In addition, since the scheduler has to check

its debt list and apply the changes to Tb before it chooses a

process candidate to run, SBCO incurs the additional marginal

cost, mainly on updating data structure. The default scheduler

does not distinguish a vCPU process from other normal tasks,

SBCO always checks a task’s name when making scheduling

decisions, and only balances qemu-kvm processes, which are

KVM vCPUs. Other non-vCPU processes are ignored for

balancing.

Dirty tag. To prevent repeatedly adjusting the same vCPU

in the same balance round, which may cause starvation, we

mark the changes when a vCPU is adjusted but the changes

has not been applied yet, either in the case of being given

vruntime by or lending vruntime to other siblings. For instance,

as shown in Algorithm 1 line 7, if a sibling vCPU has been

adjusted before, SBCO passes that sibling vCPU and continues

to check if there is any other available sibling for balancing.

After the change recorded in a debt list is applied to a vCPU,

this vCPU’s dirty flag is cleared and the vCPU becomes

available again for future balancing. The detailed cost analysis

is provided in the evaluation section.

IV. IMPLEMENTATION

We implemented the prototype of SBCO algorithm in KVM

with Linux kernel 2.6.34.4. KVM is a user friendly virtual-

ization solution seamlessly integrated into Linux kernel. In

KVM, there are two kinds of important threads which are

QEMU threads and vCPU threads. The QEMU threads share

the responsibility for the actual disk I/O by emulating the

hardware devices. The vCPU threads execute the real code.

KVM relies on existing Linux scheduler for the scheduling of

vCPUs and each vCPU is treated as a normal task in host OS.

Our SBCO algorithm is implemented based on CFS sched-

uler. We extended the default RB tree to carry RB index

and implemented associated APIs to calculate scheduling

ordinates. We added new rb index and rb dirty to each node

of the RB tree. The rb index keeps the number of nodes on

the left side of a node in the RB tree. It is updated during

self rotation of a RB tree when a new task is enqueued or an

existing task is dequeued. In addition, the rb dirty records if a

process is needed to be adjusted. To avoid repeatedly yielding

the same process in one balance round, when rb dirty is set,

the process is ignored for balancing with its sibling.

Note that a vCPU’s run queue is updated in three cases:

1) a vCPU process is created and then inserted to a run

queue. 2) a vCPU process wakes up from sleep and needs

to enter a run queue. 3) a vCPU is migrated between two

pCPUs. We instrumented the scheduler to avoid stacking

sibling vCPUs in all these cases. We first modified CFS

scheduler to dynamically set a task’s cpus allowed field which

is a set of pCPUs that a task can run on. Then, we changed

the scheduler’s default load balance function can migration
by limiting the options of migration destination pCPUs.

For comparison, we also implemented the idea of bal-

anced scheduling and two conventional co-scheduling ap-

proaches [22]. The balanced scheduling simply puts sib-

ling vCPUs to different pCPU run queues by adjusting

cpus_allowed field of their process structure. We also

developed two more co-scheduling approaches. First, when

vCPU0 of a VM is scheduled, the rest of sibling vCPUs

are forcibly scheduled on other pCPUs concurrently. Second,

let pCPU0 decide to co-schedule all the vCPUs of a VM

depending on which vCPU the first pCPU will run. We refer

these two co-scheduling approaches as PROCCO and CPUCO

respectively in our evaluation. In both cases, an inter-processor

interrupt (IPI) request is sent to the related pCPU to force

context switch and pick a sibling vCPU instead of the default

lowest vruntime task to run. In our prototype, we define

the scheduling distance threshold to be 2/3 times of the size

of each run queue, as suggested in Section II-C.

V. EVALUATION

In this section, we first introduce our experiment environ-

ment and benchmarks selected. Then, we evaluate SBCO and

compare its performance with the default scheduler and other

representative solutions.

A. Experiment Design

We ran all experiments on Dell PowerEdge1950 physical

machines with two quad-core Intel Xeon CPU and 8GB

memory, running Linux kernel 2.6.34.4. The guest VMs run

CentOS 5.4 without any modification. Since it is the vertical
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length of a pCPU run queue, not the horizontal total number

of run queues, that affects a VM’s scheduling distance, we

selected following workloads to saturate vCPUs. Meanwhile,

on a physical server, we consolidate a few VMs and ran CPU

intensive workloads to further saturate pCPUs run queues. The

detailed specifications of the benchmarks we used to measured

the SBCO’s performance and overhead are listed as follows:

Parsec Parsec is a benchmark suite for Chip-

Multiprocessors (CMPs) that focuses on emerging

applications. It includes a diverse set of workloads

from different domains such as interactive animation or

systems applications that mimic large-scale commercial

workloads [11]. We used the pthread implementation of the

benchmarks which uses spin-lock for synchronization.

SuperPI SuperPI [5] is a CPU-bound workload to calculate

the digits of PI. We run SuperPI in a few VM as CPU intensive

workload and also use it as disturbance workload.

NPB NAS parallel benchmarks [10] contain 9 parallel pro-

grams derived from computational fluid dynamics applications.

We activate the environment variable OMP WAIT POLICY

to allow benchmarks using busy-waiting synchronization.

Kernbench We use the parallel make benchmark, Kern-

bench [3], to compile Linux 2.6.34.4 kernel source with 16

threads (make -j 16) and use the kernel compile completion

time as the performance metric. The VMs running Kernbench

are configured with enough memory to avoid swap storms.

SPECjbb We use SPECjbb2005 [4] v1.07 and BEA JRockit

6.0 JVM. It emulates a three tier client/server system by

spawning multiple java threads to simulate users transaction

requests in multiple warehouses. Synchronization is required

when user requests and server side management operations

need to access the same database table. We start with one

warehouse(thread) and stop at 16, and report the average

business operations per second(bops) from 8 to 16 warehouses.

B. Experimental Results

1) Performance: We ran Kernbench in one 4-vCPU VM

with other one or three VMs running CPU-intensive SuperPI

workload and measure the completion time of KernBench. To

avoid swap storms and eliminate uncertainties, we assigned

about 2G memory to each VM to allow KernBench caches all

the Linux kernel source in the RAM. KernBench frequently

reads files or links through Linux VFS layer, thus incurring

file system’s inode lock contentions, which is protected by

spin-lock in kernel space. We compare the completion time of

KernBench due to following different scheduling approaches:

the default CFS scheduler (DFT), balanced scheduler (BAL),

process based co-scheduling (PROCCO), CPU based co-

scheduling (CPUCO) and our SBCO.

Figure 4(a) shows that, due to the heavy lock contention, the

default CFS scheduler performs worst compared with BAL and

SBCO, both of which split vCPUs to different run queues to

reduce the overhead of LHP. SBCO achieves 14% performance

improvement over DFT and 6% over BAL. From Figure 4(a),

we also observe CPUCO leads to performance degradation

significantly. This demonstrates that allow one pCPU to lead

other pCPUs to co-schedule sibling vCPUs is not necessarily

feasible as expected, thus we remove CPUCO for comparison

in our remaining evaluation. Kerbench also provides the count

number of context switches during the execution. Figure 4(b)

shows SBCO is capable of reducing the number of context

switches by at least 3%, that is equivalent to a large amount

of context switches given SBCO cause as many as 76400

context switches. CPUCO leads to performance loss due to

the tremendous increase of the number of context switches.

Figure 5(a) shows the normalized performance of Parsec

benchmark due to different scheduling approaches in one

VM. We also ran three other CPU-intensive SuperPI VMs

to make the average queue size of each pCPU length stays

at eight. Though different workloads have different average

runtimes, SBCO outperforms DFT as well as other approaches

in all test cases. More specifically, for the dedup and scluster
workloads, SBCO improves performance by up to 68% and

52% respectively compared with the DFT case. At the same

time, SBCO outperforms BAL by 7% and 9% respectively.

Note that the dedup benchmark uses a pipelined program-

ming model to parallelize the compression to mimic real-

world implementations [11]. Both SBCO and BAL avoids the

LHP issue resulted from frequency synchronization between

pipeline steps. Similarly, scluster gains benefit from SBCO
while processing large amounts of continuously produced data.

We also observed BAL performs closely to our SBCO with

workloads such as x264, facesim, ferret. There are two reasons

for such close performance improvement. First, SBCO is also

built on distributing sibling vCPUs to different pCPUs, which

is the core of BAL. Therefore, SBCO works like BAL unless

there is large scheduling distance detected. Second, SBCO
involves marginal additional cost to minimize the scheduling

distance between sibling vCPUs(analyzed in V-B3). If the

workload itself does not have large amount of synchronization

between threads, the balancing only affects short-term fairness.

In Figure 5(b), we ran four more VMs running CPU-intensive

workload so as to increase the average run queue size to be

twelve. dedup achieved even higher performance gain (up to

70% over DFT) compared with its performance gain in four

VMs case in Figure 5(a). Such phenomenon demonstrates

scheduling distance can contribute to significant performance

loss when the average pCPU run queue size increases.

2) Throuhput: To evaluate the effect of SBCO on applica-

tions’ throughput, we kept one VM running SPECjbb bench-

mark and compared the average throughput due to different

scheduling approaches. Meanwhile, we increase the number of

disturbing VMs from one to five. All VMs was configured with

four vCPUs, the same as the total number of pCPUs. Each dis-

turbing VM ran the CPU-intensive Supper PI workload to keep

pCPUs busy so as to maintain the same amount of average

run queue size. These CPU-intensive applications usually keep

occupying CPU resource and get preempted by the scheduler

once they use up their time slices. Therefore the more the

disturbing VMs, the longer the run queue, resulting in large

waiting time due to large scheduling distance. We used one

single JVM instance for SPECjbb benchmark and gradually
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Fig. 4. Average runtime and context switches of running kernbench.
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Fig. 5. Normalized performance of running Parsec benchmark when with different average run queue size.

increased SPECjbb workload by increasing the its warehouses

numbers. The average throughput is shown in Figure 6. It

can be seen that PROCCO, BAL and SBCO outperform the

default CFS due to their alleviation of the synchronization

latency problem. SBCO achieves about 6% higher throughput

than the PROCCO due to the reduction of context switching

cost. It also yields 4% higher throughput compared with BAL
because of the mitigation effect of scheduling distance. From

Figure 6, we can also observe SBCO’s performance gain is

higher in the five disturbing VMs case compared with there is

only one disturbing VM. It is because long run queue tends

to incur relatively high synchronization delay.

3) Scalability: To study the scalability of SBCO, we ran

different Parsec workloads in one VM and increased the av-

erage pCPU run queue size by launching more CPU-intensive

applications on the physical host. SBCO identifies a vCPU

process by checking the name of a thread. It always dispatch

sibling qemu-kvm processes to different run queues. In our

experiment, we note that running a large amount of disturbing

VMs requires huge physical memory space. Instead, we ran

multiple four threads CPU-intensive applications and assign

threads’ name to be qemu-kvm. Therefore these disturbing

threads are also treated like vCPUs and they are dispatched to

different run queues. The average run queue size is increased

gradually with more disturbing threads being launched . Fig-

ure 7 shows the normalized completion time of different Parsec

workloads with respect to the default DFT. As suggested by
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Fig. 6. Performance of SPECjbb benchmark.

the normalized numbers in the figure, SBCO is able to improve

the performance by 61% with dedup. The cost of iterating a

vCPU’s sibling vCPUs and calculating the scheduling distance

remains unchanged in all the cases. dedup benefits from SBCO
most due to its heavy synchronization overhead.

4) Fairness: In this section, we show the effectiveness of

SBCO in VM level fairness. We ran four VMs with multi-

threaded CPU intensive NPB workload to saturate vCPUs.

On the physical host, we implemented a kernel thread to

periodically sample the total execution time of each VM by

summing up each vCPU’s execution time. The sampling period

varies from 1s, 5s, to 120s and each sample calculates the

maximum difference, referred as lag, between VMs. The con-

figurable sample period is open to user applications through
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Fig. 8. Relative Standard Deviation(RSD) of the Maximum Absolute
Lag(MAL) of each VM.

Linux’s sysctl interface, and the sampling thread is assigned

with highest priority to avoid competing CPU resource with

vCPUs. Let Tvm represent the sum of all vCPUs’ execution

time in a VM and Lagt be the maximum difference of the

execution time of all the VMs at time t, denoted as maximum

absolute lag(MAL). We repeated the experiment for five times

and present the average lag value in Figure 8.

Tvm =
n∑
1

TvCPUi
, n = 4;

Lagt = Max(Tvmi
)−Min(Tvmj

), i, j ∈ [1, 4].

Recall that each VM’s vCPUs are distributed into different

run queues, thus each pCPU run queue only has one vCPU

thread of every VM. Figure 8 shows the MAL and the relative

standard deviation(RSD) with respect to different sample inter-

vals. As shown in Figure 8, the lag varies a little with different

sample periods. More specifically, when the period goes from

1s to 120s, the average maximum absolute lag varies from

15ms to 25ms. Compared with the average 20ms maximum

lag with default CFS scheduler, our SBCO has a negligible

impact on scheduling fairness between VMs. According to

the RSD, the variation ranges from 7% to around 14% and

the overall RSDs are bounded to 15%.

VI. RELATED WORK

The issue of preempting a parallel process which holds a

lock was studied intensively in the past, see [8], [18], [23]

for example. Virtualization makes the synchronization delay

problem even more challenging due to LHP issue. In general,

there are two approaches to address this issue: hardware

assisted approaches and pure software scheduling solutions.

The hardware assisted approach detects lock holder with

the low level hardware and assistant scheduler to schedule

in and out the proper vCPUs dynamically to mitigate LHP

problem. Modern processors provide architectural support for

heuristically detecting contended spinlocks [7]. For instance,

PAUSE instruction is used by commodity OSes(e.g. Windows)

in the spin lock for power efficiency consideration, therefore

by identifying the execution of PAUSE instruction, the spin

lock holder can also be detected [7]. In [28], the authors

proposed a hardware assisted spin-lock mechanism to detect

the cases in which a vCPU is not performing useful work

and to suggest scheduler to preempt that vCPU to run a

different, more productive vCPU. The heuristic lock-holder

detection may cause frequent vCPU preemption. Moreover,

this type of hardware assisted lock holder detection usually

requires modifying guest OS, which is only possible with para-

virtualization. This solution is not always feasible for guest

OSes like Windows which is hard to instrument.

A typical software approach is co-scheduling, which was

originally proposed to schedule concurrent threads simul-

taneously [13], [20], [24]. Previous works [9], [16], [26],

[29] applied co-scheduling to SMP VMs to facilitate the

vCPU communication and reduce application synchronization

latency. They alleviate the LHP issue because all sibling

vCPUs are scheduled simultaneously. However, classic co-

scheduling algorithm has its inborn drawbacks such as CPU

fragmentation, priority inversion and execution delay [17]. In

addition, co-scheduling is likely to cause costly vCPU pre-

emption during context switching in virtualized environment.

To avoid the limitations of classic co-scheduling, an im-

proved co-scheduling algorithm named balanced scheduling

(BAL) was proposed in [22]. In stead of preventing LHP,

BAL alleviates the effect of LHP issue by distributing sibling

vCPUs to different pCPUs without forcing the vCPUs to

be scheduled at the same time. It never delays execution

of a vCPU to synchronize with other sibling vCPUs. Our

SBCO inherits the advantages of traditional co-scheduling

such as minimizing synchronization latency and speedup the

communication between vCPUs. It coarsely re-adjusts the

sibling vCPUs position in their run queues and facilitate

sibling vCPUs to be scheduled coarsely at the same level.

SBCO not only dynamically adjusts the affinity of vCPUs

to avoid sibling vCPUs from being dispatched into the same

run queue, but also it balances the sibling vCPUs in different

run queues by shorten their scheduling distance. This further

reduces the synchronization latency in CPU over committed

case. Our SBCO requires no hardware support and can be

easily implemented.

VMware also developed a few versions of co-scheduling

solution for ESX server, from strict co-scheduling [26] to

relaxed co-scheduling [25]. The later one was further refined

in ESX 4.x to stop only advanced vCPUs, instead of all

vCPUs. In all these co-scheduling approaches, scheduler tends

to forcibly start or stop some vCPUs which incurs significant
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context switching cost. Our SBCO balances sibling vCPUs and

avoids arbitrary forcing vCPUs co-scheduling. In addition to

these co-scheduling approaches, PACMan [21] provided some

insights for performance aware VM consolidation. Matrix [12]

proposed an approach to achieve predicable performance in

cloud with machine leaning. Difference from these works

that considers multiple contributing factors to performance,

our approach focused on the LHP issue and attempted to

alleviated its impact on performance and resource utilization.

Gleaner [14] introduced an interesting idea to solve the

blocked waiter wakeup(BWW) problem. Our work shares the

same goal of reducing costly vCPU context switch. However,

Gleaner consolidates short idle periods on multiple vCPUs

into long idle periods on fewer cores, thus reducing the

frequency that vCPU enter/exit idle loops. This approach may

have limited improvement in heavy loaded cloud with CPU

intensive applications. In those cases, vCPUs are busy most

of time and they get rescheduled mainly due to running out of

scheduling period other then entering idle loops. Our approach

optimizes vCPU scheduling especially in over loaded cloud

with high VM consolidation ratio.

VII. CONCLUSIONS

In this work, we propose SBCO, a new scheduling scheme

for performance optimization in virtualized SMP environment.

SBCO first inherits the advantages of traditional co-scheduling

such as minimizing synchronization latency and speedup the

communication between vCPUs. Meanwhile, it avoids the

scheduling fragmentation and priority inversion issue because

SBCO does not require co-scheduling all the sibling vCPUs

precisely at the same time. Instead, it coarsely adjusts the sib-

ling vCPUs position in their respective run queues for balance

purpose and facilitate sibling vCPUs to be scheduled coarsely

at the same level. We implemented the prototype of SBCO
based on CFS scheduler and conducted evaluations with KVM

VM. Our experimental results show that SBCO brings more

than 10% performance improvement for many applications.

Depending on the usage of spin-lock for synchronization, the

impact of scheduling distance may also vary with applications.

In the future, we plan to further study applications’ sensitivity

to the scheduling distance of sibling vCPUs and propose

an online adaptive threshold for the purpose of dynamically

balance sibling vCPUs with different granularity.
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