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Abstract
The deployment of MapReduce in datacenters and clouds
present several challenges in achieving good job performance.
Compared to in-house dedicated clusters, datacenters and
clouds often exhibit significant hardware and performance
heterogeneity due to continuous server replacement and multi-
tenant interferences. As most Mapreduce implementations
assume homogeneous clusters, heterogeneity can cause sig-
nificant load imbalance in task execution, leading to poor
performance and low cluster utilizations. Despite existing
optimizations on task scheduling and load balancing, MapRe-
duce still performs poorly on heterogeneous clusters.

In this paper, we find that the homogeneous configura-
tion of tasks on heterogeneous nodes can be an important
source of load imbalance and thus cause poor performance.
Tasks should be customized with different settings to match
the capabilities of heterogeneous nodes. To this end, we
propose an adaptive task tuning approach, Ant, that au-
tomatically finds the optimal settings for individual tasks
running on different nodes. Ant works best for large jobs
with multiple rounds of map task execution. It first config-
ures tasks with randomly selected configurations and grad-
ually improves tasks settings by reproducing the settings
from best performing tasks and discarding poor performing
configurations. To accelerate task tuning and avoid trap-
ping in local optimum, Ant uses genetic functions during
task configuration. Experimental results on a heterogeneous
cluster and a virtual cluster with varying hardware capabil-
ities show that Ant improves the average job completion
time by 23%, 11%, and 16% compared to stock Hadoop,
customized Hadoop with industry recommendations, and a
profiling-based configuration approach, respectively.

Categories and Subject Descriptors
D.4.8 [Performance]: Modeling and prediction; C.1.3 [Other
Architecture Styles]: Heterogeneous (hybrid) systems
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1. INTRODUCTION
MapReduce, a parallel and distributed programming model

on clusters of commodity hardware, has emerged as the de
facto standard for processing a large set of unstructured
data. Since big data analytics requires distributed com-
puting at scale, usually involving hundreds to thousands of
machines, access to such facilities becomes a significant bar-
rier to practising big data processing in small business. De-
ploying MapReduce in datacenters or cloud platforms, offers
a more cost-effective model to implement big data analyt-
ics. However, the heterogeneity in datacenters and clouds
present significant challenges in achieving good MapReduce
performance [2, 30].

Hardware heterogeneity occurs because servers are grad-
ually upgraded and replaced in datacenters. Interferences
from multiple tenants sharing the same cloud platform can
also cause heterogeneous performance even on homogeneous
hardware. The difference in processing capabilities on MapRe-
duce nodes breaks the assumption of homogeneous clus-
ters in MapReduce design and can result in load imbal-
ance, which may cause poor performance and low cluster
utilization. To improve MapReduce performance in hetero-
geneous environments, work has been done to make task
scheduling [30] and load balancing [2] heterogeneity aware.
Despite these optimizations, most MapReduce implementa-
tions such as Hadoop still perform poorly in heterogeneous
environments. For the ease of management, MapReduce im-
plementations use the same configuration for tasks. Existing
research [13, 14, 21] has shown that MapReduce configura-
tions should be set according to cluster size and hardware
configurations. Thus, running tasks with homogeneous con-
figurations on heterogeneous nodes inevitably leads to sub-
optimal performance.

In this work, we propose a task tuning approach that al-
lows tasks to have different configurations, each optimized
for the actual hardware capabilities, on heterogeneous nodes.
We address the following challenges in automatic MapRe-
duce task tuning. First, determining the optimal task con-
figuration is a tedious and error-prone process. A large num-
ber of performance-critical parameter can have complex in-



terplays on task execution. Previous studies [12, 14, 17, 29]
have shown that it is difficult to construct models to connect
parameter settings with MapReduce performance. Second,
there is no one-size-fit-all model for different MapReduce
jobs and even different configurations are needed for differ-
ent execution phases or input sizes. In a cloud environment,
task configurations should also be changed in response to the
changes in interferences. Finally, most MapReduce imple-
mentations use fixed task configurations that are set during
job initializations [27]. Adaptive task tuning requires new
mechanisms for on-the-fly task reconfiguration.

We present Ant, an adaptive self-tuning approach for task
configuration in heterogeneous environments. Ant monitors
task execution in large MapReduce jobs, which comprise
multiple waves of tasks and optimizes task configurations as
job execution progresses. It clusters worker nodes (either
physical or virtual nodes) into groups according to their
hardware configurations or the estimated capability based
on interference statistics. For each node group, Ant launches
tasks with different configurations and considers the ones
that complete sooner as good settings. To accelerate tuning
speed and avoid trapping in local optimum, Ant uses genetic
functions crossover and mutation to generate task config-
urations for the next wave from the two best performing
tasks in a group. We implement Ant in Hadoop, the popu-
lar open source implementation of MapReduce, and perform
comprehensive evaluations with representative MapReduce
benchmark applications. Experimental results on a physical
cluster with three types of machines and a virtual cluster
in our university cloud show that Ant improves the average
job completion time by 23%, 11%, and 16% compared to
stock Hadoop, customized Hadoop with industry recommen-
dations (i.e., heuristic), and a profiling-based configuration
approach, respectively. Our results also show that although
Ant is not quite effective for small jobs with only a few waves
of tasks, it can significantly improve the performance of large
jobs. Experiments with Microsoft’s MapReduce workload,
which consist of 10% large jobs, demonstrate that Ant is able
to reduce the overall workload completion time by 12.5% and
8% compared to heuristic- and profiling-based approaches.

The rest of this paper is organized as follows. Section 2
gives motivations on improvement of MapReduce configu-
ration framework. Section 3 describes the design of Ant.
Section 4.4 presents the details of the proposed self-tuning
algorithm. Section 5 gives Ant implementation details. Sec-
tion 6 presents the experimental results and analysis. Sec-
tion 7 reviews related work. Section 8 concludes the paper.

2. MOTIVATIONS
In this section, we first introduce the default Hadoop con-

figuration framework and then provide motivating examples
to demonstrate that static task configurations do not opti-
mize performance across different jobs and platforms.

2.1 Background
MapReduce is a distributed parallel programming model

originally designed for processing a large volume of data in
a homogeneous environment. Based on the default Hadoop
framework, a large number of parameters need to be set
before a job can run in the cluster. These parameters con-
trol the behaviors of jobs during execution, including their
memory allocation, level of concurrency, I/O optimization,
and the usage of network bandwidth. As shown in Figure 1,

Figure 1: The Hadoop framework.

slave nodes load configurations from the master node where
the parameters are configured manually. By design, tasks
belonging to the same job share the same configuration.

In Hadoop, there are more than 190 configuration param-
eters, which determine the settings of the Hadoop cluster,
describe a MapReduce job to the Hadoop framework, and
optimize task execution [27]. Cluster-level parameters spec-
ify the organization of a Hadoop cluster and some long-term
static settings. Changes to such parameters require reboot-
ing the cluster to take effect. Job-level parameters determine
the overall execution settings, such as input format, number
of map/reduce tasks, and failure handling. These parame-
ters are relatively easier to tune and have uniform effect on
all tasks even in a heterogeneous environment. Task-level
parameters control the fine-grained task execution on in-
dividual nodes and can possibly be changed independently
and on-the-fly at runtime. Parameter tuning at the task
level opens up opportunities for improving performance in
heterogeneous environments and is our focus in this work.

Hadoop installations pre-set the configuration parame-
ters to default values assuming a reasonably sized cluster
and typical MapReduce jobs. These parameters should be
specifically tuned for a target cluster and individual jobs
to achieve the best performance. However, there is very
limited information on how the optimal settings can be de-
termined. There exist rule of thumb recommendations from
industry leaders (e.g., Cloudera [7] and MapR [20]) as well
as academic studies [14, 17]. These approaches can not be
universally applied to a wide range of applications or hetero-
geneous environments. In this work, we develop an online
self-tuning approach for task-level configuration. Next, we
provide motivating examples to show the necessity of con-
figuration tuning for heterogeneous workloads and hardware
platforms.

2.2 Motivating Examples
we created a heterogeneous Hadoop cluster composed of

three types of machines listed in Table 1. Three MapReduce
applications from the PUMA benchmark [1], i.e., Word-
Count, Terasort and Grep, each with 300 GB input data,
were run on the cluster. We configured each slave node with
four map slots and two reduce slots, and HDFS block size
was set to 256MB. The heap size mapred.child.java.opts

was set to 1 GB and other parameters were set to the de-
fault values. We measured the map task completion time in
two different scenarios – heterogeneous workload on homo-



Table 1: Multiple machine types in the cluster.

Machine model CPU Memory Disk

Supermicro Atom 4*2.0GHz 8 GB 1 TB
PowerEdge T110 8*3.2GHz 16 GB 1 TB
PowerEdge T420 24*1.9GHz 32 GB 1 TB
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(a) Heterogeneous workloads.

60

90

120

100 250 500A
v
e

ra
g

e
 t

a
s
k
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

io.sort.mb (MB)

Atom
T110
T420
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Figure 2: The optimal task configuration changes
with workloads and platforms.

geneous hardware and homogeneous workload on heteroge-
neous hardware. We show that the heterogeneity either in
the workload or hardware makes the determination of the
optimal task configuration difficult.

Figure 2(a) shows the average map completion times of
the three heterogeneous benchmarks on a homogeneous clus-
ter only consisting of the T110 machines. The comple-
tion times changed as we altered the values of parameter
io.sort.record.percent. The figure shows that wordcount,
terasort, and grep achieved their minimum completion times
when the parameter was set to 0.4, 0.2, and 0.6, respec-
tively. Figure 2(b) shows the performance of wordcount on
machines with different hardware configurations. Map com-
pletion times varied as we changed the value of parameter
io.sort.mb. The figure suggests that uniform task configu-
rations do not lead to the optimal performance in a hetero-
geneous environment. For example, map tasks achieved the
best performance on the Atom machine when the parame-
ter was set to 125 while the optimal completion time on the
T420 machine was due to the parameter being set to 275.

[Summary] We have shown that the performance of Hadoop
applications can be substantially improved by tuning task-
level parameters for heterogeneous workloads and platforms.
However, parameter optimization is an error-prone process
involving complex interplays among the job, the Hadoop
framework and the architecture of the cluster. Furthermore,
manual tuning still remains difficult due to the large param-
eter search space. As many MapReduce jobs are recurring
or have multiple waves of task execution, it is possible to
learn the best task configurations based on the feedback of
previous runs. These observations motivated us to develop
a task self-tuning approach to automatically configure pa-
rameters for various Hadoop jobs and platforms in an online
manner.

3. ANT DESIGN AND ASSUMPTIONS

3.1 Architecture
Ant is a self-tuning approach for multi-wave MapReduce

applications, in which job executions consist of several rounds
of map and reduce tasks. Unlike traditional MapReduce im-

Figure 3: The architecture of Ant.

plementations, Ant centers on two key designs: (1) tasks
belonging to the same job run with different configurations
matching the capabilities of the hosting machines; (2) the
configurations of individual tasks dynamically change to search
for the optimal settings. Ant first spawns tasks with ran-
dom configurations and executes them in parallel. Upon
task completion, Ant collects task runtimes and adaptively
adjusts task settings according to the best-performing tasks.
After several rounds of tuning, task configurations on differ-
ent nodes converge to the optimal settings. Since task tuning
starts with random settings and improves with job execu-
tion, ant does not require any priori knowledge of MapRe-
duce jobs and is model independent. Figure 3 shows the
architecture of Ant.

• Self-tuning optimizer uses a genetic algorithm (GA)-
based approach to generate task configurations based
on the feedback reported by the task analyzer. Settings
that are top-ranked by the task analyzer are used to
re-produce the optimized configurations.

• Task analyzer uses a fitness (utility) function to eval-
uate the performance of individual tasks due to dif-
ferent configurations. The fitness function takes into
account task completion time as well as other perfor-
mance critical execution statistics.

Ant operates as follows. When a job is submitted to the
JobTracker, the configuration optimizer generates a set of
parameters randomly in a reasonable range to initialize the
task-level configuration. Then the JobTracker sends the
randomly initialized tasks to their respective TaskTrackers.
The steps of task tuning correspond to the multiple waves of
tasks execution. Upon completing a wave, the task analyzer
residing in the JobTracker recommends good configurations
to the configuration optimizer for the next wave of execution.
This process is repeated until the job completes.

3.2 Assumptions
Our findings that uniform task configurations lead to sub-

optimal performance in a heterogeneous environment moti-
vated the design of Ant, a self-tuning approach that allows
differentiated task settings in the same job. The effectiveness
of Ant relies on two assumptions – substantial performance
improvement can be achieved via task configurations and
the MapReduce jobs are long running ones (e.g., with mul-
tiple waves) which allow for task reconfiguration and perfor-
mance optimization. There are two levels of heterogeneity
that can affect task performance, i.e., task-level data skew-
ness and machine-level varying capabilities. Although due



Figure 4: Task self-tuning process in Ant.

to data skew some tasks inherently take longer to finish, Ant
assumes that the majority of tasks have uniform completion
time with identical configurations. Ant focuses on improving
performance for average tasks by matching task configura-
tions to the actual hardware capabilities. To address hard-
ware heterogeneity, Ant groups nodes with similar hardware
configurations or capabilities together and compares parallel
executing tasks to determine the optimal configurations for
the node group. However, task skew and varying hardware
capabilities due to interferences in multi-tenant clouds can
possibly impede getting good task configurations. We will
discuss how Ant address these issues in Section 6.8.

4. ADAPTIVE SELF-TUNING
Ant identifies good configurations by comparing the per-

formance of parallel executing tasks on the nodes with sim-
ilar processing capabilities in a self-tuning manner. Due
to the multi-wave task execution in many MapReduce jobs,
Ant is able to continuously improve performance by adapt-
ing task configurations. In this section, we first describe
how Ant forms self-tuning task groups in which different
configurations can be compared. We then discuss the set of
parameters Ant optimizes and the utility function Ant uses
to evaluate the goodness of parameters. Finally, we present
the design of a genetic algorithm-based self-tuning approach
and a strategy to accelerate the tuning speed.

4.1 Forming Self-tuning Groups
We begin with describing Ant’s workflow in a homoge-

neous cluster and discuss how to form homogeneous sub-
clusters in a heterogeneous cluster and a virtual cluster whose
capability is dependent on the interference of co-located
workloads.

Homogeneous cluster. In a homogeneous cluster, all
nodes have the same processing capability. Thus, Ant con-
siders the whole Hadoop cluster as a self-tuning group. Each
node in the Hadoop cluster is configured with a predefined
number of map and reduce slots. If the number of tasks
(e.g., mappers) exceeds the available slots in the cluster (e.g.,
map slots), execution proceeds in multiple waves. Figure 4
shows the multi-wave task self-tuning process in a homo-
geneous cluster. Ant starts multiple tasks with different
configurations concurrently in the self-tuning group and re-
produces new configurations based on the feedback of com-
pleted tasks. We frame the tuning process as an evolution

Figure 5: Ant on a heterogeneous cluster.

of configurations, in which each wave of execution refers to
one configuration generation. The reproduction of genera-
tions is directed by a genetic algorithm which ensures that
the good configurations in prior generations are preserved in
new generations.

Heterogeneous cluster. In a heterogeneous cluster, as
shown in Figure 5, Ant divides nodes into a number of ho-
mogeneous subclusters based on their hardware configura-
tions. Hardware information can be collected by the Job-

Tracker on the master node using the heartbeat connec-
tion. Ant treats each subcluster as an homogeneous cluster
and independently applies the self-tuning algorithm to them.
The outcomes of the self-tuning process are significantly
improved task-level configurations, one for each subcluster.
Since each subcluster has different processing capability, the
optimized task configurations can be quite different across
subclusters.

Virtual cluster. When running Hadoop in a virtual
cluster, finding nodes with the same hardware capability
is more challenging. Node configured with the same virtual
hardware could have varying capacity due to interferences
from co-located users [23]. Thus, Ant estimates the actual
capabilities of virtual nodes based on low-level resource uti-
lizations of virtual resources. Previous study found that
MapReduce jobs are mostly bottlenecked by the slow pro-
cessing of a large amount of data [5]. Excessive I/O rate and
a lack of CPU allocation are signs of slow processing. Ant
characterizes a virtual node based on two measured per-
formance statistics: I/O rate and CPU steal time. Both
statistics can be measured at the TaskTracker of individual
nodes. Ant monitors the number of data bytes written to
disk during the execution of a task. Since there is little data
reuse in MapReduce jobs, the volume of writes is a good in-
dicator of I/O access rate and memory demand. The CPU
steal time is the amount of time that the virtual node is
ready to run but failed to obtain CPU cycles because the
hypervisor is serving other users. It reflects the actual CPU
time allocated to the virtual node and can effectively cali-
brate the configuration of virtual hardware according to the
experienced interferences. Ant uses the k-means [26] clus-
tering algorithm to classify virtual nodes into configuration
groups. In this work, we only classify virtual nodes at the
beginning of self-tuning process. It is possible that back-
ground interference could change and the performance of
virtual nodes will change over time. Thus, a re-clustering of
the virtual nodes may be needed to form new tuning groups.
Ant can be easily extended to adapt to varying interferences
by performing re-clustering if significant changes in virtual
node performance is detected.



4.2 Task-level Parameters

Table 2: Task-level parameters and search space.

Task-level parameters Search space Symbol

io.sort.factor {1, 300} g1
io.sort.mb {100, 500} g2

io.sort.record.percent {0.05, 0.8} g3
io.sort.spill.percent {0.1, 0.9} g4

io.file.buffer.size {4K, 64K} g5
mapred.child.java.opts {200, 500} g6

Parameter search space. Task-level parameters con-
trol the behavior of task execution, which is critical to the
Hadoop. Previous studies have shown that a small set of
parameters are critical to Hadoop performance. Thus, as
shown in Table 2, we choose task-level parameters which
have significant performance impact as the candidates for
tuning. We further shrink the initial searching space of these
parameters to a reasonable range in order to accelerate the
search speed. This simple approach allows us to cut the
search time down from a few hours to a few minutes.

Parameter sensitivity. Ant is designed to tune multi-
ple task-level parameters jointly. Figure 6 shows that tuning
different parameters can lead to different performance im-
provements. The improvement of job completion time varies
from 10% to 37% when the six parameters are tuned sepa-
rately. However, tuning parameters independently to their
respective optimal values does not lead to the optimal over-
all performance. For instance, parameter io.sort.mb deter-
mines the total amount of buffer memory to use while sorting
files and parameter io.sort.factor specify the number of
streams to merge while sorting such files. These two param-
eters are highly correlated and should be tuned together to
improve job performance.

4.3 Evaluating Task Configurations
To compare the performance of different task configura-

tions, Ant requires a quantitative metric to rank configura-
tions. As the goal of task tuning is to minimize job execution
time, task completion time (TCT) is an intuitive metric to
evaluate performance. However, TCT itself is not a reli-
able metric to evaluate task configurations. A longer task
completion time does not necessarily indicate a worse con-
figuration as some tasks are inherently longer to complete.
For example, due to data skew, tasks that have expensive
records in their input files can take more than five times
longer to complete. Thus, we combine TCT with another
performance metric to construct a utility function (or a fit-
ness function in genetic algorithms). We found that most
task mis-configurations are related to task memory alloca-
tions and incur excessive data spill operations. If either of
the kvbuffer or the metadata buffer fills up, a map task
spills intermediate data to local disks. The spills could lead
to three times more I/O operations [7, 11]. Thus, Ant is
designed to simultaneously minimize task completion time
and the number of spills.

We define the fitness function of a configuration candidate
(Ci) as: f(Ci) = 1

TCT2(Ci)×(#spills)
, where TCT is the task

completion time and #spills is the number of spill opera-
tions. Since majority of tasks have little or no data skew, we
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Figure 6: The sensitivity of task-level parameters.

Algorithm 1 Ant task self-tuning algorithm.

1: /*Evaluate the fitness of each completed task*/
2: f(C1), · · · , f(Ci), · · · , f(CM )
3: repeat
4: if Any slot is available then
5: Select two configuration candidates as parents
6: Do Crossover and Mutation operation
7: Use the obtained new generation Cnew to assign

task to the available slot
8: end if
9: until The running job completed

give more weight to TCT in the formulation of the fitness
function. Task configurations with high fitness values will be
favored in the tuning process. Note that the fitness function
does not address the issue of data skew due to non-uniform
record distributions in task inputs. We believe that config-
urations optimized for a task with inherently more data can
be even harmful to normal tasks as allocating more memory
to normal tasks incurs resource waste.

4.4 Task Self-tuning
Ant deployes an online self-tuning approach based on ge-

netic algorithm to search the optimal task-level configura-
tions. We consider MapReduce jobs composed of multiple
waves of map tasks. The performance of individual task
T is determined by its parameter set C. A set candidate
Ci consisting of a number of selected parameters (refer to
genes in GA), denoted as Ci = [g1, g2, · · · , gn], represents a
task configuration set, where n is the number of parameters.
Each element g represents a task-level parameter as shown
in Table 2.

Reproduction process. Ant begins with an initial con-
figuration of randomly generated candidates for the task as-
signment. After that, it evolves individual task configura-
tion to breed good solutions during each interval by using the
genetic reproduction operations. As shown in Algorithm 1,
Ant first evaluates the fitness of all completed tasks in the
last control interval. Note that M represents the total num-
ber of the completed tasks in the last control interval. When
there is any available slot in the cluster, it selects two config-
uration candidates as the evolving parents. Ant generates
the new generation configuration candidates by using the
proposed genetic reproduction operations. Finally, it as-
signs the task with the new generated configuration set to
the available slot.

There are many variations of the reproduction algorithm
obtained by altering the selection, crossover, and mutation



Figure 7: Reproduction operations.

operators as shown in Figure 7. The selection determines
which two parents (task configuration sets) in the last gen-
eration will have offsprings in the next generation. The
crossover operator determines how genes are exchanged be-
tween the parents to create those offsprings. The mutation
allows for random alteration of genes. While the selection
and crossover operators tend to increase the quality of the
task execution in the new generation and force convergence,
mutation tends to bring in divergence.

Parents selection. A popular selection approach is the
Roulette Wheel (RW) mechanism. In this method, if fit-
ness f(Ci) is the fitness of completed task performance in
the candidate population, its probability of being selected is

Pi = f(Ci)∑M
i=1 f(Ci)

, where M is the number of tasks completed

in the previous interval. This allows candidates with good
fitness values to have a higher probability of being selected
as parents. The selection module ensures reproduction of
more highly fit candidates compared to the number of less
fit candidates.

Crossover. A crossover function is used to cut the se-
quence of elements from two chosen candidates (parents)
and swap them to produce two new candidates (children).
As crossover operation is crucial to the success of Ant and
it is also problem dependent, an exclusive crossover oper-
ation is employed for each individual. We implement rela-
tive fitness crossover [8] instead of absolute fitness crossover
operation, because it moderates the selection pressure and
controls the rate of convergence. Crossover operation is exer-
cised on configuration candidates with a probability, known
as crossover probability (Pc).

Mutation. The mutation function aims to avoid trapping
in the local optimum by randomly mutating an element with
a given probability. Instead of performing gene-by-gene mu-
tation at each generation, a random number r is generated
for each individual. If r is larger than the mutation probabil-
ity (Pm), the particular individual undergoes the mutation
process. Otherwise, the mutation operation involves replac-
ing a randomly chosen parameter with a new value generated
randomly in its search space. This process prevents prema-
ture convergence of the population and helps Ant sample
the entire solution space.

4.5 Aggressive Selection
The popular Roulette Wheel selection mechanism has a

higher probability of selecting good candidates to be par-
ents than bad ones. However, this approach still results in
too many task evaluations, which in turn reduces the speed
of convergence. Therefore, our selection procedure is more
aggressive and deterministically selects good candidates to
be parents. We use the following two strategies to accelerate
the task-level parameter tuning.

Algorithm 2 Aggressive selection algorithm.

1: /*Select the best configuration candidate Cbest*/
2: best = arg max

i
[f(Ci)], i ∈ {1, · · · ,M}

3: /*Select another configuration set from the candidates
with fitness scores that exceed the mean by WR*/

4: Avgf = 1
M

∑M
i=1 f(Ci)

5: if f(Ci) > Avgf then
6: Select CWR = f(Ci) with possibility Pi

7: end if
8: Use Cbest and CWR as parents

Elitist strategy: We found that good candidates are
more likely to produce good offsprings. In this work, an
elitist strategy is developed similar to the proposed GAs in
study [8]. Elitism provides a means for reducing genetic drift
by ensuring that the best candidate is allowed to copy their
attributes to the next generation. Since elitism can increase
the selection pressure by preventing the loss of low salience
genes of candidates due to deficient selection pressure, it im-
proves the performance with regard to optimality and con-
vergence. However, the elitism rate should be adjusted suit-
ably and accurately because high selection pressure may lead
to premature convergence. The best candidate with highest
fitness value in the previous generation will be preserved as
one of the parents in the next generation.

Inferior strategy: We also found that it is unlikely for
two low fitness candidates to produce an offspring with high
fitness. This is due to the fact that bad performance is of-
ten caused by a few key parameters and these bad settings
continue to be inherited in real clusters. For instance, for
an application that is both CPU and shuffle-intensive in a
cluster with excessive I/O bandwidth and limited CPU re-
sources, enabling compression of map outputs would stress
the CPU and degrade application performance, regardless of
others. The selection method should eliminate this configu-
ration quickly. In order to quickly eliminate poor candidates,
we calculate the mean fitness of the completed tasks for each
generation and only select parents with fitness scores that
exceed the mean.

Aggressive selection algorithm. Based on the above
two aggressive selection strategies, the parents selection of
the self-tuning reproduction is operated by an integrated
selection algorithm. As shown in Algorithm 2, Ant firstly
selects the best configuration candidate with the highest fit-
ness in the last interval as one of the reproduction parents.
Then it selects another configuration set from the candi-
dates with fitness scores that exceed the mean by applying
the Roulette Wheel approach. Finally, Ant generates the
new generation configuration candidates by using the two
selected candidates (i.e., Cbest and CWR) as the reproduc-
tion parents.

Furthermore, the aggressive selection strategies also re-
duce the impact of task skews during the tuning process.
Long tasks due to data skews may add noises in the pro-
posed GA-based task tuning. Taking the advantages of the
aggressive selection, only the best configurations are possi-
bly used to generate new configurations. It is unlikely that
the tasks with skews would be selected as reproduction can-
didates. Thus, Ant would find the best configurations for
the majority of tasks.



Table 3: The characteristics of benchmark applications used in our experiments.
Category Type Label Input size (GB) Input data # Maps # Reduces

Wordcount CPU intensive J1/J2/J3 100/300/900 Wikipedia 400/1200/3600 14/ 14/ 14
Grep I/O intensive J4/J5/J6 100/300/900 Wikipedia 400/1200/3600 14/ 14/ 14

Terasort I/O intensive J7/J8/J9 100/300/900 TeraGen 400/1200/3600 14/ 14/ 14

Figure 8: Ant work flow.

5. IMPLEMENTATION
Hadoop modification: We implemented Ant by modi-

fying classes JobTracker, TaskTracker and LaunchTaskAc-

tion based on Hadoop version 1.0.3. We added a new in-
terface taskConf, which is used to specify the configuration
file of individual tasks while assigning them to slave nodes.
Each set of task-level parameter set is tagged with its cor-
responding AttemptTaskID. Additionally, we added another
new interface Optimizer to implement the GA optimiza-
tion. During job execution, we created a method taskAna-

lyzer to collect the status of each completed task by using
TaskCounter and TaskReport.

Ant execution process: At slave nodes, once a Task-

Tracker gets task execution commands from the TaskSched-
uler by calling LaunchTaskAction, it requires task executors
to accept a launchTask() action from a local TaskTracker.
As shown in Figure 8, Ant uses the launchTask() RPC con-
nection to pass on the task-level configuration file descrip-
tion (i.e., taskConf), which is originally supported by the
Hadoop. Ant creates a directory in the local file system to
store the per-task configuration data for map/reduce tasks
at TaskTracker. The directory is under the task working di-
rectory, and is tagged with AttemptTaskID which is obtained
from JobTracker. Therefore, tasks can load their specified
configuration items by accessing their task local file systems
while initializing individual tasks by Localizetask(). Then
after task localization, it kicks off a process to start a Map-

Task or ReduceTask thread to execute user-defined map and
reduce functions.

Algorithm implementation: We implemented the self-
tuning algorithm to generate the configuration sets for the
new generation tasks in each control interval (i.e., 5 min-
utes). The selection of the control interval is a trade-off
between the parameter searching speed and average task
execution time. If the interval is too long, it will take more
time to find good configurations. If the interval is too short,
the task with new configurations may not complete and no
performance feedback can be collected. Thus, we choose a
control interval of 5 minutes which is approximately 2 times

of the average task execution time. The mutated value of a
parameter is randomly chosen from its search space. Since
our aggressive selection algorithm prunes poor regions, we
can use an atypically high mutation rate (e.g., pm = 0.2)
without impacting convergence. The value of pm is empir-
ically determined. A cut point is randomly chosen in each
parent candidate configuration and all parameters beyond
that point are swapped between the two parents to produce
two children. We empirically set the crossover probability
pc to be 0.7.

6. EVALUATION

6.1 Experiment Setup
We evaluate Ant on a physical cluster composed of 1

Atom, 3 T110, 3 T420 (as shown in Table 1), 1 T320 (12-core
CPUs, 24 GB RAM and 1 T hard disk), and 1 T620 (24-core
CPUs, 16 GB RAM and 1 T hard disk). The master node is
hosted on one T420 machine in the cluster. The servers are
connected with Gigabit Ethernet. Each slave node is con-
figured with four map slots and two reduce slots. The block
size of HDFS is set to 256M due to the large input data
size in the experiment. Ant is modified based on the version
1.0.3 of Hadoop implementation. FIFO scheduler is used in
our experiments. We evaluate Ant using three MapReduce
applications from the PUMA benchmark [1] with different
input sizes as shown in Table 3, which are widely used in
evaluation of MapReduce performance by previous works [6].

We compare the performance of Ant with two other main
competitors in practical use: Starfish [14], a job profiling
based configuration approach from Duke university, and Rules-
of-Thumb 1 (Heuristic), another representative heuristic con-
figuration approach from industry leader Cloudera [7]. For
reference, we normalize the Job Completion Time (JCT)
achieved by various approaches to the JCT achieved by the
Hadoop stock parameter settings. Unless otherwise speci-
fied, we use the stock configuration setting of Hadoop imple-
mentation for the other items that are not listed in the Ta-
ble 4. Note that both Heuristic and Starfish always maintain
identical configuration files for job executions as described
in Section 2. For fairness, the cluster-level and job-level
parameters for all approaches (including the baseline stock
configuration) in the experiments are set to suggested values
by the rules of thumb from Cloudera [7]. For example, we
roughly set the value of mapred.reduce.tasks (the number
of reduce tasks of the job) to 0.9 times the total number of
reduce slots in the cluster. We will discuss the performance
impact of such job-level parameters in Section 6.8.

1Cloudera recommends a set of configuration items based
on its industry experience, e.g.,io.sort.record.percent is
recommended to set as 16

16+avg−record−size
, which is based

on the average size of map output records. More rules are
available in [7].



Table 4: Task-level parameter settings by current representative industry and academic approaches.
Approach Rules-of-Thumb (Heuristic) from Cloudera Starfish from Duke University
Parameter g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

Wordcount 10 100mb 0.35 0.8 4k -Xmx200m 10 50mb 0.15 0.8 4k -Xmx200m
Grep 10 200mb 0.05 0.6 16k -Xmx300m 100 200mb 0.1 0.66 16k -Xmx300m

Terasort 10 150mb 0.15 0.7 32k -Xmx250m 10 200mb 0.15 0.7 32k -Xmx350m
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Figure 9: Job completion times on physical cluster.

Our evaluation firstly demonstrates the performance im-
provement achieved by Ant and analyzes the improvement
from the task execution perspective. Then we show the ef-
fectiveness of Ant under a synthetic workload from Microsoft
and the effectiveness of the aggressive selection strategy.
Furthermore, we investigate the performance of Ant on the
virtual cluster and how fast Ant can find a good configura-
tion. Finally, we discuss the impact of job-level parameters,
control overhead and multi-tenant environment.

6.2 Effectiveness of Ant
Reducing job completion time. Figure 9 compares

various job completion times achieved by Heuristic, Starfish
and Ant, respectively. The results demonstrate that all of
these configuration approaches improve the job completion
times more or less when compared with the performance
achieved by Hadoop stock parameter setting (Stock). Fig-
ure 9 shows that Ant improves the average job completion
time by 31%, 20% and 14% compared with Stock, Heuristic
and Starfish on the physical cluster, respectively. This is due
to the fact that Stock, Heuristic and Starfish all rely on a
unified and static task-level parameter setting. Such unified
configuration is apparently inefficient in the heterogeneous
cluster. The results also reveal that Starfish is more effective
than Heuristic on the physical cluster since Starfish benefits
from its job profiling capability. The learning process of
Starfish is more accurate than the experience based tuning
of Heuristic to capture the characteristic of individual jobs.

Impact of job size. Figure 9 shows that Ant slightly
reduces the completion time of small jobs compared with
stock Hadoop, e.g., J1, J4 and J7. In contrast, Ant is more
effective for large jobs, e.g., J3, J6 and J9. This is due to
the fact that small jobs usually have short execution times
and the self-tuning process can not immediately find the
optimal configuration solutions. Thus, such small jobs are
not favored by Ant.

Impact of workload type. Figure 9 reveals that Ant
reduces the job completion time of I/O intensive workloads,
i.e., Grep and Terasort, 10% more than that of CPU in-

Table 5: The number of spilling (J3, J6 and J9).

Approach Wordcount Grep Terasort Improve

Stock 2.4× 104 4.7× 104 1.7× 105 baseline
Heuristic 1.9× 104 3.8× 104 1.4× 105 18%
Starfish 1.75× 104 3.6× 104 1.25× 105 23%

Ant 1.4× 104 2.9× 104 0.95× 105 42%

tensive workloads, i.e., Wordcount. This is due to the fact
that Ant focuses on the task-level I/O operation parame-
ter tuning and accordingly it affects more for I/O intensive
workloads.

Overall, Ant achieves consistently better performance than
Heuristic and Starfish do on the physical Hadoop cluster.
This is due to its capability of adaptively tuning task-level
parameters while considering various workload preferences
and heterogeneous platforms.

6.3 Improvement on Task Execution
Reducing task execution time. Figure 10 shows the

improvement comparisons in terms of the average task com-
pletion time by Ant, Heuristic and Starfish on the physical
cluster respectively. It demonstrates that map task comple-
tion time improvements are much more than the reduce task
improvements for all of the three configuration approaches.
Ant outperforms Heuristic and Starfish significantly for map
task performance improvement while obtaining similar re-
duce task performance improvement. This is due to the fact
that Ant focuses on optimizing the intermediate data merg-
ing operation of multi-wave map tasks. Most production
jobs have only one reduce wave since the number of reduce
tasks in a job is typically set to be 0.9 times the number
of available reduce slots. Hence, map tasks usually occur in
multiple waves, while reduce tasks tend to complete in one
to two waves for most real-world workloads. Accordingly,
Ant focuses on improving the execution time of map tasks,
which aims to take advantage of the multi-wave behaviors
of map tasks. Understanding the wave behavior of tasks,
such as the number of waves and the size of waves, would
aid task configuration to improve cluster utilization.

Reducing number of data spills. Ant is designed to
optimize task-level performance, particularly I/O operations
during the map phase. The data spilling operations play an
important role in the map phase and usually consume most
execution time of map task processing [18]. Ant aims to re-
duce the map output data spilling times by tuning the buffer
related parameters during execution, e.g., io.sort.mb and
io.sort.spill.percent. To evaluate the effectiveness, we
measure the data spilling times of each map task by anal-
ysis of the spilling logs in the experiments. Table 5 shows
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Figure 10: Task execution comparison.

Table 6: Performance improvement of Microsoft
workload due to different approaches.

Input size 1-100GB 0.1-1TB 1-10TB Total
Job fraction 40% 20% 10% 70%

JCTHeuristic 2.1 h 6.3 h 11.7 h 19.1 h
JCTStarfish 2 h 5.9 h 11.3 h 18.2 h
JCTAnt 2.3 h 5.3 h 9.1 h 16.7 h

that Ant reduces the average data spilling times 42% while
Heuristic and Starfish only reduce 18% and 23%, compared
with the stock Hadoop configuration. This is due to the fact
that Ant optimizes the intermediate data spilling, which sat-
isfies individual needs of different workloads and platforms
in the heterogeneous cluster.

6.4 Ant under Microsoft Workload
To better understand the effectiveness of Ant in a pro-

duction environment, we analyzed 174,000 jobs submitted
to a production analytics cluster in Microsoft datacenter in
a single month in 2011 [3]. We use a synthetic workload,
“MicroSoft-Derived (MSD)”, which models Microsoft’s pro-
duction workload. It is a scaled-down version of the work-
load studied in [3] since our cluster is significantly smaller.
MSD contains jobs with widely varying execution times and
data set sizes, representing a scenario where the cluster is
used to run many different types of batch applications. We
do not run the Microsoft code itself. Rather, we mimic the
distribution characteristics of the job size by running Tera-
sort application with various input data sizes. We scale the
workload down in two ways: we reduce the overall number
of jobs to 87, and eliminate the largest 10% of jobs and the
smallest 20% of jobs. Table 6 shows the job size distribution
of MSD workload used in the experiment and the job com-
pletion time achieved by different tuning approaches. The
results demonstrate that Ant reduces the overall job com-
pletion time of MSD workload 12.5% and 8% compared with
Heuristic and Starfish.

6.5 Effectiveness of Aggressive Selection
We compare the performance impact of applying different

selection strategies in Ant (described in Section 4.4) from
the perspective of job completion time and convergence rate
respectively. The experimental results demonstrate that the
aggressive selection approach of Ant can effectively improve
application performance for various workloads.
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Figure 11: Effectiveness of aggressive selection in
terms of job completion time.

Figure 11 compares the job completion time achieved by
different parents selection approaches. It shows that the
elitist strategy improves the job completion time 9% and
the inferior strategy improves the job completion time 17%
compared with the no-aggressive strategy, respectively. Fig-
ure 11 also illustrates that applying the two strategies (i.e.,
elitist and inferior) together improves the job completion
time 22% on average for the three applications compared
with applying the no-aggressive strategy.

Figure 12 illustrates the impact of convergence rate in
terms of the standard deviation [19] by using the aggressive
selection strategies of Ant. It shows that no-aggressive se-
lection has the worst convergence rate since Roulette Wheel
selection mechanism still has a low probability of selecting
bad candidates to be parents. However, both elitist and infe-
rior strategies improve the convergence rate slightly in terms
of the standard deviation compared with the no-aggressive
strategy. Furthermore, the results demonstrate that ap-
plying inferior and elitist strategies together can effectively
accelerate the convergence rate during the job execution.
Thus, we integrate two strategies in the task evolution of
Ant to improve searching performance.

6.6 Virtual Cluster Environment
We also built a virtual cluster in our university cloud,

which consists of 108-core CPUs and 704 GB memory. VMware
vSphere 5.1 was used for server virtualization. VMware
vSphere module controls the CPU usage limits in MHz al-
located to the virtual machines (VMs). We created a pool
of VMs with different hardware configurations from the vir-
tualized blade server cluster and run them as Hadoop slave
nodes. There are 24 VMs, each with 2 vCPU, 4 GB RAM
and 80 GB hard disk space, which are hosted on three blade
servers in our cloud. Each blade server also hosts a represen-
tative transactional application RUBiS as the interference
producer, which models an online auction site. We created
three VMs, each with 4 vCPUs, 8 GB RAM and 80 GB
hard disk space, for the RUBiS benchmark application on
the three servers respectively. The number of concurrent
users is set to 800, 2500 and 4500 for the three servers. All
VMs ran Ubuntu Server 12.04 with Linux kernel 3.2. The
cluster-level configurations for Hadoop are the same as those
in the physical cluster (Section 6.1). The number of reduce
tasks is set to 42, which is 0.9 times the number of the avail-
able reduce slots in the cluster.

We empirically set the number of subclusters to three in
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Figure 12: Effectiveness of aggressive selection in
terms of convergence rate.
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Figure 13: Impact of environments.

this experiment. We then divide the virtual cluster into
three subclusters by using k-means clustering approach. VMs
having similar CPU steal time and I/O rate are classified
into the same subcluster. We obtain three subclusters as
follows: a subcluster of 4 VMs with low steal time and high
I/O rate, a subcluster of 8 VMs with middle steal time and
I/O rate, and a subcluster of 12 VMs with high steal time
and low I/O rate. Note that each subcluster is treated as
an independent homogeneous cluster to evolve the task-level
optimal configuration set as described in Section 4.1.

Performance improvement impact. Similar to the
scenario of the physical cluster, Ant improves the average
job completion time by 23%, 11% and 16% compared with
Stock, Heuristic and Starfish on the virtual cluster, respec-
tively. However, the performance of Starfish is slightly worse
than that of Heuristic in this scenario since the resource in-
terference in the virtual environment significantly reduces
the accuracy of Starfish job profiling. Figure 13 compares
the job completion time improvement achieved by Ant, Heuris-
tic and Starfish under the physical and virtual environments,
respectively. The results demonstrate that the average job
completion time of Ant on the physical cluster is improved
by 8% compared with that on the virtual cluster. It shows
that Ant is more effective in the physical environment. This
is due to the fact that MapReduce perception of cluster
topology and resource isolation may be different from the
actual settings on hardware when running in a virtual envi-
ronment. As the result, the corresponding parameter tun-
ing strategies are less effective in a virtual cluster than in a
physical cluster. Figure 13 also shows that Ant improves the
absolute job completion time at least by 9% and 7% com-
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Figure 14: Searching speed analysis.

pared with Heuristic and Starfish on the physical cluster and
on the virtual cluster, respectively.

6.7 Search Speed
The searching speed of Ant represents the time cost to

find a stable task configuration set for a running job on the
cluster. A slow searching speed will reduce the benefit from a
good task-level configuration, especially for small jobs. This
is due to the fact that a small job may complete before Ant
can find out an optimal setting for this job. This is also the
reason that Ant is more effective for large jobs than for small
jobs as shown in Section 6.2. Our experiments reveal that
there are two main factors contributing significant impact
on the searching speed of Ant.

Impact of cluster size. The number of available nodes
in the cluster is an important factor that affects the search-
ing speed of Ant. Figure 14 enumerates the convergence cost
of Ant with various numbers of machines in our experiments.
The result shows that the convergence cost decreases as the
number of machines increases in the cluster. The searching
process relies on the online task execution learning. The
more nodes available in the cluster, the more opportunities
there are to learn the characteristics of the running job.

Impact of machine type. Figure 15 demonstrates the
searching speed of Ant in the physical cluster is faster than
that in the virtual cluster. We define that the parameter
value is stable when its standard deviation value is smaller
than 10%, which is widely used in evaluation of the conver-
gence speed in previous study [19]. The result in Figure 15
shows that Ant takes 18 and 35 minutes to find a good con-
figuration in the physical cluster and in the virtual cluster,
respectively. Note that the actual resource allocation for
each node in the virtual cluster is typically time-varying due
to the interference issues [25].

6.8 Discussions
Job-level parameters. Currently, job-level configura-

tions mostly rely on personal experiences and/or job-profiling
based approaches. We quantify the performance impact of
an important job-level parameter, i.e., mapred.reduce.tasks.
Our experimental results suggest that the number of reduce
tasks should be set to 1-5 times the number of available re-
duce slots in the cluster. The default value of a single reduce
task setting is worst while too many reduce task settings can
also lead to performance degradation. Thus, for fairness,
we set the value of parameter mapred.reduce.tasks to 0.9
times the number of available reduce slots in the cluster for
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all jobs in our experiments.
Overhead of Ant. Although Ant relies on a centralized

control framework, it does not launch any new process for
the controller. Instead, it only sends a tiny per-task con-
figuration description file to TaskTrackers when initializing
each task. These task-level configuration files are distributed
to individual slave nodes along with LaunchTaskAction by
Hadoop default RPC connections. We find that the self-
tuning optimization algorithm takes approximately 25-40
ms to complete. This overhead is negligible compared to
the control interval of 5 minutes.

Multi-tenant scenario. As MapReduce scales to ever-
larger platforms, concerns about cluster utilization grow [4].
Multi-tenancy support becomes an essential need in MapRe-
duce. However, sharing a MapReduce cluster among multi-
ple jobs from different users poses significant challenges in
resource allocation and job configurations. For instance, in-
terferences among different jobs may create straggler tasks
that significantly slow down the entire job execution, and
may lead to severe performance degradations [10, 28].

7. RELATED WORK
A number of previous studies have shown that MapRe-

duce performance can be improved by various optimization
approaches from following aspects.

Framework modification. Studies have demonstrated
that it is effective to improve MapReduce performance by
modifying the default Hadoop framework. Rao et al. pro-
posed Sailfish [22], a new MapReduce framework for large-
scale data processing. The core of Sailfish is aggregating
intermediate data, specifically data produced by map tasks
and consumed later by reduce tasks, to improve job perfor-
mance by batching disk I/O. Jinda et al. [15] proposed a
new data layout, namely coined Trojan Layout, which inter-
nally organizes data blocks into attribute groups according
to the workload in order to improve data access times. It
is able to schedule incoming MapReduce jobs to data block
replicas with the most suitable Trojan Layout. Guo et al.
proposed iShuffle [11], a novel user-transparent shuffle ser-
vice that provides optimized data shuffling to improve job
performance. It decouples shuffle from reduce tasks and
proactively pushes data to be shuffled to Hadoop node via
a novel shuffle-onwrite operation in map tasks. Dittrich et
al. proposed Hadoop++ [9], a new index and join technique
to improve runtime of MapReduce jobs. Vavilapalli et al.
presented the next generation of the Hadoop compute plat-
form known as YARN [24]. Similar to the first generation, it

employs a unified configuration policy for all tasks. None of
those approaches considered modifying the default Hadoop
configurations to improve MapReduce performance.

Heterogeneous environment. As heterogeneous hard-
ware is applied to Hadoop clusters, how to improve MapRe-
duce performance in heterogeneous environments attracts
much attention [2, 30, 31]. Ahmad et al. [2] identified key
reasons for MapReduce poor performance on heterogeneous
clusters. Accordingly, they proposed an optimization based
approach, Tarazu, to improve MapReuce performance by
communication-aware load balancing. Zaharia et al. [30] de-
signed a robust MapReduce scheduling algorithm, LATE, to
improve the completion time of MapReuce jobs in a hetero-
geneous environment. They paid little attention to optimiz-
ing Hadoop configurations, which has a significant impact
on the performance of MapReduce jobs, especially in a het-
erogeneous Hadoop cluster.

Parameter configuration. Recently, a few studies start
to explore how to optimize Hadoop configurations to im-
prove job performance. Herodotou et al. [12] proposed sev-
eral automatic optimization based approaches for MapRe-
duce parameter configuration to improve job performance.
Kambatla et al. [16] presented a Hadoop job provisioning ap-
proach by analyzing and comparing resource consumption of
applications. It aimed to maximize job performance while
minimizing the incurred cost. Lama and Zhou designed
AROMA [17], an approach that automated resource alloca-
tion and configuration of Hadoop parameters for achieving
the performance goals while minimizing the incurred cost.
AROMA achieves the optimal configuration by running a
small sample of submitted jobs. If the workload is complex
and dynamic, e.g., Gridmix, its profiling may not be accu-
rate. Herodotou et al. proposed Starfish [14], an optimiza-
tion framework that hierarchically optimizes from jobs to
workflows by searching for good parameter configurations.
It utilizes dynamic job profiling to capture the runtime be-
havior of map and reduce at the granularity of phase level
and helps users fine tune Hadoop job parameters. These
approaches mostly rely on the default Hadoop framework
and configure the parameters by static settings. They are
often not effective when the workload changes or the cluster
platform becomes heterogeneous.

8. CONCLUSION
Although an unified design framework, such as MapRe-

duce, is convenient and easy to use for large-scale parallel
and distributed programming, it ignores the differentiated
needs in the presence of various platforms and workloads.
In this paper, we tackle a practical yet challenging problem
of automatic configuration of large-scale MapReduce work-
loads in heterogeneous environments. We have proposed
and developed a self-adaptive task-level tuning approach,
Ant, that automatically finds the optimal settings for indi-
vidual jobs running on heterogeneous nodes. In Ant, tasks
are customized with different settings to match the capabil-
ities of heterogeneous nodes. It works best for large jobs
with multiple rounds of map task execution. Our experi-
mental results demonstrate that Ant can improve the aver-
age job completion time by 23%, 11%, and 16% compared
to stock Hadoop, customized Hadoop with industry recom-
mendations, and a profiling-based configuration approach,
respectively. In future work, we plan to extend Ant to a
multi-tenant MapReduce environment.
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